第四章 酶学概论
- 格式:ppt
- 大小:4.42 MB
- 文档页数:78
第一章绪论第一节酶的发现及研究历史最早的酶学实验: 1783年, 意大利科学家Spallanzani发现鸟的胃液能将肉类分解消化。
酶的最早发现者:1810年,药物学家Planche在植物根中发现一种能使创木脂氧化变蓝的物质,并分离出了这种耐热且水溶性的物质。
最早的酶制剂:1833年,Payen和Persoz用酒精处理麦芽提取液,分离出了一种能溶于水和稀酒精,不溶于浓酒精,对热不稳定的白色无定形粉末,取名为diastase(淀粉酶)。
它能使淀粉转化为糖,不久后用于棉布退浆。
1971年,第一届国际酶工程学术会议在美国召开,主题即是固定化酶,进一步开展了对微生物细胞固定化的研究。
第二节酶学概论一、什么是酶1酶是一类具有特殊催化功能的蛋白质2酶的化学本质是蛋白质。
主要依据是:①酶经酸碱水解后的最终产物是氨基酸,酶能被蛋白酶水解而失活。
②酶是具有空间结构的生物大分子,凡使蛋白质变性的因素都可使酶变性失活。
③酶是两性电解质,在不同pH下呈现不同的离子状态,在电场中向某一电极泳动,各自具有特定的等电点。
④酶和蛋白质一样,具有不能通过半透膜等胶体性质。
⑤酶也有蛋白质所具有的化学呈色反应。
3酶具有蛋白质的一切理化性质。
它也是亲水胶体,具有两性电解质性质,凡能引起蛋白质变性的因素均可致使酶失活二、酶的化学组成1单纯蛋白质的酶类2缀合蛋白质的酶类蛋白质---脱辅酶非蛋白质小分子---辅因子物质或金属离子全酶= 脱辅酶+ 辅因子三、酶的催化作用(一)酶和一般催化剂的共性①凡是催化剂均能加快化学反应的速度,而本身在反应前后都没有结构和性质上的改变。
②只能催化热力学上允许进行的化学反应,而不能实现热力学上不能进行的反应。
③只能缩短反应达到平衡所需的时间,而不能改变平衡点。
(二)酶作为生物催化剂的特点1.反应条件温和2. 酶易失活3.酶具有很高的催化效率酶作为催化剂比一般催化剂更显著地降低活化能,催化效率更高活化能:在一定温度下1摩尔底物全部进入活化态所需要的自由能(kJ/mol)反应所需的活化能愈高,反应速率就愈慢4.酶具有高度专一性5.酶活性受到调节和控制细胞内酶的调节和控制主要方式:a调节酶的浓度酶浓度的调节主要有2种方式:诱导或抑制酶的合成调节酶的降解b通过激素调节酶活性c反馈抑制调节酶活性d抑制剂和激活剂对酶活性的调节e其他调节方式反馈抑制:许多小分子物质的合成是由一连串的反应组成的,催化此物质生成的第一步的酶,往往被它们终端产物抑制。
绪论一.酶是生物催化剂酶是具有生物催化功能的生物大分子,按其化学组成的不同可以分为两类:蛋白类酶(P-酶)与核酸类酶(R-酶)。
理解:1、酶是由生物细胞产生2、酶发挥催化功能不仅在细胞内,在细胞外亦可二.酶学研究简史1897年,Buchner兄弟发现,用石英砂磨碎的酵母细胞或无细胞滤液能和酵母细胞一样进行酒精发酵。
标志着酶学研究的开始。
说明:酶分子不仅只是在细胞内起作用,而且在细胞外同样具有催化功能。
这一发现开启了现代酶学,乃至现代生物化学的大门。
三.酶工程的现状:目前大规模利用和生产的商品酶还很少。
第一章.酶学概论第一节.酶作为生物催化剂的显著特点一.酶作为生物催化剂的显著特点:高效、专一二.同工酶(概):能催化相同的化学反应,但其酶蛋白本身的分子结构组成不同的一组酶。
三.共价修饰调节1.概念:通过其它的酶对其结构进行共价修饰,从而使其在活性形式和非活性形式之间相互转变。
2.常见修饰类型:磷酸化与去磷酸化;腺苷酸化与脱腺苷酸化;尿苷酸化与脱尿苷酸化;泛素化;类泛素化3.例子:糖原磷酸化酶——磷酸化形式有活性(葡萄糖)n+Pi→(葡萄糖)n-1+1-磷酸葡萄糖4.常见磷酸化部位:丝氨酸/苏氨酸,酪氨酸和组氨酸四.酶活性调节方式要能判断所举酶的例子是什么类型调节1. 别构调节2. 激素调节:如乳糖合酶修饰亚基的水平是由激素控制的。
妊娠时,修饰亚基在乳腺生成。
分娩时,由于激素水平急剧的变化,修饰亚基大量合成,它和催化亚基结合,大量合成乳糖。
3. 共价修饰调节:如糖原磷酸化酶、磷酸化酶b激酶4.限制性蛋白水解作用与酶活性控制。
如酶原激活5.抑制剂和激活剂的调节6.反馈调节7.金属离子和其它小分子化合物的调节8.蛋白质剪接五.反馈调节(概):催化某物质生成的第一步反应的酶的活性,往往被其终端产物所抑制。
这种对自我合成的抑制叫反馈抑制。
A-J :代谢物实线箭头:酶促催化步骤虚线箭头:反馈抑制步骤代谢途径的第一步和共同底物进入分支途径的分支点是反馈抑制的最为重要的位点。
第一章酶学概论1.酶:具有生物催化功能的生物大分子。
2.酶工程:酶的生产、改性与应用的技术过程。
3.酶活力(enzyme activity):指在一定条件下,酶所催化的反应初速度。
4.酶活力单位(IU):在特定条件下(温度可采用25℃,pH值等条件均采用最适条件),每1min催化1µmol的底物转化为产物的酶量定义为一个酶活力单位,这个单位称为国际单位(IU)5.酶转换数Kp:又称为摩尔催化活性,是指每个酶分子每分钟催化底物转化的分子数。
即每摩尔酶每分钟催化底物转化为产物的摩尔数,是酶催化效率的一个指标。
6.酶的催化周期:转换数的倒数,即催化周期是指酶进行一次催化所需的时间,单位为毫秒(ms)或微秒(µs)。
7.酶结合效率:又称为酶的固定化效率,是指酶与载体结合的百分率。
酶结合效率的计算一般由固定化的总活力减去未结合的酶活力所得到的差值,再除以用于固定化的总酶活力而得到。
8.酶活力回收率:指固定化酶的总活力与用于固定化的总酶活力的百分率。
9.相对酶活力:具有相同酶蛋白(或酶RNA)量的固定化酶活力与游离酶活力的比值。
10.核酸酶(ribozyme):具有催化活性的RNA。
抗体酶(Abzyme):具有催化活力的抗体。
11.组成型酶:有的酶在细胞中的量比较恒定,环境因素对这些酶的合成速度影响不大,如DNA/RNA聚合酶。
12.适应型酶/调节性酶:有的酶在细胞内的含量变化很大,其合成速度明显受到环境因素的影响,如β-半乳糖苷酶13.模拟酶:又称人工合成酶或酶模型,是指根据酶的作用原理,用人工合成的具有活性中心和催化作用的非蛋白质结构的化合物。
14.酶催化作用的特点:1.酶催化作用的专一性强(相对/绝对专一性) 2.酶催化作用的效率高3.酶催化作用的条件温和 4.酶活性受到调节和控制15.影响酶催化作用的因素:1.底物浓度的影响2.酶浓度的影响3.产物浓度的影响4.温度的影响5.pH值的影响6.抑制剂的影响7.激活剂的影响16.酶生物合成的调节:1、分解代谢物阻遏作用2、酶生物合成的诱导作用3、酶生物合成的反馈阻遏作用17. 从如下实验方法和结果分析酶生物合成的调节作用。
⽣物化学第四章酶第四章酶酶是⼀类具有⾼效率、⾼度专⼀性、活性可调节的⾼分⼦⽣物催化剂。
1957巴斯德提出酒精发酵是酵母细胞活动的结果。
1 分⼦Glc→2分⼦⼄醇+2分⼦CO2 从Glc开始,经过12种酶催化,12步反应,⽣成⼄醇。
1897 Buchner兄弟证明发酵与细胞的活动⽆关,不含细胞的酵母汁也能进⾏⼄醇发酵。
1913 Michaelis和Menten提出⽶⽒学说—酶促动⼒学原理。
1926 Sumner⾸次从⼑⾖中提出脲酶结晶,并证明具有蛋⽩质性质。
1969 化学合成核糖核酸酶。
1967-1970 从E.coli中发现第I、第II类限制性核酸内切酶。
1986 Cech发现四膜⾍细胞⼤核期间26S rRNA前体具有⾃我剪接功能。
ribozyme ,deoxyribozymeE.coRI5’——GAA TTC——3’3’——CTTAAG——5’限制作⽤修饰作⽤5’——GAATTC——3’5’——GAATTC——3’3’——CTTAAG——5’ 3’——CTTAAG——5’第⼀节酶学概论⼀、酶的⽣物学意义⼤肠杆菌⽣命周期20分钟,⽣物体内化学反应变得容易和迅速进⾏的根本原因是体内普通存在⽣物催化剂—酶。
没有酶,⽣长、发育、运动等等⽣命活动就⽆法继续。
限制性核酸内切酶(限制-修饰)⼆、酶的概念及其作⽤特点1、酶是⼀种⽣物催化剂酶是⼀类具有⾼效率、⾼度专⼀性、活性可调节的⾼分⼦⽣物催化剂。
⽣物催化剂:酶(enzyme),核(糖)酶(ribozyme),脱氧核(糖)酶(deoxyribozyme)2、酶催化反应的特点(1)、催化效率⾼酶催化反应速度是相应的⽆催化反应的108-1020倍,并且⾄少⾼出⾮酶催化反应速度⼏个数量级。
(2)、专⼀性⾼酶对反应的底物和产物都有极⾼的专⼀性,⼏乎没有副反应发⽣。
(3)、反应条件温和(4)、活性可调节根据据⽣物体的需要,许多酶的活性可受多种调节机制的灵活调节,包括:别构调节、酶的共价修饰、酶的合成、活化与降解等。