2020年数学中考说明新变化
- 格式:docx
- 大小:924.49 KB
- 文档页数:6
中考数学创新题型复习指要新仟年伊始,伴随着新教材的推广使用,以新《课程标准》的颁布为标志,数学教育迎来了它的新时代。
新教材以培养学生的创新意识和创新精神为宗旨,要求学生要有探究、创新和实践的能力。
如何以新标准考察学生?各地的中考试题都作了大胆尝试,以下尝试对新试题的测试的改革思路做出分析,谨供考生参考。
一.开放题型的引入“开放型”试题是指试题的条件、结论、解题依据、和方法四个要素中缺少一个或两个要素的命题。
例如:1.同学们知道:只有两边和一角对应相等的两个三角形不一定全等,你如何处理和安排这三个条件,使这两个三角形全等。
请你模仿方案(1),写出方案(2)、(3)、(4)。
解:设有两边和一角对应相等的两个三角形,方案(1):若这角的对边恰好是这两边中的大边,则这两个三角形全等。
方案(2):方案(3):方案(4):2.请写出一个含1这个根且增根为2的分式方程。
3.已知:平面直角坐标系内,点P的纵坐标是横坐标的3倍,请写出过点P的一次函数解析式(至少三个)。
4.老师给出一个函数y=f(x),甲、乙、丙、丁四位同学各指出这个函数的一个性质:甲:函数图象不经过第三象限;乙:函数图象经过第一象限;丙:当x<2时,y随x的增大而减小;丁:当x<2时,y>0。
已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数是。
5.在四边形ABCD中,给出下列条件:①AB∥CD,②AD=BC,③∠B=∠D,以其中两个作为题设,另一个作结论,用“如果……,那么……。
”的形式,写出一个真命题是。
6.小红同学编拟了这样一个数学命题:“如果在四边形ABCD中,AB=CD、AC=BD,那么四边形ABCD 一定是平行四边形”。
若你认为这个命题的结论成立,请予以证明;若这个命题的结论不一定成立,请画图举出反例予以说明。
二.归纳法的渗透利用归纳法,通过观察、猜想、推理,总结规律,得到结论,以考察学生的观察、创新能力。
专题突破(十) 新定义问题新定义题型的构造注重学生数学思考的过程及不同认知阶段特征的表现.其内部逻辑构造呈现出比较严谨、整体性强的特点.其问题模型可以表示为阅读材料、研究对象、给出条件、需要完成认识.而规律探究、方法运用、学习策略等则是“条件”隐形存在的“魂”.这种新定义问题虽然在构造方式上“五花八门”,但是经过整理也能发现它们存在着一定的规律.新定义题型是北京中考最后一题的热点题型.“该类题从题型上看,有展示全貌,留空补缺的;有说明解题理由的;有要求归纳规律再解决问题的;有理解新概念再解决新问题的,等等.这类试题不来源于课本且高于课本,结构独特.1.[2015·北京] 在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙O 的反称点的定义如下:若在射线..CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图Z10-1为点P 及其关于⊙C 的反称点P ′的示意图.(1)当⊙O 的半径为1时.①分别判断点M (2,1),N (32,0),T (1,3)关于⊙O 的反称点是否存在,若存在,求其坐标;②点P 在直线y =-x +2上,若点P 关于⊙O 的反称点P ′存在,且点P ′不在x 轴上,求点P 的横坐标的取值范围.(2)当⊙C 的圆心在x 轴上,且半径为1,直线y =-33x +2 3与x 轴、y 轴分别交于点A ,B.若线段AB 上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,求圆心C 的横坐标的取值范围.图Z10-12.[2014·北京] 对某一个函数给出如下定义:若存在实数M >0,对于任意的函数值y ,都满足-M ≤y ≤M ,则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,图Z10-2中的函数是有界函数,其边界值是1.(1)分别判断函数y =1x (x >0)和y =x +1(-4<x ≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y =-x +1(a ≤x ≤b ,b >a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数y =x 2(-1≤x ≤m ,m ≥0)的图象向下平移m 个单位长度,得到的函数的边界值是t ,当m 在什么范围时,满足34≤t ≤1?图Z10-23.[2013·北京] 对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB =60°,则称P 为⊙C 的关联点.已知点D (12,12),E (0,-2),F (2 3,0).(1)当⊙O 的半径为1时,①在点D ,E ,F 中,⊙O 的关联点是________; ②过点F 作直线l 交y 轴正半轴于点G ,使∠GFO =30°,若直线l 上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.图Z10-34.[2012·北京] 在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|; 若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图Z10-4(a)中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).(1)已知点A (-12,0),B 为y 轴上的一个动点.①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标; ②直接写出点A 与点B 的“非常距离”的最小值. (2)已知C 是直线y =34x +3上的一个动点,①如图(b),点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标.②如图(c),E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标.图Z10-41.[2015·平谷一模] b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m ,n ]上的“闭函数”.如函数y =-x +4,当x =1时,y =3;当x =3时,y =1,即当1≤x ≤3时,有1≤y ≤3,所以说函数y =-x +4是闭区间[1,3]上的“闭函数”.(1)反比例函数y =2015x 是闭区间[1,2015]上的“闭函数”吗?请判断并说明理由;(2)若二次函数y =x 2-2x -k 是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的解析式(用含m ,n 的代数式表示).2.[2015·东城一模] 定义符号min {}a ,b 的含义为:当a ≥b 时,min {}a ,b =b ;当a <b 时,min {}a ,b =a .如:min {}1,-2=-2,min {}-1,2=-1.(1)求min {}x 2-1,-2;(2)已知min{x 2-2x +k ,-3}=-3,求实数k 的取值范围;(3)已知当-2≤x ≤3时,min{x 2-2x -15,m (x +1)}=x 2-2x -15.直接写出实数m 的取值范围.3.[2015·海淀二模] 如图Z10-5(a ),在平面直角坐标系xOy 中,已知点A (-1,0),B (-1,1),C (1,0),D (1,1),记线段AB 为T 1,线段CD 为T 2,点P 是坐标系内一点.给出如下定义:若存在过点P 的直线l 与T 1,T 2都有公共点,则称点P 是T 1-T 2联络点.例如,点P (0,12)是T 1-T 2联络点.(1)以下各点中,________是T 1-T 2联络点(填出所有正确的序号); ①(0,2);②(-4,2);③(3,2).(2)直接在图(a )中画出所有T 1-T 2联络点所组成的区域,用阴影部分表示.(3)已知点M 在y 轴上,以M 为圆心,r 为半径画圆,⊙M 上只有一个点为T 1-T 2联络点,①若r =1,求点M 的纵坐标; ②求r 的取值范围.图Z10-54.[2015·门头沟一模] 如图Z10-6,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c (a >0)的顶点为M ,直线y =m 与x 轴平行,且与抛物线交于点A 和点B ,如果△AMB 为等腰直角三角形,我们把抛物线上A 、B 两点之间的部分与线段AB 围成的图形称为该抛物线的准蝶形,顶点M 称为碟顶,线段AB 的长称为碟宽.图Z10-6(1)抛物线y =12x 2的碟宽为________,抛物线y =ax 2(a >0)的碟宽为________.(2)如果抛物线y =a (x -1)2-6a (a >0)的碟宽为6,那么a =________.(3)将抛物线y n =a n x 2+b n x +c n (a n >0)的准蝶形记为F n (n =1,2,3,…),我们定义F 1,F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.如果F n 与F n -1的相似比为12,且F n的碟顶是F n -1的碟宽的中点,现在将(2)中求得的抛物线记为y 1,其对应的准蝶形记为F 1.①求抛物线y 2的函数解析式.②请判断F 1,F 2,…,F n 的碟宽的右端点是否在一条直线上?如果是,直接写出该直线的函数解析式;如果不是,说明理由.图Z10-75.[2015·朝阳一模] 定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”.(1)若P (1,2),Q (4,2).①在点A (1,0),B (52,4),C (0,3)中,PQ 的“等高点”是________;②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值. (2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.图Z10-86.[2015·通州一模] 如图Z10-9,在平面直角坐标系中,已知点A (2,3),B (6,3),连接A B.若对于平面内一点P ,线段AB 上都存在点Q ,使得PQ ≤1,则称点P 是线段AB 的“邻近点”.(1)判断点D (75,195)是否是线段AB 的“邻近点”.________(填“是”或“否”);(2)若点H (m ,n )在一次函数y =x -1的图象上,且是线段AB 的“邻近点”,求m 的取值范围;(3)若一次函数y =x +b 的图象上至少存在一个邻近点,直接写出b 的取值范围.图Z10-97.[2015·海淀一模] 在平面直角坐标系xOy 中,对于点P (a ,b )和点Q (a ,b ′),给出如下定义:若b ′=⎩⎪⎨⎪⎧b ,a ≥1,-b ,a<1,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()-2,5的限变点的坐标是()-2,-5.(1)①点()3,1的限变点的坐标是________;②在点A ()-2,-1,B ()-1,2中有一个点是函数y =2x 的图象上某一个点的限变点,这个点是________.(2)若点P 在函数y =-x +3(-2≤x ≤k ,k >-2)的图象上,其限变点Q 的纵坐标b ′的取值范围是-5≤b ′≤2,求k 的取值范围.(3)若点P 在关于x 的二次函数y =x 2-2tx +t 2+t 的图象上,其限变点Q 的纵坐标b ′的取值范围是b ′≥m 或b ′<n ,其中m >n .令s =m -n ,求s 关于t 的函数解析式及s 的取值范围.图Z10-108.[2015·西城一模] 给出如下规定:两个图形G 1和G 2,点P 为G 1上任一点,点Q 为G 2上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形G 1和G 2之间的距离.在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为A (1,0),则点B (2,3)和射线OA 之间的距离为________,点C (-2,3)和射线OA 之间的距离为________.(2)如果直线y =x 和双曲线y =kx 之间的距离为2,那么k =________.(可在图Z10-11(a )中进行研究)(3)点E 的坐标为(1,3),将射线OE 绕原点O 逆时针旋转60°,得到射线OF ,在坐标平面内所有和射线OE ,OF 之间的距离相等的点所组成的图形记为图形M .①请在图(b )中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示)②将射线OE ,OF 组成的图形记为图形W ,抛物线y =x 2-2与图形M 的公共部分记为图形N ,请直接写出图形W 和图形N 之间的距离.图Z10-11参考答案1.解:(1)①点M (2,1)关于⊙O 的反称点不存在. 点N (32,0)关于⊙O 的反称点存在,反称点N ′(12,0).点T (1,3)关于⊙O 的反称点存在,反称点T ′(0,0).②如图①,直线y =-x +2与x 轴、y 轴分别交于点E (2,0),点F (0,2).设点P 的横坐标为x .(i )当点P 在线段EF 上,即0≤x ≤2时,0<OP ≤2, ∴在射线OP 上一定存在一点P ′,使得OP +OP ′=2,∴点P 关于⊙O 的反称点存在,其中点P 与点E 或点F 重合时,OP =2,点P 关于⊙O 的反称点为O ,不符合题意,∴0<x <2.(ii )当点P 不在线段EF 上,即x <0或x >2时,OP >2, ∴对于射线OP 上任意一点P ′,总有OP +OP ′>2, ∴点P 关于⊙O 的反称点不存在.综上所述,点P 的横坐标x 的取值范围是0<x <2.(2)若线段AB 上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,则1<CP ≤2.依题意可知点A 的坐标为(6,0),点B 的坐标为(0,2 3),∠BAO =30°. 设圆心C 的坐标为(x ,0).①当x <6时,过点C 作CH ⊥AB 于点H ,如图②,∴0<CH ≤CP ≤2,∴0<CA ≤4, ∴0<6-x ≤4,∴2≤x <6,并且,当2≤x <6时,CB >2,CH ≤2, ∴在线段AB 上一定存在点P ,使得CP =2,∴此时点P 关于⊙C 的反称点为C ,且点C 在⊙C 的内部,∴2≤x <6. ②当x ≥6时,如图③.∴0≤CA ≤CP ≤2,∴0≤x -6≤2,∴6≤x ≤8.并且,当6≤x ≤8时,CB >2,CA ≤2,∴在线段AB 上一定存在一点P ,使得CP =2,∴此时点P 关于⊙C 的反称点为C ,且点C 在⊙C 的内部,∴6≤x ≤8. 综上所述,圆心C 的横坐标x 的取值范围是2≤x ≤8. 2.解:(1)y =1x (x >0)不是有界函数.y =x +1(-4<x ≤2)是有界函数,边界值为3. (2)对于y =-x +1,y 随x 的增大而减小, 当x =a 时,y =-a +1=2,a =-1, 当x =b 时,y =-b +1.⎩⎪⎨⎪⎧-2≤-b +1<2,b >a , ∴-1<b ≤3.(3)由题意,函数平移后的表达式为 y =x 2-m (-1≤x ≤m ,m ≥0).当x =-1时,y =1-m ;当x =0时,y =-m ; 当x =m 时,y =m 2-m . 根据二次函数的对称性,当0≤m ≤1时,1-m ≥m 2-m . 当m >1时,1-m <m 2-m . ①当0≤m ≤12时,1-m ≥m .由题意,边界值t =1-m . 当34≤t ≤1时,0≤m ≤14, ∴0≤m ≤14.②当12<m ≤1时,1-m <m .由题意,边界值t =m . 当34≤t ≤1时,34≤m ≤1, ∴34≤m ≤1. ③当m >1时,由题意,边界值t ≥m , ∴不存在满足34≤t ≤1的m 值.综上所述,当0≤m ≤14或34≤m ≤1时,满足34≤t ≤1.3.解:(1)①如图(a)所示,过点E 作⊙O 的切线,设切点为R .∵⊙O 的半径为1,∴RO =1.∵EO =2,∴∠OER =30°,根据切线长定理得出⊙O 的左侧还有一个切点,使得组成的角等于30°, ∴E 点是⊙O 的关联点.∵D (12,12),E (0,-2),F (2 3,0),∴OF >EO ,DO <EO ,∴D 点一定是⊙O 的关联点,而在⊙O 上不可能找到两点与点F 的连线的夹角等于60°, 故在点D ,E ,F 中,⊙O 的关联点是D ,E . ②由题意可知,若P 刚好是⊙C 的关联点,则点P 到⊙C 的两条切线P A 和PB 之间所夹的角为60°, 由图(b)可知∠APB =60°,则∠CPB =30°. 连接BC ,则PC =BCsin ∠CPB=2BC =2r ,∴若点P 为⊙C 的关联点,则需点P 到圆心的距离d 满足0≤d ≤2r .由上述证明可知,考虑临界点位置的P 点,则点P 到原点的距离OP =2×1=2, 如图(c),过点O 作l 轴的垂线OH ,垂足为H ,∵∠GFO =30°, ∴∠OGF =60°,OG =2, 可得点P 1与点G 重合.过点P 2作P 2M ⊥x 轴于点M , 可得∠P 2OM =30°,∴OM =OP 2cos30°=3,从而若点P 为⊙O 的关联点,则P 点必在线段P 1P 2上,∴0≤m ≤ 3.(2)若线段EF 上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应是线段EF 的中点.考虑临界情况,如图(d),即恰好点E ,F 为⊙K 的关联点时,则KF =2KN =12EF =2,此时,r =1,故若线段EF 上的所有点都是某个圆的关联点,则这个圆的半径r 的取值范围为r ≥1.4.解:(1)①点B 的坐标是(0,2)或(0,-2). ②点A 与点B 的“非常距离”的最小值为12.(2)①∵C 是直线y =34x +3上的一个动点,∴设点C 的坐标为(x 0,34x 0+3),∴-x 0=34x 0+2,此时,x 0=-87,∴点C 与点D 的“非常距离”的最小值为87,此时C (-87,157).②E (-35,45).-35-x 0=34x 0+3-45, 解得x 0=-85,则点C 的坐标为(-85,95),点C1.解:(1)反比例函数y =2015x 是闭区间[1,2015]上的“闭函数”.理由如下:反比例函数y =2015x 在第一象限,y 随x 的增大而减小,当x =1时,y =2015; 当x =2015时,y =1,即图象过点(1,2015)和(2015,1),∴当1≤x ≤2015时,有1≤y ≤2015,符合闭函数的定义, ∴反比例函数y =2015x是闭区间[1,2015]上的“闭函数”.(2)由于二次函数y =x 2-2x -k 的图象开口向上,对称轴为直线x =1,∴二次函数y =x 2-2x -k 在闭区间[1,2]内,y 随x 的增大而增大. 当x =1时,y =1,∴k =-2. 当x =2时,y =2,∴k =-2. 即图象过点(1,1)和(2,2),∴当1≤x ≤2时,有1≤y ≤2,符合闭函数的定义, ∴k =-2.(3)因为一次函数y =kx +b ()k ≠0是闭区间[]m ,n 上的“闭函数”, 根据一次函数的图象与性质,有:(Ⅰ)当k >0时,图象过点(m ,m )和(n ,n ),∴⎩⎪⎨⎪⎧mk +b =m ,nk +b =n , 解得⎩⎪⎨⎪⎧k =1,b =0,∴y =x .(Ⅱ)当k <0时,图象过点(m ,n )和(n ,m ),∴⎩⎪⎨⎪⎧mk +b =n ,nk +b =m ,解得⎩⎨⎧k =-1,b =m +n ,∴y =-x +m +n ,∴一次函数的解析式为y =x 或y =-x +m +n . 2.解:(1)∵x 2≥0, ∴x 2-1≥-1. ∴x 2-1>-2.∴min {}x 2-1,-2=-2. (2)∵x 2-2x +k =()x -12+k -1, ∴()x -12+k -1≥k -1.∵min{x 2-2x +k ,-3}=-3, ∴k -1≥-3. ∴k ≥-2. (3)-3≤m ≤7. 3.解:(1)②③(2)所有联络点所组成的区域为图(a)中阴影部分(含边界).(3)①∵点M 在y 轴上,⊙M 上只有一个点为T 1-T 2联络点,阴影部分关于y 轴对称, ∴⊙M 与直线AC 相切于(0,0)或与直线BD 相切于(0,1),如图(b)所示.又∵⊙M 的半径r =1,∴点M 的坐标为(0,-1)或(0,2).经检验:此时⊙M 与直线AD ,BC 无交点,⊙M 上只有一个点为T 1-T 2联络点,符合题意.∴点M 的坐标为(0,-1)或(0,2). ∴点M 的纵坐标为-1或2.②阴影部分关于直线y =12对称,故不妨设点M 位于阴影部分下方.∵点M 在y 轴上,⊙M 上只有一个点为T 1-T 2联络点,阴影部分关于y 轴对称, ∴⊙M 与直线AC 相切于O (0,0),且⊙M 与直线AD 相离. 过点M 作ME ⊥AD 于点E ,设AD 与BC 的交点为F ,如图(c). ∴MO =r ,ME >r ,F (0,12).在Rt △AOF 中,∠AOF =90°,AO =1,OF =12,∴AF =AO 2+OF 2=52,sin ∠AFO =AO AF =2 55. 在Rt △FEM 中,∠FEM =90°,FM =FO +OM =r +12,sin ∠EFM =sin ∠AFO =2 55,∴ME =FM ·sin ∠EFM =5(2r +1)5.∴5(2r +1)5>r .又∵r >0,∴0<r <5+2.4.解:(1)4 2a(2)13(3)①∵F 1的碟宽∶F 2的碟宽=2∶1, ∴2a 1∶2a 2=21. ∵a 1=13,∴a 2=23.又∵由题意得F 2的碟顶坐标为(1,1),∴y 2=23()x -12+1.②F 1,F 2,…,F n 的碟宽的右端点在一条直线上; 其解析式为y =-x +5. 5.解:(1)A 、B (2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长.∵P (1,2),∴P ′(1,-2).设直线P ′Q 的函数解析式为y =kx +b , 根据题意,有⎩⎪⎨⎪⎧k +b =-2,4k +b =2,解得⎩⎨⎧k =43,b =-103.∴直线P ′Q 的函数解析式为y =43x -103.当y =0时,解得x =52,即t =52.根据题意,可知PP ′=4,PQ =3,PQ ⊥PP ′, ∴P ′Q =PP ′2+PQ 2=5. ∴“等高距离”最小值为5.(3)Q (4 55,2 55)或Q (-4 55,2 55).6.解:(1)是(2)∵点H (m ,n )是线段AB 的“邻近点”,点H (m ,n )在直线y =x -1上,∴n =m -1. 直线y =x -1与线段AB 交于(4,3). ①当m ≥4时,有n =m -1≥3.又AB ∥x 轴,∴此时点H (m ,n )到线段AB 的距离是n -3, ∴0≤n -3≤1,∴4≤m ≤5.②当m ≤4时,有n =m -1,∴n ≤3.又AB ∥x 轴,∴此时点H (m ,n )到线段AB 的距离是3-n , ∴0≤3-n ≤1,∴3≤m ≤4, 综上所述,3≤m ≤5.(3)如图①,②,-37.解:(1)①(3,1) ②点B(2)依题意,y =-x +3(x ≥-2)的图象上的点P 的限变点必在函数y =⎩⎪⎨⎪⎧-x +3,x ≥1,x -3,-2≤x <1的图象上.∴b ′≤2,即当x =1时,b ′取最大值2. 当b ′=-2时,-2=-x +3.∴x =5.当b ′=-5时,-5=x -3或-5=-x +3. ∴x =-2或x =8. ∵-5≤b ′≤2,由图象可知,k 的取值范围是5≤k ≤8.(3)∵y=x2-2tx+t2+t=(x-t)2+t,∴顶点坐标为(t,t).若t>1,b′的取值范围是b′≥m或b′≤n,与题意不符.若t≥1,当x≥1时,y的最小值为t,即m=t;当x<1时,y的值小于-[(1-t)2+t],即n=-[(1-t)2+t].∴s=m-n=t+(1-t)2+t=t2+1.∴s关于t的函数解析式为s=t2+1(t≥1).当t=1时,s取最小值2.∴s的取值范围是s≥2.8.解:(1)313(2)-1(3)①如图,过点O分别作射线OE,OF的垂线OG,OH,则图形M为:y轴正半轴,∠GOH的边及其内部的所有点(图中的阴影部分).说明:(图形M也可描述为:y轴正半轴,直线y=33x下方与直线y=-33x下方重叠的部分(含边界)②4 3.。
2020年北京市中考数学学科考试说明数学2019年北京市中考数学学科《考试说明》(以下简称“2019年《考试说明》”)确定了《义务教育数学课程标准(2011年版)》规定的“课程目标”与“课程内容”为考试范围,明确了“考查目标与要求”和“考试内容的知识要求层次”,通过阐述“试卷的内容、题型及分数分配”体现了2019年中考数学学科的试卷结构,通过调整“参考样题”体现了近几年命题指导思想和考试内容改革成果。
01调整部分考试内容的知识层次要求依据《义务教育数学课程标准(2011年版)》的课程内容要求,对“考试内容的知识层次要求”进行优化,体现出知识结构体系的整体性与内在联系。
例如,将“数轴”的A级要求调整到“实数”的A级要求,B级要求调整到“有理数”的B级要求;将“科学记数法和近似数”的A级要求“会用科学记数法表示数”调整到“整式”的A级要求等。
02更换部分参考样题“参考样题”体现了近几年中考数学学科试题的命制思想。
用较好地体现学科改革方向的试题对原样题进行替换,使“参考样题”能更好地体现学科本质,贴近社会、贴近学生生活,凸显基础性、综合性、实践性和创新性的要求,引导学生积极思考,体现能力培养和价值观教育。
(1)关注四基要求 体现数学基础《义务教育数学课程标准(2011版)》指出:“通过义务教育阶段的数学学习,学生能获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验。
”在调整样题过程中,注重体现数与代数、图形与几何、统计与概率等基础知识,突出对基本技能、基本思想和基本活动经验考查的体现。
例如,将2018年中考数学卷第17题编入2019年《考试说明》中。
(2)关注教学过程 体现数学本质《义务教育数学课程标准(2011年版)》指出:“数学教学的重要目标之一是让学生亲身经历数学知识形成、发展和应用的过程,积累数学活动经验,感悟数学思想。
江苏南京中考说明中考数学考试说明
江苏南京中考说明:20XX中考数学考试说明
江苏南京中考说明:xx中考数学考试说明
《xx年南京市中考指导书--数学》分考试说明与复习与评估两局部。
考试说明中确定了xx年中考数学考试范围、考试内容、试卷结构及主要题型。
xx年南京市中考数学试卷的.考查依据《数学课程标准(实验稿)》,关注学生形成终身学习所必需的数学根底知识、根本技能、根本思想方法和根本活动经验。
中考数学试卷在考试形式、考试难度、考试题型等方面将保持稳定。
xx年中考数学考试时间为120分钟,总分值120分。
题型有选择题、填空题、解答题。
选择题、填空题的分值所占总分比例不超过40%。
在内容分布上,数与代数、空间与图形、统计与概率三局部所占分值的比约为45:40:15,课题学习融入这三局部之中,与实际课时数比例根本相当。
试卷中容易题、中等难度题、较难题的比例控制在7:2:1左右。
与xx年相比,xx年指导用书在复习与评估中作了一些微调,将综合题选讲改为专题复习,共分8个专题,更好地对xx届初三复习教学进行有效指导。
xx年江苏南京中考照顾政策:申请加分须网上公示
xx年江苏南京中考特别优秀特长生可破格降分录取。
江苏省徐州市中考中考数学考试说明一、命题的指导思想全面贯彻党的教育方针,坚持公正、全面、科学的原则,充分发挥考试和评价在促进学生发展方面的作用,积极推进素质教育。
依据《全日制义务教育数学课程标准》(2011年版)(以下简称《课程标准》),努力克服过分注重知识掌握的偏向,促进学生形成终身学习所必需的数学基础知识、基本技能、基本思想、基本活动经验,关注学生学习和成长的整个过程,关注学生情感、态度和价值观的和谐发展,鼓励学生的创新和实践,引导学生的个性成长。
结合我市初中数学课程改革实际,正确地反映和评价我市初中数学教学水平,全面促进初中数学教学质量的提升,便于高一级学校选拔人才。
二、命题的基本原则1.导向性原则命题要依据《课程标准》,充分发挥数学教育的育人导向作用,要有利于促进数学教育和数学教学的改进,有利于展示学生的数学素养,学习和应用能力,体现学业水平测试与选拔测试的有机结合2.科学性原则命题应符合《课程标准》的要求,遵循义务教育阶段学生的心理特征和认识规律,体现数学学科的本质,命题时要避免和杜绝出现政治性,科学性和技术性的错误,力争做到(1)命题的内容不能超出《课程标准》要求;(2)命题的知识结构要合理;(3)命题的难度比例要适当;(4)试题的文字、语言表达、图形、序号、标点符号等要准确无误;(5)题型的设计要符合测试的目标和要求;(6)试题的参考答案和评分标准要全面、准确,易于操作。
3.整体性原则命题要整体把握《课程标准》,体现义务教育数学学科内容体系,落实义务教育数学课程目标,全面考察学生数学素养的达成情况,应整体设计情境各问题,重视问题解决过程与问题展现形式的多样化,应关注学生的学习和应用能力4.适应性原则体现义务教育性质,命题要面向全体学生,根据学生的年龄特征、思维特点、数学背景和生活经验编制试题,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得的相应发展。
三、考试形式及试卷结构1、考试形式:考试时间为120分钟,全卷满分为140分。
专题04 图形的变换一、选择题1.(2017山东德州市第11题)如图放置的两个正方形,大正方形ABCD边长为a,小正方形CEFG边长为b(a >b),M在边BC上,且BM=b,连AM,MF,MF交CG于点P,将△ABM绕点A旋转至△ADN,将△MEF绕点F旋转至△NGF。
给出以下五种结论:①∠MAD=∠AND;②CP=2-bba;③ΔABM≌ΔNGF;④S四边形AMFN=a2+b2;⑤A,M,P,D四点共线其中正确的个数是()A.2 B.3 C.4 D.5【答案】D【解析】考点:正方形、全等、相似、勾股定理2.(2017重庆A卷第2题)下列图形中是轴对称图形的是()【答案】C.【解析】试题解析:A 、不是轴对称图形,不合题意; B 、不是轴对称图形,不合题意; C 、是轴对称图形,符合题意; D 、不是轴对称图形,不合题意. 故选C .考点:轴对称图形.3.(2017甘肃庆阳第1题)下面四个手机应用图标中,属于中心对称图形的是( )A .B .C .D .【答案】B .考点:中心对称图形.4.(2017广西贵港第11题)如图,在Rt ABC ∆中,90ACB ∠=o,将ABC ∆绕顶点C 逆时针旋转得到'',A B C M ∆是BC 的中点,P 是''A B 的中点,连接PM ,若230BC BAC =∠=o ,,则线段PM 的最大值是 ( )A .4B .3 C.2 D .1 【答案】B 【解析】试题解析:如图连接PC .在Rt△ABC中,∵∠A=30°,BC=2,∴AB=4,根据旋转不变性可知,A′B′=AB=4,∴A′P=PB′,∴PC=12A′B′=2,∵CM=BM=1,又∵PM≤PC+CM,即PM≤3,∴PM的最大值为3(此时P、C、M共线).故选B.考点:旋转的性质.5.(2017贵州安顺第7题)如图,矩形纸片ABCD中,AD=4cm,把纸片沿直线AC折叠,点B落在E处,AE 交DC于点O,若AO=5cm,则AB的长为()A.6cm B.7cm C.8cm D.9cm【答案】C.【解析】考点:翻折变换(折叠问题);矩形的性质.6.(2017江苏无锡第4题)下列图形中,是中心对称图形的是()A.B.C. D.【答案】C.【解析】试题解析:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选C.考点:中心对称图形.7.(2017江苏无锡第10题)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A .2B .54 C .53 D .75【答案】D . 【解析】试题解析:如图连接BE 交AD 于O ,作AH ⊥BC 于H .在Rt △ABC 中,∵AC=4,AB=3,∴2234+=5,∵CD=DB , ∴AD=DC=DB=52, ∵12•BC•AH=12•AB•AC, ∴AH=125, ∵AE=AB ,DE=DB=DC ,∴AD 垂直平分线段BE ,△BCE 是直角三角形, ∵12•AD•BO=12•BD•AH, ∴OB=125, ∴BE=2OB=245, 在Rt △BCE 中,22222475()55BC BE -=-= . 故选D .考点:1.翻折变换(折叠问题);2.直角三角形斜边上的中线;3.勾股定理.8.(2017江苏盐城第3题)下列图形中,是轴对称图形的是()【答案】D.【解析】试题解析:D的图形沿中间线折叠,直线两旁的部分可重合,故选D.考点:轴对称图形.9. (2017江苏盐城第6题)如图,将函数y=12(x-2)2+1的图象沿y轴向上平移得到一条新函数的图象,其中点A(1,m),B(4,n)平移后的对应点分别为点A'、B'.若曲线段AB扫过的面积为9(图中的阴影部分),则新图象的函数表达式是()A.y=12(x−2)2−2 B.y=12(x−2)2+7 C.y=12(x−2)2−5 D.y=12(x−2)2+4【答案】D.【解析】试题解析:∵函数y=12(x-2)2+1的图象过点A(1,m),B(4,n),∴m=12(1-2)2+1=112,n=12(4-2)2+1=3,∴A(1,112),B(4,3),过A 作AC ∥x 轴,交B′B 的延长线于点C ,则C (4,112), ∴AC=4-1=3,∵曲线段AB 扫过的面积为9(图中的阴影部分), ∴AC•AA′=3AA′=9, ∴AA′=3, 即将函数y=12(x-2)2+1的图象沿y 轴向上平移3个单位长度得到一条新函数的图象, ∴新图象的函数表达式是y=12(x-2)2+4. 故选D .考点:二次函数图象与几何变换.10.(2017甘肃兰州第14题)如图,在正方形ABCD 和正方形DEFG 中,点G 在CD 上,2DE =,将正方形DEFG 绕点D 顺时针旋转60°,得到正方形'''DE F G ,此时点'G 在AC 上,连接'CE ,则''CE CG +=( )26313236【答案】AA 【解析】试题解析:作G′I⊥CD 于I ,G′R⊥BC 于R ,E′H⊥BC 交BC 的延长线于H .连接RF′.则四边形RCIG′是正方形.∵∠DG′F′=∠IGR=90°, ∴∠DG′I=∠RG′F′, 在△G′ID 和△G′R F 中,DG I RG G D G I G G F F R '=∠''''⎧=⎪∠''⎨=⎪⎩∴△G′ID≌△G′RF, ∴∠G′ID=∠G′RF′=90°, ∴点F 在线段BC 上,在Rt △E′F′H 中,∵E′F′=2,∠E′F′H=30°, ∴E′H=123 易证△RG′F′≌△HF′E′, ∴RF′=E′H,RG′RC=F′H, ∴CH=RF′=E′H, 2 3 26 ∴CE′+26 故选A .考点:旋转的性质;正方形的性质.11.(2017山东烟台第2题)下列国旗图案是轴对称图形但不是中心对称图形的是( )【答案】A.考点:中心对称图形;轴对称图形.12.(2017四川宜宾第7题)如图,在矩形ABCD中BC=8,CD=6,将△ABE沿BE折叠,使点A恰好落在对角线BD上F处,则DE的长是()A.3 B.245C.5 D.8916【答案】C.【解析】试题解析:∵矩形ABCD,∴∠BAD=90°,由折叠可得△BEF≌△BAE,∴EF⊥BD,AE=EF,AB=BF,在Rt△ABD中,AB=CD=6,BC=AD=8,根据勾股定理得:BD=10,即FD=10﹣6=4,设EF=AE=x,则有ED=8﹣x,根据勾股定理得:x2+42=(8﹣x)2,解得:x=3(负值舍去),则DE=8﹣3=5,故选C.考点:1. 翻折变换(折叠问题);2.矩形的性质.13.(2017四川自贡第6题0下列图形中,是轴对称图形,但不是中心对称图形的是()【答案】A.考点:1.轴对称图形;2.中心对称图形.14.(2017江苏徐州第题0下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.【答案】C.【解析】试题解析:A、不是轴对称图形,是中心对称图形,不合题意;B、是轴对称图形,不是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、不是轴对称图形,是中心对称图形,不合题意.故选C.考点:1.中心对称图形;2.轴对称图形.15.(2017浙江嘉兴第7题)若平移点A到点C,使以点O,A,C,B为顶点的四边形是菱形,则正确的平移方法是()A.向左平移1个单位,再向下平移1个单位-个单位,再向上平移1个单位B.向左平移(221)C.向右平移2个单位,再向上平移1个单位D.向右平移1个单位,再向上平移1个单位【答案】D.【解析】试题解析:过B作射线BC∥OA,在BC上截取BC=OA,则四边形OACB是平行四边形,过B作DH⊥x轴于H,∵B(1,1),22+1=1220),∴C(21)∴OA=OB,∴则四边形OACB是菱形,∴平移点A到点C,向右平移1个单位,再向上平移1个单位而得到,考点:1.菱形的性质;2.坐标与图形变化-平移.16.(2017浙江嘉兴第9题)一张矩形纸片ABCD ,已知3AB =,2AD =,小明按所给图步骤折叠纸片,则线段DG 长为( )A .2B .22C .1D .2【答案】A .【解析】试题解析:∵AB=3,AD=2,∴DA′=2,CA′=1,∴DC′=1,∵∠D=45°,∴DG=2DC′=2,故选A .考点:矩形的性质.17.(2017山东德州第2题)下列图形中,既是轴对称图形又是中心对称图形的是( )【答案】D【解析】试题分析:选项A 和B 是中心对称图形,但不是轴对称图形;选项C 是轴对称图形,但不是中心对称图形;选项D 既是轴对称图形又是中心对称图形。
2020年重庆中考数学考试趋势解读及复习策略数学张垂权重庆育才中学校初中数学教研组组长,中学数学高级教师,重庆市骨干教师,育才中学校数学名师工作室主持人,多篇教学论文获全国、市级一、二等奖,主编《高分突破》等多本数学教学参考书,在重庆市初中数学命题技能大赛活动中获得一等奖。
朱晓昀重庆鲁能巴蜀中学数学教研组长,中学数学高级教师,重庆市骨干教师,获得巴蜀中学“管理育人”奖,重庆师范大学数学科学学院硕士生指导教师,2017年重庆中考数学阅卷组长,主编《高分突破》等参考书,在各级刊物发表论文十余篇。
张垂权老师认为,2018年重庆市中考数学试卷考查全面,难易适中,层次分明,贴近学生生活实际,体现了数学的核心素养。
2019年将仍保持“考查基础,注重过程,渗透思想,突出能力,强调应用,着意创新”的指导思想,稳中求变,变中求新。
2019年中考数学试题应该会继续落实“四基”,即基础知识、基本技能、基本数学思想、基本活动经验;发展“四能”,即发现问题的能力、提出问题的能力、分析问题的能力、解决问题的能力;贯穿“六素养”,即数学抽象、逻辑推理、数学建模、数学运算、直观想象和数据分析;逐步重视对学生动手能力的考查和数学文化渗透等。
朱晓昀老师认为,2019年重庆中考数学试卷会以义务教育《数学课程标准》《考试说明》为命题依据,呈现新课程标准的基本理念,既重视基础知识、基本技能,又充分体现对数学思想方法、数学活动经验以及中学数学核心素养的考查。
复习策略精讲精练,建易错题典型题解法档案张垂权老师建议:1.把握方向,明确重点。
关注核心内容,如方程,函数,三角形,四边形,图形的对称、平移、旋转等的考查形式。
2.夯实基础,提升能力。
第一阶段复习,必须过“三关”:一过“记忆”关,必须做到记牢记准所有的概念、公式、定理、性质、法则等,并弄清各概念之间的联系与区别。
中考选择题,要靠清晰的概念来明辨对错;二过“基本方法”关,熟练掌握待定系数法、配方法、换元法、分析法、综合法、穷举法、反证法、图象法、表格法等,弄清楚它们的关系,归纳出它们的“通性通法”;三过“基本技能”关,通过复习要获得基本计算能力、作图能力、表达能力、逻辑推理能力、数据分析能力、图表识别能力、抽象概括能力等。
2020年中考数学压轴题突破专题6⼏何综合探究变化型问题2020年中考数学⼤题狂练之压轴⼤题突破培优练专题06 ⼏何综合探究变化型问题【真题再现】1.(2019年宿迁中考第28题)如图①,在钝⾓△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将△BDE绕点B逆时针⽅向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的⼤⼩是否发⽣变化?如变化,请说明理由;如不变,请求出这个⾓的度数;(3)将△BDE从图①位置绕点B逆时针⽅向旋转180°,求点G的运动路程.2.(2019年连云港中考第27题)问题情境:如图1,在正⽅形ABCD中,E为边BC上⼀点(不与点B、C重合),垂直于AE的⼀条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂⾜P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂⾜P在正⽅形ABCD的对⾓线BD上时,连接AN,将△APN沿着AN 翻折,点P落在点P'处,若正⽅形ABCD 的边长为4,AD的中点为S,求P'S的最⼩值.问题拓展:如图4,在边长为4的正⽅形ABCD中,点M、N分别为边AB、CD上的点,将正⽅形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂⾜分别为G、H.若AG,请直接写出FH的长.3.(2019年⽆锡中考副卷第28题)如图,在Rt△ABC中,AC=BC=4,∠ACB=90°,正⽅形BDEF的边长为2,将正⽅形BDEF绕点B旋转⼀周,连接AE、BE、CD.(1)请找出图中与△ABE相似的三⾓形,并说明理由;(2)求当A、E、F三点在⼀直线上时CD的长;(3)设AE的中点为M,连接FM,试求FM长的取值范围.4.(2019年盐城中考第25题)如图①是⼀张矩形纸⽚,按以下步骤进⾏操作:(Ⅰ)将矩形纸⽚沿DF折叠,使点A落在CD边上点E处,如图②;(Ⅱ)在第⼀次折叠的基础上,过点C再次折叠,使得点B落在边CD上点B′处,如图③,两次折痕交于点O;(Ⅲ)展开纸⽚,分别连接OB、OE、OC、FD,如图④.【探究】(1)证明:△OBC≌△OED;(2)若AB=8,设BC为x,OB2为y,求y关于x的关系式.5.(2019?扬州)如图,已知等边△ABC的边长为8,点P是AB边上的⼀个动点(与点A、B不重合).直线1是经过点P的⼀条直线,把△ABC沿直线1折叠,点B的对应点是点B′.(1)如图1,当PB=4时,若点B′恰好在AC边上,则AB′的长度为;(2)如图2,当PB=5时,若直线1∥AC,则BB′的长度为;(3)如图3,点P在AB边上运动过程中,若直线1始终垂直于AC,△ACB′的⾯积是否变化?若变化,说明理由;若不变化,求出⾯积;(4)当PB=6时,在直线1变化过程中,求△ACB′⾯积的最⼤值.6.(2019年南京中考第26题)如图①,在Rt△ABC中,∠C=90°,AC=3,BC=4.求作菱形DEFG,使点D在边AC上,点E、F在边AB上,点G在边BC上.⼩明的作法1.如图②,在边AC上取⼀点D,过点D作DG∥AB交BC于点G.2.以点D为圆⼼,DG长为半径画弧,交AB于点E.3.在EB上截取EF=ED,连接FG,则四边形DEFG为所求作的菱形.(1)证明⼩明所作的四边形DEFG是菱形.(2)⼩明进⼀步探索,发现可作出的菱形的个数随着点D的位置变化⽽变化……请你继续探索,直接写出菱形的个数及对应的CD的长的取值范围.【专项突破】【题组⼀】1.(2020?海门市校级模拟)已知正⽅形ABCD,P为射线AB上的⼀点,以BP为边作正⽅形BPEF,使点F在线段CB的延长线上,连接EA、EC.(1)如图1,若点P在线段AB的延长线上,求证:EA=EC;(2)若点P在线段AB上,如图2,当点P为AB的中点时,判断△ACE的形状,并说明理由;(3)在(1)的条件下,将正⽅形ABCD固定,正⽅形BPEF绕点B旋转⼀周,设AB =4,BP=a,若在旋转过程中△ACE⾯积的最⼩值为4,请直接写出a的值.2.(2019秋?青龙县期末)在等边三⾓形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,⼩明和⼩慧对这个图形展开如下研究:问题初探:(1)如图1,⼩明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为;问题再探:(2)如图2,在点E、F的运动过程中,⼩慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中⼀个结论加以证明.成果运⽤(3)若边长AB=4,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L的变化范围是.3.(2019秋?张家港市期末)在长⽅形纸⽚ABCD中,点E是边CD上的⼀点,将△AED 沿AE所在的直线折叠,使点D落在点F 处.(1)如图1,若点F落在对⾓线AC上,且∠BAC=54°,则∠DAE的度数为°.(2)如图2,若点F落在边BC上,且AB=6,AD=10,求CE的长.(3)如图3,若点E是CD的中点,AF的沿长线交BC于点G,且AB=6,AD=10,求CG的长.4.(2020?兴化市模拟)如图,现有⼀张矩形纸⽚ABCD,AB=4,BC=8,点M,N分别在矩形的边AD,BC上,将矩形纸⽚沿直线MN折叠,使点C落在矩形的边AD上,记为点P,点D落在G处,连接PC,交MN丁点Q,连接CM.(1)求证:PM=PN;(2)当P,A重合时,求MN的值;(3)若△PQM的⾯积为S,求S的取值范围.【题组⼆】5.(2019秋?娄星区期末)在△ABC中,AB=AC,点D为射线CB上⼀个动点(不与B、C 重合),以AD为⼀边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,过点E作EF∥BC,交直线AC于点F,连接CE.(1)如图①,若∠BAC=60°,则按边分类:△CEF是三⾓形;(2)若∠BAC<60°.①如图②,当点D在线段CB上移动时,判断△CEF的形状并证明;②当点D在线段CB的延长线上移动时,△CEF是什么三⾓形?请在图③中画出相应的图形并直接写出结论(不必证明).6.(2019秋?东海县期末)已知BC=5,AB=1,AB⊥BC,射线CM⊥BC,动点P在线段BC上(不与点B,C重合),过点P 作DP⊥AP交射线CM于点D,连接AD.(1)如图1,若BP=4,判断△ADP的形状,并加以证明.(2)如图2,若BP=1,作点C关于直线DP的对称点C′,连接AC′.①依题意补全图2;②请直接写出线段AC′的长度.7.(2019秋?江都区期末)在Rt△ABC中,∠ACB=90°,AC=15,AB=25,点D为斜边AB上动点.(1)如图1,当CD⊥AB时,求CD的长度;(2)如图2,当AD=AC时,过点D作DE⊥AB交BC于点E,求CE的长度;(3)如图3,在点D的运动过程中,连接CD,当△ACD为等腰三⾓形时,直接写出AD 的长度.8.(2019秋?泰兴市期末)已知:如图,在△ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,点E是射线CB上的动点,连接DE,DF⊥DE交射线AC于点F.(1)若点E在线段CB上.①求证:AF=CE.②连接EF,试⽤等式表⽰AF、EB、EF这三条线段的数量关系,并说明理由.(2)当EB=3时,求EF的长.【题组三】9.(2019秋?镇江期末)△ABC和△ADE都是等腰直⾓三⾓形,∠BAC=∠DAE=90°.(1)如图1,点D、E分别在AB、AC 上,则BD、CE满⾜怎样的数量关系和位置关系?(直接写出答案)(2)如图2,点D在△ABC内部,点E在△ABC外部,连结BD、CE,则BD、CE满⾜怎样的数量关系和位置关系?请说明理由.(3)如图3,点D、E都在△ABC外部,连结BD、CE、CD、EB,BD与CE相交于H 点.已知AB=4,AD=2,设CD2=x,EB2=y,求y与x之间的函数关系式.10.(2019秋?射阳县期末)在△ABC中,AB、AC边的垂直平分线分别交BC边于点M、N.(1)如图①,若∠BAC=110°,则∠MAN=°,若△AMN的周长为9,则BC =.(2)如图②,若∠BAC=135°,求证:BM2+CN2=MN2;(3)如图③,∠ABC的平分线BP和AC边的垂直平分线相交于点P,过点P作PH垂直BA的延长线于点H.若AB=5,CB=12,求AH的长.11.(2019秋?溧⽔区期末)通过对下⾯数学模型的研究学习,解决下列问题:【模型呈现】(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC 于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.⼜∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进⽽得到AC=,BC=.我们把这个数学模型称为“K 字”模型或“⼀线三等⾓”模型;【模型应⽤】(2)①如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;②如图3,在平⾯直⾓坐标系xOy中,点A的坐标为(2,4),点B为平⾯内任⼀点.若△AOB是以OA为斜边的等腰直⾓三⾓形,请直接写出点B的坐标.12.(2019?邗江区校级⼀模)阅读下⾯材料:⼩聪遇到这样⼀个有关⾓平分线的问题:如图1,在△ABC中,∠A=2∠B,CD平分∠ACB,AD=2.4,AC=3.6,求BC得长.⼩聪思考:因为CD平分∠ACB,所以可在BC边上取点E,使EC=AC,连接DE.这样很容易得到△DEC≌△DAC,经过推理能使问题得到解决(如图2).请完成:(1)求证:△BDE是等腰三⾓形(2)求BC的长为多少?(3)参考⼩聪思考问题的⽅法,解决问题:如图3,已知△ABC中,AB=AC,∠A=20°,BD平分∠ABC,BD,BC,求AD 的长.【题组四】13.(2019?⿎楼区⼆模)提出问题:⽤⼀张等边三⾓形纸⽚剪⼀个直⾓边长分别为2cm和3cm的直⾓三⾓形纸⽚,等边三⾓形纸⽚的边最⼩值是多少?探究思考:⼏位同学画出了以下情况,其中∠C=90°,BC=2cm,△ADE为等边三⾓形.(1)同学们对图1,图2中的等边三⾓形展开了讨论:①图⼀中AD的长度图②中AD的长度(填“>”,“<”或“=”)②等边三⾓形ADE经过图形变化.AD可以更⼩.请描述图形变化的过程.(2)有同学画出了图3,但⽼师指出这种情况不存在,请说明理由.(3)在图4中画出边长最⼩的等边三⾓形,并写出它的边长.经验运⽤:(4)⽤⼀张等边三⾓形纸⽚剪⼀个直⾓边长为1cm和3cm的直⾓三⾓形纸⽚,等边三⾓形纸⽚的边长最⼩是多少?画出⽰意图并写出这个最⼩值.14.(2019?南京⼆模)【概念提出】如图①,若正△DEF的三个顶点分别在正△ABC的边AB、BC、AC上,则我们称△DEF 是正△ABC的内接正三⾓形.(1)求证:△ADF≌△BED;【问题解决】利⽤直尺和圆规作正三⾓形的内接正三⾓形(保留作图痕迹,不写作法).(2)如图②,正△ABC的边长为a,作正△ABC的内接正△DEF,使△DEF的边长最短,并说明理由;(3)如图③,作正△ABC的内接正△DEF,使FD⊥AB.15.(2020?河南⼀模)【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)【特例探究】⼩聪先从特殊问题开始研究,当α=90°,β=30°时,利⽤轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利⽤α=90°,β=30°以及等边三⾓形等相关知识便可解决这个问题.请结合⼩聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是三⾓形;∠ADB的度数为.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应⽤】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为.16.(2019?亭湖区⼆模)【阅读材料】⼩明遇到这样⼀个问题:如图1,点P在等边三⾓形ABC内,且∠APC=150°,P A=3,PC=4,求PB的长.⼩明发现,以AP为边作等边三⾓形APD,连接BD,得到△ABD;由等边三⾓形的性质,可证△ACP≌△ABD,得PC=BD;由已知∠APC=150°,可知∠PDB的⼤⼩,进⽽可求得PB的长.(1)请回答:在图1中,∠PDB=°,PB=.【问题解决】(2)参考⼩明思考问题的⽅法,解决下⾯问题:如图2,△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,且P A=1,PB,PC=2,求AB的长.【灵活运⽤】(3)如图3,在Rt△ABC中,∠ACB=90°,∠BAC=α,且tanα,点P在△ABC 外,且PB=3,PC=1,直接写出P A长的最⼤值.【题组五】17.(2019秋?海安市期末)(1)如图①,⼩明同学作出△ABC两条⾓平分线AD,BE得到交点I,就指出若连接CI,则CI平分∠ACB,你觉得有道理吗?为什么?(2)如图②,Rt△ABC中,AC=5,AC=12,AB=13,△ABC的⾓平分线CD上有⼀点I,设点I到边AB的距离为d.(d为正实数)⼩季、⼩何同学经过探究,有以下发现:⼩季发现:d的最⼤值为.⼩何发现:当d=2时,连接AI,则AI平分∠BAC.请分别判断⼩季、⼩何的发现是否正确?并说明理由.18.(2019秋?常熟市期中)如图,在△ABC中,AB=AC,∠BAC=80°,点D为△ABC 内⼀点,∠ABD=∠ACD=20°,E 为BD延长线上的⼀点,且AB=AE.(1)求∠BAD的度数;(2)求证:DE平分∠ADC;(3)请判断AD,BD,DE之间的数量关系,并说明理由.19.(2019秋?常熟市期中)如图,在平⾯直⾓坐标系中,已知点A(8,0),点C(0,6),点B在x轴负半轴上,且AB=AC.(1)求点B的坐标;(2)如图②,若点E为边AC的中点,动点M从点B出发以每秒2个单位长度的速度沿线段BA向点A匀速运动,设点M运动的时间为t(秒);①若△OME的⾯积为2,求t的值;②如图③,在点M运动的过程中,△OME能否成为直⾓三⾓形?若能,求出此时t的值,并写出相应的点M的坐标;若不能,请说明理由.20.(2019秋?崇川区期末)已知△ABC中,AB=AC.(1)如图1,在△ADE中,AD=AE,连接BD、CE,若∠DAE=∠BAC,求证:BD=CD;(2)如图2,在△ADE中,AD=AE,连接BE、CE,若∠DAE=∠BAC=60°,CE⊥AD于点F,AE=4,,求BE的长;(3)如图3,在△BCD中,∠CBD=∠CDB=45°,连接AD,若∠CAB=45°,求的值.【题组六】21.(2018秋?崇川区校级期末)如图,锐⾓△ABC中,AB=AC,点D是边BC上的⼀点,以AD为边作△ADE,使AE=AD,∠EAD=∠BAC.(1)过点E作EF∥DC交AB于点F,连接CF(如图1),①请直接写出∠EAB与∠DAC的数量关系;②试判断四边形CDEF的形状,并证明;(2)若∠BAC=60°,过点C作CF∥DE交AB于点F,连接EF(如图2),那么(1)②中的结论是否仍然成⽴?若成⽴,请给出证明;若不成⽴,请说明理由.22.(2019秋?淮阴区期末)A,B,C,D是长⽅形纸⽚的四个顶点,点E、F、H分别是边AB、BC、AD上的三点,连结EF、FH.(1)将长⽅形纸⽚ABCD按图①所⽰的⽅式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',点B'在FC'上,则∠EFH的度数为;(2)将长⽅形纸⽚ABCD按图②所⽰的⽅式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠B'FC'=18°,求∠EFH的度数;(3)将长⽅形纸⽚ABCD按图③所⽰的⽅式折叠,FE、FH为折痕,点B、C、D折叠后的对应点分别为B'、C'、D',若∠EFH =m°,求∠B'FC'的度数为.23.(2019秋?丹阳市期末)如图,已知△ABC中,∠ACB=90°,AC=4,BC=3,点M、N分别是边AC、AB上的动点,连接MN,将△AMN沿MN所在直线翻折,翻折后点A 的对应点为A′.(1)如图1,若点A′恰好落在边AB上,且AN AC,求AM的长;(2)如图2,若点A′恰好落在边BC上,且A′N∥AC.①试判断四边形AMA′N的形状并说明理由;②求AM、MN的长;(3)如图3,设线段NM、BC的延长线交于点P,当且时,求CP的长.24.(2020春?⿎楼区校级⽉考)如图,正⽅形ABCD 的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,请直接写出使△CGH是等腰三⾓形的m值.参考答案【真题再现】1.(2019年宿迁中考第28题)如图①,在钝⾓△ABC中,∠ABC=30°,AC=4,点D为边AB中点,点E为边BC中点,将△BDE绕点B逆时针⽅向旋转α度(0≤α≤180).(1)如图②,当0<α<180时,连接AD、CE.求证:△BDA∽△BEC;(2)如图③,直线CE、AD交于点G.在旋转过程中,∠AGC的⼤⼩是否发⽣变化?如变化,请说明理由;如不变,请求出这个⾓的度数;(3)将△BDE从图①位置绕点B逆时针⽅向旋转180°,求点G的运动路程.【分析】(1)如图①利⽤三⾓形的中位线定理,推出DE∥AC,可得,在图②中,利⽤两边成⽐例夹⾓相等证明三⾓形细相似即可.(2)利⽤相似三⾓形的性质证明即可.(3)点G的运动路程,是图③﹣1中的的长的两倍,求出圆⼼⾓,半径,利⽤弧长公式计算即可.【解析】(1)如图②中,由图①,∵点D为边AB中点,点E为边BC中点,∴DE∥AC,∴,∴,∵∠DBE=∠ABC,∴∠DBA=∠EBC,∴△DBA∽△EBC.(2)∠AGC的⼤⼩不发⽣变化,∠AGC=30°.理由:如图③中,设AB交CG于点O.∵△DBA∽△EBC,∴∠DAB=∠ECB,∵∠DAB+∠AOG+∠G=180°,∠ECB+∠COB+∠ABC=180°,∠AOG=∠COB,∴∠G=∠ABC=30°.(3)如图③﹣1中.设AB的中点为K,连接DK,以AC为边向左边等边△ACO,连接OG,OB.以O为圆⼼,OA为半径作⊙O,∵∠AGC=30°,∠AOC=60°,∴∠AGC∠AOC,∴点G在⊙O上运动,以B为圆⼼,BD为半径作⊙B,当直线与⊙B相切时,BD⊥AD,∴∠ADB=90°,∵BK=AK,∴DK=BK=AK,∵BD=BK,∴BD=DK=BK,∴△BDK是等边三⾓形,∴∠DBK=60°,∴∠DAB=30°,∴∠BOG=2∠DAB=60°,∴的长,观察图象可知,点G的运动路程是的长的两倍.点评:本题属于相似形综合题,考查了相似三⾓形的判定和性质,弧长公式,等边三⾓形的判定和性质,圆周⾓定理等知识,解题的关键是正确寻找相似三⾓形解决问题,学会正确寻找点的运动轨迹,属于中考压轴题.2.(2019年连云港中考第27题)问题情境:如图1,在正⽅形ABCD中,E为边BC上⼀点(不与点B、C重合),垂直于AE的⼀条直线MN分别交AB、AE、CD于点M、P、N.判断线段DN、MB、EC之间的数量关系,并说明理由.问题探究:在“问题情境”的基础上.(1)如图2,若垂⾜P恰好为AE的中点,连接BD,交MN于点Q,连接EQ,并延长交边AD于点F.求∠AEF的度数;(2)如图3,当垂⾜P在正⽅形ABCD的对⾓线BD上时,连接AN,将△APN沿着AN 翻折,点P落在点P'处,若正⽅形ABCD 的边长为4,AD的中点为S,求P'S的最⼩值.问题拓展:如图4,在边长为4的正⽅形ABCD中,点M、N分别为边AB、CD上的点,将正⽅形ABCD沿着MN翻折,使得BC的对应边B'C'恰好经过点A,C'N交AD于点F.分别过点A、F作AG⊥MN,FH⊥MN,垂⾜分别为G、H.若AG,请直接写出FH的长.【分析】问题情境:过点B作BF∥MN分别交AE、CD于点G、F,证出四边形MBFN 为平⾏四边形,得出NF=MB,证明△ABE≌△BCF得出BE=CF,即可得出结论;问题探究:(1)连接AQ,过点Q作HI∥AB,分别交AD、BC于点H、I,证出△DHQ 是等腰直⾓三⾓形,HD=HQ,AH=QI,证明Rt△AHQ≌Rt△QIE得出∠AQH=∠QEI,得出△AQE是等腰直⾓三⾓形,得出∠EAQ=∠AEQ=45°,即可得出结论;(2)连接AC交BD于点O,则△APN的直⾓顶点P在OB上运动,设点P与点B重合时,则点P′与点D重合;设点P与点O重合时,则点P′的落点为O′,由等腰直⾓三⾓形的性质得出∠ODA=∠ADO′=45°,当点P在线段BO上运动时,过点P作PG ⊥CD 于点G,过点P′作P′H⊥CD交CD延长线于点H,连接PC,证明△APB≌△CPB得出∠BAP=∠BCP,证明Rt△PGN≌Rt△NHP'得出PG=NH,GN=P'H,由正⽅形的性质得出∠PDG=45°,易得出PG=GD,得出GN=DH,DH=P'H,得出∠P'DH =45°,故∠P'DA=45°,点P'在线段DO'上运动;过点S作SK⊥DO',垂⾜为K,即可得出结果;问题拓展:延长AG交BC于E,交DC的延长线于Q,延长FH交CD于P,则EG=AG,PH=FH,得出AE=5,由勾股定理得出BE3,得出CE=BC﹣BE=1,证明△ABE∽△QCE,得出QE AE,AQ=AE+QE,证明△AGM∽△ABE,得。
2020年安徽省中考数学试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.(4分)下列各数中,比2-小的数是( )A .3-B .1-C .0D .22.(4分)计算63()a a -÷的结果是( )A .3a -B .2a -C .3aD .2a3.(4分)下面四个几何体中,主视图为三角形的是( )A .B .C .D .4.(4分)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为( )A .85.4710⨯B .80.54710⨯C .554710⨯D .75.4710⨯5.(4分)下列方程中,有两个相等实数根的是( )A .212x x +=B .210x +=C .223x x -=D .220x x -=6.(4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( )A .众数是11B .平均数是12C .方差是187D .中位数是137.(4分)已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .(1,2)-B .(1,2)-C .(2,3)D .(3,4)8.(4分)如图,Rt ABC ∆中,90C ∠=︒,点D 在AC 上,DBC A ∠=∠.若4AC =,4cos 5A =,则BD 的长度为( )A .94B .125C .154D .49.(4分)已知点A ,B ,C 在O 上,则下列命题为真命题的是( )A .若半径OB 平分弦AC ,则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形,则120ABC ∠=︒C .若120ABC ∠=︒,则弦AC 平分半径OBD .若弦AC 平分半径OB ,则半径OB 平分弦AC10.(4分)如图,ABC ∆和DEF ∆都是边长为2的等边三角形,它们的边BC ,EF 在同一条直线l 上,点C ,E 重合.现将ABC ∆在直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点C 移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图象大致为( )A .B .C .D.二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)计算:91-=.12.(5分)分解因式:2ab a-=.13.(5分)如图,一次函数(0)y x k k=+>的图象与x轴和y轴分别交于点A和点B.与反比例函数kyx=的图象在第一象限内交于点C,CD x⊥轴,CE y⊥轴.垂足分别为点D,E.当矩形ODCE与OAB∆的面积相等时,k的值为.14.(5分)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A 的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将PCQ∆,ADQ∆分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)PAQ∠的大小为︒;(2)当四边形APCD是平行四边形时,ABQR的值为.三、(本大题共2小题,每小题8分,满分16分)15.(8分)解不等式:2112x ->. 16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.(1)画出线段AB 关于线段MN 所在直线对称的线段11A B (点1A ,1B 分别为A ,B 的对应点); (2)将线段11B A 绕点1B 顺时针旋转90︒得到线段12B A ,画出线段12B A .四、(本大题共2小题,每小题8分,满分16分)17.(8分)观察以下等式:第1个等式:121(1)2311⨯+=-, 第2个等式:321(1)2422⨯+=-, 第3个等式:521(1)2533⨯+=-, 第4个等式:721(1)2644⨯+=-. 第5个等式:921(1)2755⨯+=-. ⋯按照以上规律,解决下列问题:(1)写出第6个等式: ;(2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.18.(8分)如图,山顶上有一个信号塔AC ,已知信号塔高15AC =米,在山脚下点B 处测得塔底C 的仰角36.9CBD ∠=︒,塔顶A 的仰角42.0ABD ∠=︒,求山高CD (点A ,C ,D 在同一条竖直线上).(参考数据:tan36.90.75︒≈,sin36.90.60︒≈,tan42.00.90︒≈.)五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间销售总额(元)线上销售额(元)线下销售额(元)-2019年4月份a x a x2020年4月份 1.1a 1.43x(2)求2020年4月份线上销售额与当月销售总额的比值.=,20.(10分)如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AD BCAC与BD相交于点F.BE是半圆O所在圆的切线,与AC的延长线相交于点E.∆≅∆;(1)求证:CBA DAB(2)若BE BF=,求证:AC平分DAB∠.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A 套餐的人数为 ,扇形统计图中“C ”对应扇形的圆心角的大小为 ︒;(2)依据本次调查的结果,估计全体960名职工中最喜欢B 套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点(1,2)A ,(2,3)B ,(2,1)C ,直线y x m =+经过点A ,抛物线21y ax bx =++恰好经过A ,B ,C 三点中的两点.(1)判断点B 是否在直线y x m =+上,并说明理由;(2)求a ,b 的值;(3)平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y轴交点纵坐标的最大值.八、(本题满分14分)23.(14分)如图1,已知四边形ABCD 是矩形,点E 在BA 的延长线上,AE AD =.EC 与BD 相交于点G ,与AD 相交于点F ,AF AB =.(1)求证:BD EC ⊥;(2)若1AB =,求AE 的长;(3)如图2,连接AG ,求证:2EG DG -=.2020年安徽省中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A ,B ,C ,D 四个选项,其中只有一个是符合题目要求的.1.(4分)下列各数中,比2-小的数是( )A .3-B .1-C .0D .2【解答】解:根据两个负数,绝对值大的反而小可知32-<-.故选:A .2.(4分)计算63()a a -÷的结果是( )A .3a -B .2a -C .3aD .2a【解答】解:原式633a a a =÷=.故选:C .3.(4分)下面四个几何体中,主视图为三角形的是( )A .B .C .D .【解答】解:A 、主视图是圆,故A 不符合题意;B 、主视图是三角形,故B 符合题意;C 、主视图是矩形,故C 不符合题意;D 、主视图是正方形,故D 不符合题意;故选:B .4.(4分)安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为( )A .85.4710⨯B .80.54710⨯C .554710⨯D .75.4710⨯【解答】解:54700000用科学记数法表示为:75.4710⨯.故选:D .5.(4分)下列方程中,有两个相等实数根的是( )A .212x x +=B .210x +=C .223x x -=D .220x x -=【解答】解:A 、△2(2)4110=--⨯⨯=,有两个相等实数根;B 、△0440=-=-<,没有实数根;C 、△2(2)41(3)160=--⨯⨯-=>,有两个不相等实数根;D 、△2(2)41040=--⨯⨯=>,有两个不相等实数根.故选:A .6.(4分)冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,15.关于这组数据,冉冉得出如下结果,其中错误的是( )A .众数是11B .平均数是12C .方差是187D .中位数是13【解答】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A 选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D 符合题意;(11101113111315)712x =++++++÷=,即平均数是12,于是选项B 不符合题意;22222118[(1012)(1112)3(1312)2(1512)]77S =-+-⨯+-⨯+-=,因此方差为187,于是选项C 不符合题意;故选:D .7.(4分)已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .(1,2)-B .(1,2)-C .(2,3)D .(3,4)【解答】解:A 、当点A 的坐标为(1,2)-时,32k -+=,解得:10k =>,y ∴随x 的增大而增大,选项A 不符合题意;B 、当点A 的坐标为(1,2)-时,32k +=-,解得:50k =-<,y ∴随x 的增大而减小,选项B 符合题意;C 、当点A 的坐标为(2,3)时,233k +=,解得:0k =,选项C 不符合题意;D 、当点A 的坐标为(3,4)时,334k +=,解得:103k =>, y ∴随x 的增大而增大,选项D 不符合题意.故选:B .8.(4分)如图,Rt ABC ∆中,90C ∠=︒,点D 在AC 上,DBC A ∠=∠.若4AC =,4cos 5A =,则BD 的长度为( )A .94B .125C .154D .4【解答】解:90C ∠=︒,4AC =,4cos 5A =, 5cos AC AB A∴==, ∴223BC AB AC =-=,DBC A ∠=∠.4cos cos 5BC DBC A BD ∴∠=∠==, ∴515344BD =⨯=, 故选:C .9.(4分)已知点A ,B ,C 在O 上,则下列命题为真命题的是( )A .若半径OB 平分弦AC ,则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形,则120ABC ∠=︒C .若120ABC ∠=︒,则弦AC 平分半径OBD .若弦AC 平分半径OB ,则半径OB 平分弦AC【解答】解:A 、如图,若半径OB 平分弦AC ,则四边形OABC 不一定是平行四边形;原命题是假命题;B 、若四边形OABC 是平行四边形,则AB OC =,OA BC =,OA OB OC ==,AB OA OB BC OC ∴====, 60ABO OBC ∴∠=∠=︒, 120ABC ∴∠=︒,是真命题; C 、如图,若120ABC ∠=︒,则弦AC 不平分半径OB ,原命题是假命题;D 、如图,若弦AC 平分半径OB ,则半径OB 不一定平分弦AC ,原命题是假命题; 故选:B .10.(4分)如图,ABC ∆和DEF ∆都是边长为2的等边三角形,它们的边BC ,EF 在同一条直线l 上,点C ,E 重合.现将ABC ∆在直线l 向右移动,直至点B 与F 重合时停止移动.在此过程中,设点C 移动的距离为x ,两个三角形重叠部分的面积为y ,则y 随x 变化的函数图象大致为( )A .B .C .D .【解答】解:如图1所示:当02x <时,过点G 作GH BF ⊥于H .ABC ∆和DEF ∆均为等边三角形, GEJ ∴∆为等边三角形.33GH ∴==, 21324y EJ GH ∴==. 当2x =时,3y =,且抛物线的开口向上. 如图2所示:24x <时,过点G 作GH BF ⊥于H .213(4)24y FJ GH x ==-,函数图象为抛物线的一部分,且抛物线开口向上. 故选:A .二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)计算:91-= 2 . 【解答】解:原式312=-=. 故答案为:2.12.(5分)分解因式:2ab a -= (1)(1)a b b +- .【解答】解:原式2(1)(1)(1)a b a b b =-=+-,故答案为:(1)(1)a b b +-13.(5分)如图,一次函数(0)y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B .与反比例函数ky x=的图象在第一象限内交于点C ,CD x ⊥轴,CE y ⊥轴.垂足分别为点D ,E .当矩形ODCE 与OAB ∆的面积相等时,k 的值为 2 .【解答】解:一次函数(0)y x k k =+>的图象与x 轴和y 轴分别交于点A 和点B ,令0x =,则y k =,令0y =,则x k =-,故点A 、B 的坐标分别为(,0)k -、(0,)k ,则OAB ∆的面积21122OA OB k ==,而矩形ODCE 的面积为k ,则212k k =,解得:0k =(舍去)或2,故答案为2.14.(5分)在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A 的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将PCQ∆,ADQ∆分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:(1)PAQ∠的大小为30︒;(2)当四边形APCD是平行四边形时,ABQR的值为.【解答】解:(1)由折叠的性质可得:B AQP∠=∠,DAQ QAP PAB∠=∠=∠,DQA AQR∠=∠,CQP PQR∠=∠,D ARQ∠=∠,C QRP∠=∠,180QRA QRP∠+∠=︒,180D C∴∠+∠=︒,//AD BC∴,180B DAB∴∠+∠=︒,180DQR CQR∠+∠=︒,90DQA CQP∴∠+∠=︒,90AQP∴∠=︒,90B AQP∴∠=∠=︒,90DAB∴∠=︒,30DAQ QAP PAB∴∠=∠=∠=︒,故答案为:30;(2)由折叠的性质可得:AD AR=,CP PR=,四边形APCD是平行四边形,AD PC∴=,AR PR∴=,又90AQP ∠=︒,12QR AP ∴=, 30PAB ∠=︒,90B ∠=︒, 2AP PB ∴=,3AB PB =,PB QR ∴=,∴3ABQR=, 故答案为:3.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)解不等式:2112x ->. 【解答】解:去分母,得:212x ->, 移项,得:221x >+, 合并,得:23x >, 系数化为1,得:32x >. 16.(8分)如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.(1)画出线段AB 关于线段MN 所在直线对称的线段11A B (点1A ,1B 分别为A ,B 的对应点);(2)将线段11B A 绕点1B 顺时针旋转90︒得到线段12B A ,画出线段12B A .【解答】解:(1)如图线段11A B 即为所求. (2)如图,线段12B A 即为所求.四、(本大题共2小题,每小题8分,满分16分) 17.(8分)观察以下等式:第1个等式:121(1)2311⨯+=-,第2个等式:321(1)2422⨯+=-,第3个等式:521(1)2533⨯+=-,第4个等式:721(1)2644⨯+=-.第5个等式:921(1)2755⨯+=-.⋯按照以上规律,解决下列问题: (1)写出第6个等式:1121(1)2866⨯+=- ; (2)写出你猜想的第n 个等式: (用含n 的等式表示),并证明.【解答】解:(1)第6个等式:1121(1)2866⨯+=-; (2)猜想的第n 个等式:2121(1)22n n n n-⨯+=-+.证明:左边21221122n n n n n n n-+-=⨯==-=+右边,∴等式成立.故答案为:1121(1)2866⨯+=-;2121(1)22n n n n-⨯+=-+. 18.(8分)如图,山顶上有一个信号塔AC ,已知信号塔高15AC =米,在山脚下点B 处测得塔底C 的仰角36.9CBD ∠=︒,塔顶A 的仰角42.0ABD ∠=︒,求山高CD (点A ,C ,D 在同一条竖直线上).(参考数据:tan36.90.75︒≈,sin36.90.60︒≈,tan42.00.90︒≈.)【解答】解:由题意,在Rt ABD ∆中,tan ADABD BD∠=, tan 42.00.9ADBD∴︒=≈, 0.9AD BD ∴≈,在Rt BCD ∆中,tan CDCBD BD∠=, tan36.90.75CDBD∴︒=≈, 0.75CD BD ∴≈, AC AD CD =-, 150.15BD ∴=, 100BD ∴=米,0.7575CD BD ∴==(米),答:山高CD 为75米.五、(本大题共2小题,每小题10分,满分20分)19.(10分)某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长10%,其中线上销售额增长43%,线下销售额增长4%.(1)设2019年4月份的销售总额为a 元,线上销售额为x 元,请用含a ,x 的代数式表示2020年4月份的线下销售额(直接在表格中填写结果);时间 销售总额(元)线上销售额(元)线下销售额(元)2019年4月份 a x a x -2020年4月份1.1a 1.43x1.04()a x -(2)求2020年4月份线上销售额与当月销售总额的比值.【解答】解:(1)与2019年4月份相比,该超市2020年4月份线下销售额增长4%,∴该超市2020年4月份线下销售额为1.04()a x -元.故答案为:1.04()a x -.(2)依题意,得:1.1 1.43 1.04()a x a x =+-,解得:213x a =, ∴21.431.430.22130.21.1 1.1 1.1ax a aa a===. 答:2020年4月份线上销售额与当月销售总额的比值为0.2.20.(10分)如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD BC =,AC 与BD 相交于点F .BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E .(1)求证:CBA DAB ∆≅∆;(2)若BE BF =,求证:AC 平分DAB ∠.【解答】(1)证明:AB 是半圆O 的直径,90ACB ADB ∴∠=∠=︒,在Rt CBA ∆与Rt DAB ∆中,BC AD BA AB =⎧⎨=⎩,Rt CBA Rt DAB(HL)∴∆≅∆;(2)解:BE BF =,由(1)知BC EF ⊥,E BFE ∴∠=∠,BE 是半圆O 所在圆的切线,90ABE ∴∠=︒, 90E BAE ∴∠+∠=︒,由(1)知90D ∠=︒,90DAF AFD ∴∠+∠=︒, AFD BFE ∠=∠, AFD E ∴∠=∠,90DAF AFD ∴∠=︒-∠,90BAF E ∠=︒-∠, DAF BAF ∴∠=∠,AC ∴平分DAB ∠.六、(本题满分12分)21.(12分)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为︒;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【解答】解:(1)在抽取的240人中最喜欢A套餐的人数为24025%60⨯=(人),则最喜欢C套餐的人数为240(608424)72-++=(人),∴扇形统计图中“C”对应扇形的圆心角的大小为72360108240︒⨯=︒,故答案为:60、108;(2)估计全体960名职工中最喜欢B套餐的人数为84960336240⨯=(人);(3)画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,∴甲被选到的概率为61 122=.七、(本题满分12分)22.(12分)在平面直角坐标系中,已知点(1,2)A ,(2,3)B ,(2,1)C ,直线y x m =+经过点A ,抛物线21y ax bx =++恰好经过A ,B ,C 三点中的两点.(1)判断点B 是否在直线y x m =+上,并说明理由; (2)求a ,b 的值;(3)平移抛物线21y ax bx =++,使其顶点仍在直线y x m =+上,求平移后所得抛物线与y 轴交点纵坐标的最大值.【解答】解:(1)点B 是在直线y x m =+上,理由如下: 直线y x m =+经过点(1,2)A ,21m ∴=+,解得1m =, ∴直线为1y x =+,把2x =代入1y x =+得3y =,∴点(2,3)B 在直线y x m =+上;(2)直线1y x =+与抛物线21y ax bx =++都经过点(0,1),且B 、C 两点的横坐标相同,∴抛物线只能经过A 、C 两点,把(1,2)A ,(2,1)C 代入21y ax bx =++得124211a b a b ++=⎧⎨++=⎩,解得1a =-,2b =;(3)由(2)知,抛物线为221y x x =-++,设平移后的抛物线为2y x px q =-++,其顶点坐标为(2p,2)4p q +, 顶点仍在直线1y x =+上,∴2142p pq +=+,2142p pq ∴=-++,抛物线2y x px q =-++与y 轴的交点的纵坐标为q ,22151(1)4244p p q p ∴=-++=--+,∴当1p =时,平移后所得抛物线与y 轴交点纵坐标的最大值为54. 八、(本题满分14分)23.(14分)如图1,已知四边形ABCD 是矩形,点E 在BA 的延长线上,AE AD =.EC 与BD 相交于点G ,与AD 相交于点F ,AF AB =.(1)求证:BD EC ⊥;(2)若1AB =,求AE 的长;(3)如图2,连接AG ,求证:2EG DG AG -=.【解答】(1)证明:四边形ABCD 是矩形,点E 在BA 的延长线上, 90EAF DAB ∴∠=∠=︒,又AE AD =,AF AB =,()AEF ADB SAS ∴∆≅∆,AEF ADB ∴∠=∠,90GEB GBE ADB ABD ∴∠+∠=∠+∠=︒,即90EGB ∠=︒,故BD EC ⊥,(2)解:四边形ABCD 是矩形,//AE CD ∴,AEF DCF ∴∠=∠,EAF CDF ∠=∠,AEF DCF ∴∆∆∽,∴AE AF DC DF=, 即AE DF AF DC =,设(0)AE AD a a ==>,则有(1)1a a -=,化简得210a a --=, 解得15a +15-, 15AE +∴=. (3)如图,在线段EG 上取点P ,使得EP DG =,在AEP ∆与ADG ∆中,AE AD =,AEP ADG ∠=∠,EP DG =, ()AEP ADG SAS ∴∆≅∆,AP AG ∴=,EAP DAG ∠=∠,90PAG PAD DAG PAD EAP DAE ∴∠=∠+∠=∠+∠=∠=︒, PAG ∴∆为等腰直角三角形,2EG DG EG EP PG AG ∴-=-=.。
2020年陕西中考数学试题分析今年试题与2018年和2019年比较,稳中有变。
从题型上看,填空、选择题所占分值为42分,占到了全卷的35%,解答题所占分值为78分,占到了全卷的65%。
从考试内容来看,填空、选择注重考查基础知识,主要考性质定理的理解和简单应用,解答题全面考查学生数学能力(几何直观,推理能力,模型思想,计算能力,应用能力)分析问题和解决问题能力,内容较为固定,考查内容形式难度均无大变化。
今年考题基本符合4:3:2:1的难度,整体来说,灵活性较高,就如学生所说,近年的考题比平时练习的还简单,就是坑比较多。
试卷整体凸显三个特点:1题位知识点设计稳中有变(2、3、4、15、16考点和题型有变化,但考题方向不变,仍然考查是基础知识和基本技能)2关注数学应用能力(4、19、20、21、22、25均以实际问题为背景,考查学生运用数学知识解决实际问题的能力)3距离最值、模型思想较以前有所淡化(14、25题打破以往最值计算和模型思想,从基础的知识出发,逐层拓展延伸,很好的考查了不同层次学生对知识掌握和应用能力,同时也能拉开区分度。
)2020备考得失通过对整套试题每个小题考点的分析,和个别考生的交流。
2020中考备考中,好的方面,试卷中出现的考点(知识点),还有题型,在复习中应该是面面俱到,相当一部分题型和知识点都是考前反复练习和强调过的,各个题位的题型及难易度符合考前的研讨与预判。
存在问题:1.一轮复习中基础知识复习不够牢固,轻视个别知识点。
(中等生及后进生基本性质定理识记理解不到位,对于往年不常出现的考点掉以轻心,例如科学计数法)致使后边强化训练部分学生对概念,定理模糊,甚至课本的概念、原理的语言描述不知道,不理解,不会用。
2.复习中对知识的形成过程,学生的实践总结方面培养较少,以至于学生对知识的理解,解决问题的能力欠缺。
3.技能方法训练不到位,致使有些同学小题大做,没有掌握最基本的解题方法和技巧耽误答题时间。
以“作图”促理解探“变化”提素养——2020年中考“图形的变化”专题解题分析钟文丽,万妍青(上海市宝山区教育学院;上海市虎林中学)摘要:几何是研究空间形式的科学,图形是其最主要的表征形式.“图形的变化”作为初中数学几何学习的重点内容之一,是培养学生直观想象、发展空间观念、提升逻辑思维能力的重要载体.文章从“作图”的角度,对2020年全国各地区中考数学试卷中部分涉及“图形的变化”的试题进行评析,并基于几何作图视角通过观察问题、分析问题并解决问题,逐步完善学生的认知结构体系,对“图形的变化”知识的内在联系进行归纳、梳理,落实以逻辑推理为核心的思维发展,提升学生的数学学科核心素养.关键词:图形的变化;几何作图;中考数学收稿日期:2020-09-27作者简介:钟文丽(1969—),女,高级教师,主要从事初中数学教学实践与初中数学青年教师培养研究.一、考点概述《义务教育数学课程标准(2011年版)》(以下简称《标准》)要求通过具体实例了解各种变化的概念,能借助图形探索几何变化后图形的性质,并能“运用图形的轴对称、旋转、平移进行图案设计”.综观2020年全国各地区中考数学试题,在“图形的变化”专题有侧重对学生作图能力的考查的趋势,部分地区“图形的变化”部分的试题在灵活性和创新性上都颇具看点.而作图能力反映的是学生的基本应用技能和合情推理能力,同时也是直观想象和逻辑推理核心素养的体现.本文中选取的以作图为载体的“图形的变化”试题,考点主要体现在三个方面:(1)考查轴对称、旋转、平移三种图形变化的基本作图方法;(2)运用尺规作图法分析图形变化后的性质及特点;(3)助力“综合与实践”与“图形的变化”相关联的问题解决.二、试题分析1.重视基础,考查基本作图,强化直观想象能力“图形的变化”专题侧重对作图技能及图形性质的考查,经历对平移、旋转、轴对称的作图体验,在“观察—操作—归纳—应用”的过程中构建与此相关的知识经验,扎实作图技能.同时,在理解“作图步骤”的过程中,将文字语言转化为符号语言和图形语言,提升学生的数学阅读理解能力,进而强化学生的直观想象核心素养.例1(山东·烟台卷)如图1,已知点A ()2,0,B ()0,4,C ()2,4,D ()6,6,连接AB ,CD ,将线段AB绕着某一点旋转一定角度,使其与线段CD 重合(点A 与点C 重合,点B 与点D 重合),则这个旋转中心的坐标为.图1分析:解决此题的关键是能够找到对称中心.解:所作辅助线如图2所示,设旋转中心是点P ,··84则P ()4,2.图2【评析】此题已知两个对称点,要去寻找对称中心,可以借助尺规作图中作线段垂直平分线的方法,即两条中垂线的交点即为对称中心.灵活应用中心对称的性质是解决此题的关键所在.例2(安徽卷)如图3,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点(网格线的交点)为端点的线段AB ,线段MN 在网格线上.图3BAM N(1)画出线段AB 关于线段MN 所在直线对称的线段A 1B 1(点A 1,B 1分别为点A ,B 的对应点);(2)将线段B 1A 1绕点B 1顺时针旋转90°得到线段B 1A 2,画出线段B 1A 2.分析:此题考查了轴对称和旋转对称的作图方法.解:(1)图4中的线段A 1B 1即为所求.(2)图4中的线段B 1A 2即为所求.图4BAM NA 1B 1A 2【评析】此题第(1)小题考查了轴对称作图的方法,即找出图形中的关键点,过关键点作对称轴的垂线,延长垂线,在垂线的另一端取相等的线段,得到对应点,其他关键点以此类推,连接所有对应点即可得到对称后的图形;第(2)小题考查旋转作图的方法,即找出图形中的关键点,连接关键点和旋转中心,将连线按要求的方向与角度绕中心旋转,在连线上截取相等的线段,得到对应点,连接所有对应点即可得到旋转后的图形.此题是基本作图法最典型的呈现方式.例3(黑龙江·鸡西卷)如图5,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,△ABC 的三个顶点A ()5,2,B ()5,5,C ()1,1均在格点上.图5(1)将△ABC 向左平移5个单位得到△A 1B 1C 1,并写出点A 1的坐标;(2)画出△A 1B 1C 1绕点C 1顺时针旋转90°后得到的△A 2B 2C 1,并写出点A 2的坐标;(3)在(2)的条件下,求△A 1B 1C 1在旋转过程中扫过的面积.(结果保留π.)分析:结合图形平移和旋转的意义作出图形,并求出扫过的圆心角为直角的扇形面积.解:(1)如图6,△A 1B 1C 1即为所求,点A 1的坐标为A 1()0,2;(2)如图6,△A 2B 2C 1即为所求,点A 2的坐标为A 2()-3,-3;(3)如图6,因为BC =42+42=42,所以△A 1B 1C 1在旋转过程中扫过的面积为90π×()422360+12×3×4=8π+6.··85图6【评析】此题第(1)小题考查了平移作图的一般方法,即找出图形中的关键点,过关键点作直线,这条直线要与已知线段平行,在平行线上截取平移距离的长度,得到对应点,连接所有对应点即可得到平移后的图形;第(2)小题的作法同例2;第(3)小题考查了扇形面积和图形旋转之间的关系.《标准》指出,在“图形的变化”部分要能够画出轴对称、旋转和平移后的图形.通过掌握这些基本作图方法,有利于使学生从图形运动变化的角度看全等三角形、平行四边形、圆等几何图形,由静态几何转化为动态几何,更加了解图形的本质和意义.2.重视方法,借助尺规作图法,提升逻辑推理能力尺规作图是帮助学生理解“图形的变化”的基础步骤.一方面,作图为图形的变化提供了直观的图形条件;另一方面,作图也为运动提供了轨迹和思路.同时,在作图的过程中,体现了图形的运动路径,有利于发现运动中的不变性,从而有效解决问题,最终达到提升学生逻辑推理核心素养的目的.例4(湖南·长沙卷)如图7,人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法.已知:∠AOB.求作:∠AOB的平分线.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC,射线OC即为所求(如图7).图7OABCMN试根据提供的材料完成下面问题.(1)这种作已知角的平分线的方法的依据是.(填序号)①SSS②SAS③AAS④ASA(2)试证明OC为∠AOB的平分线.分析:(1)根据题意填写作图依据;(2)利用(1)的作图依据,借助三角形全等进行证明.解:(1)①;(2)由基本作图方法,得OM=ON,OC=OC,MC=NC.因为在△OMC和△ONC中,△OMC≌△ONC(SSS),所以∠AOC=∠BOC,即OC为∠AOB的平分线.【评析】此题来源于教材,是对教材的“再理解”,其中蕴含着与轴对称相关联的知识点.从教材或配套练习册中选取素材进行变式成为中考命题的一种角度.因此,深度剖析教材、注重对教材中典型例题(练习题)资源的利用,也是促进问题解决的关键.学生在掌握基础知识、基本技能的同时,通过基本活动经验和基本思想方法的体验,能让“数学化”学习过程自然发生,以此深化数学思考,明晰数学本质.例5(四川·达州卷)如图8,点O在∠ABC的边BC上,以OB为半径作⊙O,∠ABC的平分线BM 交⊙O于点D,过点D作DE⊥BA于点E.图8(1)尺规作图(不写作法,保留作图痕迹),补全图形;(2)判断⊙O与DE交点的个数,并说明理由.分析:(1)根据题意作出圆、角平分线和垂线;(2)根据切线的性质判断⊙O与DE的位置关系.··86解:(1)补全后的图形如图9所示.(2)直线DE 与⊙O 相切,交点只有一个.理由:因为OB =OD ,所以∠ODB =∠OBD.因为BD 平分∠ABC ,所以∠ABM =∠CBM.所以∠ODB =∠ABD.所以OD ∥AB .因为DE ⊥BA ,所以DE ⊥OD.所以直线DE 是⊙O 的切线.所以⊙O 与直线DE 只有一个交点.【评析】此题中的尺规作图法体现在:作圆,作角平分线,过直线外一点作已知直线的垂线.凸显了综合作图与基本作图的关联,再根据轴对称和全等的相关性质,建立求作与已知之间的联系,从而找到解决问题的方法.此题展现了动手与动脑的和谐,又融入了对相关几何知识的理解,是一种深层次的“做中学”.例6(浙江·舟山卷)如图10,在等腰三角形ABC 中,AB =AC =25,BC =8,按下列步骤作图:①以点A 为圆心,适当的长度为半径作弧,分别交AB ,AC 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径作弧相交于点H ,作射线AH ;②分别以点A ,B 为圆心,大于12AB 的长为半径作弧相交于点M ,N ,作直线MN ,交射线AH 于点O ;③以点O 为圆心,线段OA 长为半径作圆.则⊙O 的半径为().图10OBCN HF E A M (A )25(B )10(C )4(D )5分析:如图11,设OA 交BC 于点T.解直角三角形求出AT 的长,再在Rt△OCT 中利用勾股定理构建方程即可解决问题.图11OBCN H FE A M T 解:如图11,设OA 交BC 于点T .因为BC =8,AO 平分∠BAC ,所以AO ⊥BC ,BT =TC =4.所以AT =AC 2-CT 2=()252-42=2.在Rt△OCT 中,则有r 2=()r -22+42.解得r =5.故此题选D .【评析】此题看似作图步骤复杂,但若从轴对称方向观察,其实就是轴对称性质的“集合”,利用轴对称性质构造基本图形——等腰三角形的三线合一.此题除了可以运用勾股定理列方程求解,还可以利用三角函数求解,即利用sin ∠B =sin ∠AON ,直接计算OA 的长度.再次体现了利用基本作图法和基本图形分析法解决问题的思路,灵活性较强.例7(福建卷)如图12,C 为线段AB 外一点.(1)求作四边形ABCD ,使得CD ∥AB ,且CD =2AB ;(要求:尺规作图,不写作法,保留作图痕迹.)(2)在(1)的四边形ABCD 中,AC ,BD 相交于点P ,AB ,CD 的中点分别为M ,N ,求证:M ,P ,N 三点在同一条直线上.分析:(1)借助基本作图法以平移运动,作CD ∥AB ,再作CD =2AB.(2)借助“X ”型基本图形,证明△APM ∽△CPN ,得到∠CPN +∠CPM =180°,继而得到M ,P ,N 三点共线.解:(1)如图13,四边形ABCD 即为所求.图12A C··87图14A B MNCD图13A BCDP (2)证明:如图14,因为CD ∥AB ,所以∠ABP =∠CDP ,∠BAP =∠DCP.所以△ABP ∽△CDP.因为AB ,CD 的中点分别为M ,N ,所以AB =2AM ,CD =2CN.连接MP ,NP ,因为∠BAP =∠DCP ,所以△APM ∽△CPN.所以∠APM =∠CPN.因为点P 在AC 上,所以∠APM +∠CPM =180°.所以∠CPN +∠CPM =180°.所以M ,P ,N 三点在同一条直线上.【评析】此题第(1)小题内涵丰富,有三种方法可达成“过直线外一点作已知直线的平行线”.在进行尺规作图时,有意识地启动一题多解,并对每种作图方法都给出逻辑证明,这样可以在历练学生基本作图能力的基础上,使其知法明理;第(2)小题中证明“三点共线”需要学生具备很强的论证能力,联系中心对称的相关性质,体现“基本作图法”和“基本图形分析法”的有机结合,通过融入思维直觉与逻辑推理,在动手动脑中培养学生的数学学科核心素养.问题解决体现了“行动+反思”的学习过程:尺规作图既有具体的运动行为,也有对运动过程的表示及作图后的反思,即将“外部操作活动”转化为“内部思维活动”的问题载体.充分利用《标准》中的基本作图法,通过作图将复杂问题简单化,体现了转化思想.3.重视应用,设置问题情境,加强综合分析能力“图形的变化”部分的试题往往会和实际问题或函数问题相结合,通过设置具体的问题情境,体现思考、作图和证明的逻辑链,彰显数形结合思想.这正是《标准》所提倡的“经历观察、实验、猜测、计算、推理、验证等活动过程”,考查了学生合情推理和演绎推理的能力.例8(上海卷)如果存在一条线把一个图形分割成两个部分,使其中一个部分沿某个方向平移后能与另一个部分重合,那么我们把这个图形叫做平移重合图形.下列图形中,平移重合图形是().(A )平行四边形(B )等腰梯形(C )正六边形(D )圆分析:根据“平移重合”的概念判断.解:如图15,在▱ABCD 中,取BC ,AD 的中点E ,F ,连接EF .图15ABCDFE因为四边形ABEF 向右平移可以与四边形EFCD 重合,所以▱ABCD 是平移重合图形.【评析】此题通过阅读理解的形式考查了图形平移的性质.近年来,以阅读理解和图形的变化相结合的试题屡见不鲜.由此可见,通过阅读挖掘试题本质才是关键.例8(新疆生产建设兵团卷)如图16,在平面直角坐标系中,点O 为坐标原点,抛物线y =ax 2+bx +c 的顶点是A ()1,3,将OA 绕点O 顺时针旋转90°后得到OB ,点B 恰好在抛物线上,OB 与抛物线的对称轴交于点C.图16(1)求抛物线的解析式;(2)P 是线段AC 上一动点,且不与点A ,C 重合,过点P 作平行于x 轴的直线,与△OAB 的边分别交于M ,N 两点,将△AMN 以直线MN 为对称轴翻折,得到△A′MN ,设点P 的纵坐标为m .①当△A′MN 在△OAB 内部时,求m 的取值范围;②是否存在点P ,使S △A′MN =56S △OA′B ,若存在,求出满足条件m 的值;若不存在,说明理由.分析:(1)抛物线y =ax 2+bx +c 的顶点是A ()1,3,可以假设抛物线的解析式为y =a ()x -12+3,通过旋转的意义,求出点B 的坐标,利用待定系数法即可解决问··88题.(2)根据翻折的意义画出图形,①根据△A′MN 在△OAB 内部,构建不等式即可解决问题;②求出直线OA ,AB 的解析式,求出MN ,利用面积关系构建方程即可解决问题.解:(1)因为抛物线y =ax 2+bx +c 的顶点为A ()1,3,所以设抛物线的解析式为y =a ()x -12+3.因为OA 绕点O 顺时针旋转90°后得到OB.所以设点B 的坐标为B ()3,-1.把B ()3,-1代入y =a ()x -12+3,得a =-1.所以抛物线的解析式为y =-()x -12+3,即y =-x 2+2x +2.(2)①图17所以直线OB 的解析式为y =-13x.因为A ()1,3,所以C æèöø1,-13.因为P ()1,m ,AP =PA′,所以A′()1,2m -3.由题意-13<2m -3<3,得43<m <3.②因为直线OA 的解析式为y =3x ,直线AB 的解析式为y =-2x +5,P ()1,m ,所以M æèöøm 3,m ,N æèöø5-m 2,m .所以MN =5-m 2-m 3=15-5m 6.因为S △A′MN =56S △OA′B ,所以12·()m -2m +3·15-5m 6=56×12×||||||2m -3+13×3.整理,得m 2-6m +9=||6m -8.解得m 1=6+19(舍),m 2=6-19.当点P 在x 轴下方时,同理,可得m 3m 4=(舍).所以满足条件的m 的值为6-19或【评析】此题体现了在直角坐标系中解决“图形的变化”的问题,需要图形在坐标系中有“位置”,这个“位置”就是图形在直角坐标系中的坐标.借助基本作图法,作出旋转、翻折后的图形,利用全等三角形的性质求出其坐标.函数背景下的图形的变化问题,其本质是借助数形结合思想,理清变化前后图形之间的关系.例9(江苏·南京卷)如图18(1),要在一条笔直的路边l 上建一个燃气站,向l 同侧的A ,B 两个城镇分别铺设管道输送燃气.试确定燃气站的位置,使铺设管道的路线最短.(1)如图18(2),作出点A 关于l 的对称点A ′,线段A ′B 与直线l 的交点C 的位置即为所求,即在点C处建燃气站,所得路线ACB 是最短的.为了证明点C 的位置即为所求,不妨在直线l 上另外任取一点C ′,连接AC ′,BC ′,证明AC +CB <AC′+C′B.试完成这个证明.(2)如果在A ,B 两个城镇之间规划一个生态保护区,燃气管道不能穿过该区域.试分别给出下列两种情形的铺设管道的方案(不需说明理由).①生态保护区是正方形区域,位置如图18(3)所示;②生态保护区是圆形区域,位置如图18(4)所示.ABl(1)BAC A′C′Bl AB l图18(2)(3)(4)分析:(1)借助轴对称的性质作出图形;(2)借助轴对称、正方形和圆的切线性质作出最短路线.解:(1)如图19,连接A′C′,因为点A ,A′关于直线l 对称,点C 在l 上,所以CA =CA′.所以AC +BC =A′C +BC =A′B.同理,可得AC′+C′B =A′C′+BC′.因为A′B <A′C′+C′B ,所以AC +BC <AC′+C′B.BAC A′C′l图19··89(2)如图20,在点C处建燃气站,铺设管道的最短路线是折线ACDB(其中点D是正方形的顶点);如图21,在点C处建燃气站,铺设管道的最短路线是折线ACD,DE,EB构成的曲线(其中CD,BE都与圆相切).图20图21【评析】此题是“将军饮马”问题的典型变式.第(1)小题利用轴对称的相关性质证明了最短距离问题,建立了数学模型;第(2)小题借助第(1)小题的模型,解决了正方形和圆背景下的最短路径问题,考查了学生数学抽象和数学建模的核心能力.“图形的变化”虽然可以与不同背景的问题相结合,但是其作图依据还是来源于图形变换的性质.熟悉各种类型的作图方法,了解各类作图的原理,才能在“图形的变化”的新情境中游刃有余.三、复习建议通过对2020年全国部分地区中考数学试卷中“图形的变化”部分试题的分析,笔者认为在中考复习中应该注意以下三点.1.认识几何作图的价值,为“图形的变化”的教学奠定基础画图意识的培养不是一蹴而就的,教学中应设计适当的问题(任务),引导学生画图、用图,除了培养学生基本的画图技巧,还要加强学生的图形语言表达能力.在“图形的变化”的教学中,教师要紧密联系学生熟悉的实例,使学生认识生活中的图形变换,以观察、动手操作为主要方式组织学生开展实践活动,切实把握好图形变换的具体目标及其要求的“度”.例如,利用“图形的变化”设计图案是一项十分有趣的实践活动,教师应该充分发挥学生的主动性和创造性,引导学生自主设计漂亮的图案,在这样的活动中,学生主动进行基本作图技能的训练,这能对培养学生的类比推理及演绎推理能力起到潜移默化的作用.2.加强教学活动设计,为活动经验和数学思想方法的积累搭建平台“图形的变化”的教学不能仅停留在“作图”这个层面,要通过归纳等手段,引导学生理解作图的依据,发现变化中的不变性.只有深谙几何知识原理,才能驾轻就熟地解决这类问题.当然,“图形的变化”的问题背景千变万化,这就要求我们在日常教学时贯穿“能作图时尽量作图”,在作图的基础上看图说话、用图探究.同时紧扣“四基”,回归到数学知识的层面去分析和解释问题,并注重日常积累,这样才有利于培养学生的综合能力.3.以作图为抓手,在“图形的变化”的应用中提升数学素养“图形的变化”的应用不仅局限于作图或几何证明,而更多地体现在生活中的应用.例如,将图形的变化与图形设计相结合,将实际生活中的问题抽象成数学问题等,有助于培养学生的数学建模素养.通过解决此类问题,可以使学生透过运动的过程看本质,在复杂图形中发现基本图形,体验数学在解决实际问题中的价值和作用,有利于激发学生的数学学习兴趣,培养学生的创新意识和实践能力.如图22,体现了以作图为抓手的“图形的变化”的学习进程,无论是应用作图还是综合作图,最终都落实为基本作图,体现了扎实基础、回归本源的重要性.而每上升一个层级,又促进了学生数学学科核心素养的提升.由此可见,以作图为基点,积累“图形的变化”相关问题的解题经验,是培养学生几何直观、发展学生空间观念、提高学生发现问题和解决问题的能力的助力器.参考文献:[1]中华人民共和国教育部制定.义务教学数学课程标准(2011年版)[M].北京:北京师范大学出版社,2012.[2]仇恒光.尺规作图教学的策略探究[J].中学数学教学参考(中旬),2018(4):61-63.[3]李铁安.义务教育课程标准(2011年版)案例式解读(初中数学)[M].北京:教育科学出版社,2012.··90。
专题03 破解动态数学阅读理解等创新题型一、基础知识点综述实行新课标以来中考数学的题型越来越活,阅读理解题出现在数学当中就是最大的一个亮点. 而此类题目不同以往,不是简单的告诉条件求解题目,往往是先给一个数学类的知识材料,或简要介绍一个知识(超纲的内容),又或者给出对于某一种题目的解法,然后再给条件出题.对于这种题来说,如果学生为求速度而完全无视阅读材料而直接去做题的话,往往浪费大量时间也没有思路,得不偿失. 所以如何读懂题以及如何利用题就成为了关键.目前为止,阅读理解型试题在中考试卷中占的比例越来越大. 很多省份均有涉及,这类题目对学生的数学意识、数学思维能力和创新意识有较高要求,解数学阅读理解题存在较大的困难,要求学生具备一定的数学素养,懂得分析问题,善于从题干中提取有用的条件. 下面我们从几个例题中展开论述,逐层拨开它的神秘面纱.二、精品例题解析例1.(2019·台州) 砸“金蛋”游戏:把210个金蛋连续编号为1,2,3,4,……,210. 接着把编号是3的整数倍的“金蛋”全部砸碎,然后将剩下的“金蛋”重新编号为1,2,3,4,……,接着把编号是3的整数倍的“金蛋”全部砸碎,……按照这样的方法操作,直至无编号是3的整数倍的“金蛋”为止. 操作过程中砸碎编号是“66”的“金蛋”共 个.例2.(2019·重庆)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、质数、合数等. 现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数n ,在通过列竖式进行n +(n +1)+(n +2)的运算时各位都不产生进位现象,则称这个自然数n 为“纯数”.例如:32是纯数,因为32+33+34在列竖式计算时各位都没有进位现象. 23不是纯数,因为23+24+25在列竖式计算时个位有进位现象. (1)请直接写出1949至2019之间的“纯数”; (2)求出不大于100的纯数的个数,并说明理由.例3.(2019·重庆)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题"的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义⎩⎨⎧-≥=)0()0(<a a a a a .结合上面的学习过程,现在来解决下面的问题在函数b kx y +-=3中,当2=x 时,;4-=y 当0=x 时,.1y -=(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象并写出这个函数的一条性质;(3)已知函321y -=x 的图象如图所示,结合你所画的函数图象,直接写出不等式3213-≤+-x b kx 的解集.例4.(2019·凉山州) 根据有理数乘法(除法)法则可知:①若ab >0(或0a b >),则0000a a b b ><⎧⎧⎨⎨><⎩⎩或 ②若ab <0(或0a b <),则0000a ab b ><⎧⎧⎨⎨<>⎩⎩或 根据上述知识,求不等式()()230x x -+>的解集. 解:原不等式可化为:20203030x x x x ->-<⎧⎧⎨⎨+>+<⎩⎩或, 解得:x >2,或x <-3,∴原不等式的解集为:x >2或x <-3.请你运用所学知识,并结合材料回答下列问题: (1)不等式2230x x --<的解集为(2)求不等式401x x+<-的解集(要求写出解答过程).例5.(2019·济宁) 阅读下面的材料:如果函数()y f x =满足:对于自变量x 的取值范围内的任意x 1,x 2, (1)若x 1<x 2,都有()()12f x f x <,则称()y f x =是增函数;(2)若x 1<x 2,都有()()12f x f x >,则称()y f x =是减函数; 例题:证明函数()()60f x x x=>是减函数. 证明:设0<x 1<x 2,()()()21121212666x x f x f x x x x x --=-= ∵0<x 1<x 2,∴210x x ->,x 1x 2>0 ∴()211260x x x x ->,即()()120f x f x -> ∴()()12f x f x >, ∴函数()()60f x x x=>是减函数. 根据以上材料,解答下面问题: 已知函数()()210f x x x x=+<, ()()()211101f -=+-=-,()()()2172242f -=+-=--(1)计算:()3f -=()4f -=(2)猜想:函数()()210f x x x x=+<是 函数(填“增”或“减”)(3)请仿照例题证明你的猜想.例6.(2019·自贡) 阅读下列材料: 小明为了计算220181222+++…+的值,采用以下方法:设220181222S =+++…+ ①则220192222S =++…+ ②②-①得:2019221S S -=-∴2201820191222=21S =+++-…+请仿照小明的方法解决以下问题: (1)291222=+++…+ (2)23103333=+++…+(3)求21na a a +++…+的和(a >0,n 是正整数,请写出计算过程).例7. (2019·衢州)定义:在平面直角坐标系中,对于任意两点(,)A a b ,(,)B c d ,若点(,)T x y 满足3a c x +=,3b dy +=,那么称点T 是点A ,B 的融合点. 例如: (1,8)A -,(4,2)B -当点(,)T x y 满足1413x -+==,8(2)23y +-==时,则点(1,2)T 是点A ,B 的融合点.(1)已知点(1,5)A -,(7,7)B ,(2,4)C ,请说明其中一个点是另外两个点的融合点; (2)如图,点(3,0)D ,点(,23)E t t +是直线l 上任意一点,点(,)T x y 是点D 、E 的融合点.①试确定y 与x 的关系式;②若直线ET 交x 轴于点H ,当DTH ∆为直角三角形时,求点E 的坐标.xyOD例8.(2019·青岛)问题提出:如图,图①是一张由三个边长为 1 的小正方形组成的“L ”形纸片,图②是一张 a b 的方格纸(a b 的方格纸指边长分别为a ,b 的矩形,被分成 a b 个边长为 1 的小正方形,其中 a ≥2,b ≥2,且a ,b 为正整数) .把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?图①图②问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在 2 2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于22的方格纸,要用图①盖住其中的三个小正方形,显然有4 种不同的放置方法.图③探究二:把图①放置在32的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在32的方格纸中,共可以找到 2 个位置不同的 2 2 方格,依据探究一的结论可知,把图①放置在32的方格纸中,使它恰好盖住其中的三个小正方形,共有2 4=8种不同的放置方法.图④探究三:把图①放置在 a 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在 a 2 的方格纸中,共可以找到_________个位置不同的22方格,依据探究一的结论可知,把图①放置在a 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有_______种不同的放置方法.图⑤图⑥探究四:把图①放置在 a 3 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在 a 3 的方格纸中,共可以找到_________个位置不同的2 2方格,依据探究一的结论可知,把图①放置在a 3 的方格纸中,使它恰好盖住其中的三个小正方形,共有_________种不同的放置方法.……问题解决:把图①放置在 a b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由 4 个棱长为1 的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b ,c (a≥2 ,b≥2 ,c≥2 ,且a,b,c 是正整数)的长方体,被分成了a b c个棱长为1 的小立方体.在图⑧的不同位置共可以找到_________个图⑦这样的几何体.图⑦图⑧例9. (2019·南京)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B 的坐标是.(2)函数y=4x(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d(O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)二、精品例题解析例1.(2019·台州)砸“金蛋”游戏:把210个金蛋连续编号为1,2,3,4,……,210. 接着把编号是3的整数倍的“金蛋”全部砸碎,然后将剩下的“金蛋”重新编号为1,2,3,4,……,接着把编号是3的整数倍的“金蛋”全部砸碎,……按照这样的方法操作,直至无编号是3的整数倍的“金蛋”为止. 操作过程中砸碎编号是“66”的“金蛋”共个.【答案】3.【解析】解:210÷3=70,第一次砸碎3的倍数的金蛋个数为70个,剩下210﹣70=140个金蛋,重新编号为1,2,3, (140)140÷3=46...2,第二次砸碎3的倍数的金蛋个数为46个,剩下140﹣46=94个金蛋,重新编号为1,2,3, (94)94÷3=31…1,第三次砸碎3的倍数的金蛋个数为31个,剩下94﹣31=63个金蛋,63<66,砸三次后,就不再存在编号为66的金蛋,故操作过程中砸碎编号是"66"的"金蛋"共有3个.故答案为:3.例2.(2019·重庆)在数的学习过程中,我们总会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了偶数、奇数、质数、合数等. 现在我们来研究一种特殊的自然数——“纯数”.定义:对于自然数n,在通过列竖式进行n+(n+1)+(n+2)的运算时各位都不产生进位现象,则称这个自然数n为“纯数”.例如:32是纯数,因为32+33+34在列竖式计算时各位都没有进位现象.23不是纯数,因为23+24+25在列竖式计算时个位有进位现象.(1)请直接写出1949至2019之间的“纯数”;(2)求出不大于100的纯数的个数,并说明理由.【答案】见解析.【解析】解:设n的个位数字为m,m+m+1+m+2≤9,可得:m≤2,除个位外其余各个位上的数字均小于等于3,否则会发生进位.(1)所以1949至2019之间符合要求的“纯数”有:2000,2001,2002三个数.(2)由上面分析可知:个位小于等于2,且十位、百位小于等于3的数符合“纯数”特征,经过筛选,不大于100的纯数有13个:具体如下:0,1,2,10,11,12,20,21,22,30,31,32,100.共13个.例3.(2019·重庆)在初中阶段的函数学习中,我们经历了“确定函数的表达式——利用函数图象研究其性质一一运用函数解决问题"的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义⎩⎨⎧-≥=)0()0(<a a a a a .结合上面的学习过程,现在来解决下面的问题在函数b kx y +-=3中,当2=x 时,;4-=y 当0=x 时,.1y -=(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法面出这个函数的图象并写出这个函数的一条性质; (3)已知函321y -=x 的图象如图所示,结合你所画的函数图象,直接写出不等式3213-≤+-x b kx 的解集.【答案】见解析. 【解析】解:(1)由题意得:23431k b b -+=-⎧⎨-+=-⎩, 解得:324k b ⎧=⎪⎨⎪=-⎩,即函数解析式为:3342y x =-- (2)图如下所示,性质:函数图象为轴对称图形,对称轴为x =2;当x <2时,y 随x 增大而减小;x >2时,y 随x 增大而增大;x =2时函数值取最小值,最小值为-4;函数与x 轴有两个交点,与y 轴有一个交点……(填写一条即可). (3)1≤x ≤4.例4.(2019·凉山州)根据有理数乘法(除法)法则可知:①若ab >0(或0a b >),则0000a a b b ><⎧⎧⎨⎨><⎩⎩或 ②若ab <0(或0a b <),则0000a ab b ><⎧⎧⎨⎨<>⎩⎩或 根据上述知识,求不等式()()230x x -+>的解集. 解:原不等式可化为:20203030x x x x ->-<⎧⎧⎨⎨+>+<⎩⎩或, 解得:x >2,或x <-3,∴原不等式的解集为:x >2或x <-3.请你运用所学知识,并结合材料回答下列问题: (1)不等式2230x x --<的解集为(2)求不等式401x x+<-的解集(要求写出解答过程). 【答案】(1)-1<x <3;(2)见解析. 【解析】解:(1)2230x x --<,即(3)(1)0x x -+< 原不等式可化为:30301010x x x x ->-<⎧⎧⎨⎨+<+>⎩⎩①或②, 由①得:无解由②得:-1<x <3,∴原不等式的解集为:-1<x <3.(2)401x x +<-,即401x x +>-, 原不等式可化为:40401010x x x x +>+<⎧⎧⎨⎨->-<⎩⎩①或②, 由①得:x >1, 由②得:x <-4,∴原不等式的解集为:x >1或x <-4. 例5.(2019·济宁)阅读下面的材料:如果函数()y f x =满足:对于自变量x 的取值范围内的任意x 1,x 2, (1)若x 1<x 2,都有()()12f x f x <,则称()y f x =是增函数; (2)若x 1<x 2,都有()()12f x f x >,则称()y f x =是减函数; 例题:证明函数()()60f x x x=>是减函数. 证明:设0<x 1<x 2,()()()21121212666x x f x f x x x x x --=-= ∵0<x 1<x 2,∴210x x ->,x 1x 2>0 ∴()211260x x x x ->,即()()120f x f x -> ∴()()12f x f x >, ∴函数()()60f x x x=>是减函数. 根据以上材料,解答下面问题: 已知函数()()210f x x x x=+<, ()()()211101f -=+-=-,()()()2172242f -=+-=--(1)计算:()3f -=()4f -= (2)猜想:函数()()210f x x x x =+<是 函数(填“增”或“减”)(3)请仿照例题证明你的猜想.【答案】(1)2663916--,;(2)增;(3)见解析. 【解析】解:(1)()()()212633=93f -=+---,()()()216344=164f -=+--- (2)增(3)证明:设x 1<x 2<0,()()()1212122122221212111x x f x f x x x x x x x x x ⎛⎫+-=+--=-- ⎪⎝⎭∵0<x 1<x 2, ∴210x x ->,x 1x 2>0,210x x +< ∴1222120x x x x +<,12221210x x x x +-< ∴()1221221210x x x x x x ⎛⎫+--< ⎪⎝⎭即()()120f x f x -<∴()()12f x f x <,∴函数()()210f x x x x=+<是增函数. 例6.(2019·自贡)阅读下列材料:小明为了计算220181222+++…+的值,采用以下方法: 设220181222S =+++…+ ① 则220192222S =++…+ ②②-①得:2019221S S -=- ∴2201820191222=21S =+++-…+请仿照小明的方法解决以下问题:(1)291222=+++…+(2)23103333=+++…+(3)求21n a a a +++…+的和(a >0,n 是正整数,请写出计算过程).【答案】(1)1021-;(2)11332-;(3)见解析. 【解析】解:(1)设291222S =+++…+ ①则2102222S =++…+ ②②-①得:10221S S -=-∴29101222=21S =+++-…+(2)设210333S =++…+ ①则23113333S =++…+ ②②-①得:11331S S -=- ∴1121033333=2S -=++…+. (3)设21n S a a a =+++…+ ①则231n aS a a a a+=+++…+ ② ②-①得:11n aS S a+-=- ∴12111n na S a a a a +-=+++=-…+. 例7. (2019·衢州)定义:在平面直角坐标系中,对于任意两点(,)A ab ,(,)Bcd ,若点(,)T x y 满足3a c x +=,3b d y +=,那么称点T 是点A ,B 的融合点. 例如: (1,8)A -,(4,2)B -当点(,)T x y 满足1413x -+==,8(2)23y +-==时,则点(1,2)T 是点A ,B 的融合点.(1)已知点(1,5)A -,(7,7)B ,(2,4)C ,请说明其中一个点是另外两个点的融合点;(2)如图,点(3,0)D ,点(,23)E t t +是直线l 上任意一点,点(,)T x y 是点D 、E 的融合点.①试确定y 与x 的关系式;②若直线ET 交x 轴于点H ,当DTH ∆为直角三角形时,求点E 的坐标.【解析】解:(1)∵17572422-++==, , ∴点C 是点A 、B 的融合点;(2)①由融合点定义知:33t x +=, 得:33t x =-而2303t y ++=,得:332y t -= ∴33332y x --=, 即:y =2x -1;②由题意知:E 点在直线l 上运动,T 点在直线y =2x -1上运动,若△DTH 为直角三角形,分三种情况讨论:(i )当∠DHT =90°时,即ET ⊥x 轴,如下图所示,x y O D T 点运动轨迹E 点运动轨迹E TH设H (n ,0),则T (n ,2n -1),E (n ,2n +3),由点T 是点D 、E 的融合点可得:33n n +=,解得:n =32即E 点坐标为(32,6);(ii )当∠HDT =90°时,即DT ⊥x 轴,如下图所示,xy O DT 点运动轨迹ETH此时,T 点坐标为(3,5),设E 点坐标为(n ,2n +3)由点T 是点D 、E 的融合点可得:333n +=,解得:n =6,即E 点坐标为(6,15);(iii )当∠HTD =90°时,此种情况不存在;综上所述,E 点坐标为(32,6)或(6,15).例8.(2019·青岛)问题提出:如图,图①是一张由三个边长为 1 的小正方形组成的“L ”形纸片,图②是一张 a b 的方格纸(a b的方格纸指边长分别为a,b的矩形,被分成 a b个边长为 1 的小正方形,其中a≥2,b≥2,且a,b为正整数).把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?图①图②问题探究:为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.探究一:把图①放置在 2 2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图③,对于22的方格纸,要用图①盖住其中的三个小正方形,显然有4 种不同的放置方法.图③探究二:把图①放置在32的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图④,在32的方格纸中,共可以找到 2 个位置不同的 2 2 方格,依据探究一的结论可知,把图①放置在32的方格纸中,使它恰好盖住其中的三个小正方形,共有2 4=8种不同的放置方法.图④探究三:把图①放置在 a 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑤,在 a 2 的方格纸中,共可以找到_________个位置不同的22方格,依据探究一的结论可知,把图①放置在a 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有_______种不同的放置方法.图⑤图⑥探究四:把图①放置在 a 3 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?如图⑥,在 a 3 的方格纸中,共可以找到_________个位置不同的2 2方格,依据探究一的结论可知,把图①放置在a 3 的方格纸中,使它恰好盖住其中的三个小正方形,共有_________种不同的放置方法.……问题解决:把图①放置在 a b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)问题拓展:如图,图⑦是一个由 4 个棱长为1 的小立方体构成的几何体,图⑧是一个长、宽、高分别为a,b ,c (a≥2 ,b≥2 ,c≥2 ,且a,b,c 是正整数)的长方体,被分成了a b c个棱长为1 的小立方体.在图⑧的不同位置共可以找到_________个图⑦这样的几何体.图⑦图⑧【答案】见解析.【解析】解:探究三:根据探究二,a×2的方格纸中,共可以找到(a﹣1)个位置不同的2×2方格,根据探究一结论可知,每个2×2方格中有4种放置方法,所以在a×2的方格纸中,共可以找到(a﹣1)×4=(4a﹣4)种不同的放置方法;故答案为: a﹣1,4a﹣4;探究四:边长为a,有(a﹣1)条边长为2的线段,同理,边长为3,则有3﹣1=2条边长为2的线段,所以在a×3的方格中,可以找到2(a﹣1)个位置不同的2×2方格,根据探究一,在a×3的方格纸中,使它恰好盖住其中的三个小正方形,共有(2a﹣2)×4=(8a﹣8)种不同的放置方法.故答案为: 2(a﹣2),8a﹣8;问题解决:在a×b的方格纸中,共可以找到(a﹣1)(b﹣1)个位置不同的2×2方格,依照探究一的结论可知,把图①放置在a×b的方格纸中,使它恰好盖住其中的三个小正方形,共有4(a﹣1)(b﹣1)种不同的放置方法;问题拓展:发现图⑦是棱长为2的正方体中的一部分,利用前面的思路,这个长方体的长宽高分别为a、b、c,则分别可以找到(a﹣1)、(b﹣1)、(c﹣1)条边长为2的线段,所以在a×b×c的长方体共可以找到(a﹣1)(b﹣1)(c﹣1)位置不同的2×2×2的正方体,再根据探究一类比发现,每个2×2×2的正方体有8种放置方法,所以在a×b×c的长方体中共可以找到8(a﹣1)(b﹣1)(c﹣1)个图⑦这样的几何体;故答案为8(a﹣1)(b﹣1)(c﹣1).【点睛】对于图形的变化类的规律题,首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.例9. (2019·南京)【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B 的坐标是.(2)函数y=4x(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d(O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)【答案】(1)3,(1,2);(2)(3)(4)见解析.【解析】解:(1)①由题意得:d(O,A)=|0+2|+|0﹣1|=2+1=3;②设B(x,y),由定义两点间的距离可得:|0﹣x|+|0﹣y|=3,∵0≤x≤2,∴x+y=3,可得:x=1,y=2,即B(1,2),故答案为:3,(1,2);(2)若函数y=4x(x>0)的图象上存在点C(x,y)使d(O,C)=3,根据题意,得4003 xx-+-=,∵x>0,∴4x>0,方程4003xx-+-=可化为:43xx+=,即x2+4=3x,x2﹣3x+4=0,∴△=b2﹣4ac=﹣7<0,∴方程x2﹣3x+4=0没有实数根,故该函数的图象上不存在点C,使d(O,C)=3.(3)设D(x,y),根据题意得,d(O,D)=|x﹣0|+|x2﹣5x+7﹣0|=|x|+|x2﹣5x+7|,∵225357024x x x⎛⎫-+=-+>⎪⎝⎭,x≥0,∴d(O,D)=|x|+|x2﹣5x+7|=x+x2﹣5x+7=x2﹣4x+7=(x﹣2)2+3,∴当x=2时,d(O,D)有最小值3,此时点D的坐标是(2,1).(4)如图,以M为原点,MN所在的直线为x轴建立平面直角坐标系xOy,将函数y=﹣x的图象沿y轴正方向平移,直到与景观湖边界所在曲线有交点时停止,设交点为E,过点E作EH⊥MN,垂足为H,修建方案是:先沿MN方向修建到H处,再沿HE方向修建到E处.理由:设过点E的直线l1与x轴相交于点F.在景观湖边界所在曲线上任取一点P,过点P 作直线l2∥l1,l2与x轴相交于点G.∵∠EFH=45°,∴EH=HF,d(O,E)=OH+EH=OF,同理d(O,P)=OG,∵OG≥OF,∴d(O,P)≥d(O,E),∴上述方案修建的道路最短.。
专题:图形变换中的探究型问题1.问题情境:小明将两个全等的Rt△ABC和Rt△DEF重叠在一起,其中∠ACB=∠DFE=90°,∠ABC =∠DEF=30°,AC=1.固定△DEF不动,将△ABC沿直线ED向左平移,当B与D重合时停止移动.猜想证明:(1)如图①,在平移过程中,当点D为AB中点时,连接DC,CF,BF,请你猜想四边形CDBF的形状,并证明你的结论;(2)如图②,在平移过程中,连接DC,CF,FB,四边形CDBF的形状在不断地变化,判断它的面积变化情况,并求出其面积;探索发现:(3)在平移过程中,四边形CDBF有什么共同特征?(写出两个即可)____________________________,____________________________________________;(4)请你提出一个与△ABC平移过程有关的新的数学问题(不必证明和解答).2.问题情境勤奋小组在一次数学活动中,用硬纸片做了两个直角三角形,如图①、②,∠ACB=90°,AC=6,BC=8,∠DEF=90°,DE=3,EF=4.如图③,勤奋小组将△DEF的直角边DE与△ABC的斜边AB重合在一起,使点B与点E重合,发现BC⊥DF.独立探究(1)请你证明勤奋小组发现的结论;合作交流(2)创新小组受到勤奋小组的启发,继续探究,如图④,在图③的基础上,将△DEF沿BA方向平移,设DF、EF分别与边BC交于点G、H,发现当△DEF位于某一位置时点H 恰好在DF的垂直平分线上.请你求出此时BE的长;探索发现如图④,在图③的基础上,将△DEF沿BA方向平移,当点D到达A处时,停止平移.(3)在平移过程中,当△FGH≌△BEH时,求GH的值;(4)在平移过程中,当GH为何值时,点D位于△ABC某一边的垂直平分线上,任选一边,直接写出此时GH的值.3.问题情境在综合实践课上,老师让同学们以“全等等腰直角三角形纸片的图形变换”为主题开展数学活动.已知两张全等的等腰直角三角形纸片ABC和DEF,∠ACB=∠DFE=90°,AC =BC=DF=EF=12 cm.操作发现(1)如图①,点F在边AB的中点M处,AB∥DE,将△DEF沿射线AB方向平移a cm,则当a=______cm时,四边形CAFD是菱形,菱形CAFD的面积为______cm2.(2)如图②,勤奋小组将图①中的△DEF以点F为旋转中心,按逆时针方向旋转一定角度,DF交BC于点G,EF交AC于点H,发现CG=HA,请你证明这个结论.实践探究(3)请你参照以上小组的操作过程,将图①中的△DEF在同一平面内进行平移或旋转变换,在图③中画出变换后的图形,标明字母,说明变换方法,并结合图形提出一个问题,不必解答.4.综合与实践在Rt△ABC中,∠ACB=90°,点D为斜边AB上的动点(不与点A,B重合).(1)操作发现:如图①,当AC=BC=6时,把线段CD绕点C逆时针旋转90°得到线段CE,连接DE,BE.①∠CBE的度数为________;②当BE=________时,四边形CDBE为正方形;(2)探究证明:如图②,当BC=2AC时,把线段CD绕点C逆时针旋转90°后并延长为原来的两倍,记为线段CE,连接DE,BE.①在点D的运动过程中,请判断∠CBE与∠A的大小关系,并证明;②当CD⊥AB时,求证:四边形CDBE为矩形;(3)拓展延伸:在(2)的探究条件下,当BC=6时,在点D运动过程中,请在图③中画出DE⊥BC时的△CDE,并直接写出此时四边形CDBE的面积.5.问题情境在综合与实践课上,老师让同学们以“矩形的旋转”为主题开展数学活动,如图①,矩形ABCD中,AB=4,BC=3.操作发现(1)将图①中的矩形ABCD绕点A逆时针旋转角α,使α=∠DAB,得到如图②所示的矩形AB′C′D′,分别连接DD′,BB′,则DD′与BB′的位置关系是________;(2)创新小组将图①中的矩形ABCD绕点A逆时针旋转角α,使点B′恰好落在DC边上,得到如图③所示的矩形AB′C′D′,连接D′D,BB′并延长,延长线交于点P,发现△B′DP是直角三角形,请你证明这个结论;实践探究(3)勤奋小组将图①的矩形ABCD绕点A逆时针旋转角α(α<90°),使点B′恰好落在AB 的垂直平分线上,得到如图④所示的矩形AB′C′D′,连接D′D,BB′并延长交于点P,请直接写出PB′的长;(4)请仿照上述小组的探究过程,将矩形ABCD继续绕点A逆时针旋转,使得α>90°,连接D′D,BB′,你能从中得到什么结论,请直接写出,无需作答.4.问题情境在综合与实践课上,老师组织同学们以“三角形纸片的旋转”为主题开展数学活动.如图①,现有矩形纸片ABCD,AB=4 cm,AD=3 cm.连接BD,将矩形ABCD沿BD剪开,得到△ABD和△BCE.保持△ABD位置不变,将△BCE从图①的位置开始,绕点B按逆时针方向旋转,旋转角为α(0°≤α<360°).操作发现(1)在△BCE 旋转过程中,连接AE ,AC ,则当α=0°时,ACAE 的值是________;(2)如图②,将图①中的△BCE 旋转,当点E 落在BA 延长线上时停止旋转,求出此时ACAE 的值;实践探究(3)如图③,将图②中的△BCE 继续旋转,当AC =AE 时停止旋转,直接写出此时α的度数,并求出△AEC 的面积;(4)将图③中的△BCE 继续旋转,则在某一时刻AC 和AE 还能相等吗?如果不能,则说明理由;如果能,请在图④中画出此时的△BCE ,连接AC ,AE ,并直接写出△AEC 的面积值.5. 如图①,将一个等腰直角三角尺ABC 的顶点C 放置在直线l 上,∠ABC =90°,AB =B C.过点A 作AD ⊥l 于点D.过点B 作BE ⊥l 于点E .观察发现:(1)如图①,当A ,B 两点均在直线l 的上方时. ①猜测线段AD ,CE 与BE 的数量关系,并说明理由; ②直接写出线段DC ,AD 与BE 的数量关系; 操作证明:(2)将等腰直角三角尺ABC绕着点C逆时针旋转至图②位置时,线段DC,AD与BE又有怎样的数量关系,请写出你的猜想,并写出证明过程;拓广探索:(3)将等腰直角三角尺ABC绕着点C继续旋转至图③位置时,AD与BC交于点H,若CD=3,AD=9.请直接写出DH的长度;(4)参照上述探究思路,将等腰直角三角尺ABC绕着点C继续逆时针旋转,当点D与点C重合时,画出图形,找出一对相似三角形,不需要证明.2. (11分)综合与实践问题情境在一节数学活动课上,李老师让每个学习小组拿出课前就制作好的Rt△ABC,其中AC =5,BC=12,∠ACB=90°,通过折叠,展开数学活动.探究发现(1)“自强”小组将Rt△ABC折叠使点B与点C重合,折痕为DE,如图①,他们很快研究出了S△ADC:S△DEC的值. 请你写出计算过程;(2)“奋进”小组将Rt△ABC折叠使点B与点A重合,折痕为DE,如图②,有同学认为图①、图②两种折叠方法折痕DE的长是相等的.你同意他的观点吗?请说出你的理由;问题解决(3)“开拓”小组将∠B沿DE折叠,使点B落在了点B′,且B′E⊥AB于点F,如图③.当AD=8时,试判断以B′、D、C、A为顶点的四边形的形状,并说明理由;(4)“创新”学习小组用“开拓”学习小组的折叠方法使点F恰好是边AB的中点.除∠A与∠B互余外,你还能发现哪些互余的角,写出一组,不需要证明.第2题图3. (12分)综合与实践问题背景在一节数学活动课上,张老师把一些宽度均为3 cm的矩形纸条分发给各个小组,要求各小组通过折纸来研究数学问题.实践操作(1)“明志”小组提出:将纸条按如图①的方式折叠,并将重叠部分剪下,得到图②中的四边形ABCD,再将四边形ABCD沿MN折叠,使点B落在边AD上的点B′处,点C落在点C′处,若AB′=1,则折痕MN的长度是________;(2)“明理”小组在进行了如图①的折叠后,把得到的四边形向右折叠了两次,如图③所示.将重叠部分剪下得到如图④的四边形EFGH,然后将四边形EFGH沿PQ折叠,使点G恰好落在边EH上的点G′处;若测得∠PQG=30°,请求出四边形QPHG′的面积;(3)“明德”小组用与“明理”小组同样的方法得到四边形EFGH,如图⑤,然后将四边形EFGH沿IJ折叠,使点G与点E重合,点H落在了点H′处.请判断四边形EJGI的形状,并说明理由;拓展创新(4)在图⑤中,由折叠的性质可以知EH′=GH=3 cm,那么能否求出四边形EJIH′其他边的长度呢?若能,直接写出一条边的长度,若不能,请说明理由.第3题图1.解:(1)菱形;(1分)证明:由平移得CF∥AD,CF=AD,(2分)∵点D为AB的中点,∴AD=BD,∴CF=BD,(3分)又∵CF∥AD,∴CF∥BD,∴四边形CDBF是平行四边形.(4分)在Rt△ACB中,CD为边AB的中线,∴CD=DB,(5分)∴四边形CDBF是菱形;(6分)(2)四边形CDBF的面积是定值.(7分)如解图,过点C作CG⊥AB于点G,在Rt△AGC中,∵sin60°=CGAC,AC=1,∴CG=32.(8分)∵AB=ACsin30°=2,∴S四边形CDBF=12(CF+DB)·CG=12(AD+DB)·CG=12AB·CG=S△ABC=12×2×32=32;(9分)第1题解图(3)①四边形CDBF的对角线互相垂直;②四边形CDBF一组对边平行;③四边形CDBF面积是一个定值;(11分)(写出两个即可,答案不唯一)(4)(答案不唯一,只要符合要求即可得1分)如:平移过程中,求∠FDB与∠CBD的和.(12分)2. (1)证明:如解图①,设BC与DF相交于点G.∵∠ACB =90°,∠DEF =90°, ∴∠ACB =∠DEF . ∵AC =6,DE =3, ∴AC DE =63=2. ∵BC =8,EF =4, ∴BC EF =84=2, ∴AC DE =BCFE,∴△ABC ∽△DFE , ∴∠BAC =∠FDB ,∴AC ∥DF , ∴∠DGB =∠ACB =90°, ∴BC ⊥DF ;(3分)第2题解图①(2)解:如解图②,连接DH ,设HE =x ,则FH =4-x , ∵BC 垂直平分DF , ∴DH =FH =4-x , 在Rt △DEH 中,由勾股定理得x 2+32=(4-x )2,解得x =78,∴EH =78,∵∠HEB =∠C =90°, ∠B =∠B ,∴△BEH ∽△BCA , ∴BE BC =EH CA, ∴BE 8=786, ∴BE =76;(6分)第2题解图②(3)解:设GH =y ,在△DEF 中,由勾股定理得DF =DE 2+EF 2=5, 由(1)可知BC ⊥DF , ∴△DEF ∽△HGF , ∴DE HG =DF HF ,即3y =5HF, ∴HF =5y 3,∴EH =4-5y3,当△FGH ≌△BEH 时,GH =EH , 即y =4-5y 3,解得y =32,∴GH =32;(9分)(4)解:选AB 边,此时GH =32.(12分)【解法提示】在Rt △ABC 中,AC =6,BC =8,由勾股定理得AB =10. 当点D 位于AB 的垂直平分线上时,即点D 是AB 的中点,∴BD =12AB =5,∵DE =3, ∴BE =2,易证△ABC ∽△HBE , ∴AC HE =BC BE ,即6HE =82, ∴HE =32,∴FH =EF -HE =4-32=52,由(3)可知△DEF ∽△HGF , ∴DE HG =DF HF ,即3GH =552, ∴GH =32.类型三 图形旋转型跟踪训练1. (1)解:12-62;722;(4分)【解法提示】当四边形CAFD 是菱形时,AC =AF =12,在Rt △ABC 中,由勾股定理得AB =122,∵M 为AB 中点,∴AM =62,∴a =(12-62)cm ;如解图①,设EF 与AC 交于点N ,易求得NF =62,∴S 菱形CAFD =AC ·NF =12×62=722cm 2.第1题解图①(2)证明:如解图②,连接CF ,∵M 是AB 中点,点F 与M 重合,△ABC 是等腰直角三角形, ∴CF ⊥AB ,∠A =∠FCG =45°,AF =CF , ∴∠AFC =∠EFD =90°,∴∠AFH +∠HFC =∠HFC +∠CFG =90°,即∠AFH =∠CFG , 在△AFH 和△CFG 中, ⎩⎪⎨⎪⎧∠A =∠FCG ,AF =CF ,∠AFH =∠CFG , ∴△AFH ≌△CFG , ∴CG =HA ;(8分)第1题解图②(3)解:变换过程:如解图③,将△DEF 绕点F 逆时针旋转,连接DC 、AE ,CF ,当C 、A 、E 三点共线且点A 位于C 、E 之间时,求线段AE 的长.(12分)第1题解图③【解法提示】易证DC =AE ,设DC =AE =x ,则CE =12+x ,在Rt △CDE 中,由勾股定理得DE 2=CD 2+CE 2,即122+122=x 2+(12+x )2,解得x =63-6(负值已舍去),∴此时AE 的长为(63-6)cm.2. (1)解:①45°;(2分)【解法提示】∵∠ACB =∠DCE =90°,∴∠ACD +∠DCB =∠DCB +∠BCE ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,⎩⎪⎨⎪⎧AC =BC ,∠ACD =∠BCE ,CD =CE ,∴△ACD ≌△BCE ,∴∠CBE =∠CAD=45°.②解:32;(4分)【解法提示】当四边形CDBE 为正方形时,∠CDB =90°,∴BE =CD =22BC =3 2. (2)①解:∠CBE =∠A ,证明如下: 如解图①,∵BC =2AC ,CE =2CD , ∴AC BC =CD CE =12, 又∵∠ACB =∠DCE =90°,∴∠ACD +∠DCB =∠DCB +∠BCE , ∴∠ACD =∠BCE , ∴△ACD ∽△BCE , ∴∠CBE =∠A ;第2题解图①②证明:由(2)①得∠CBE =∠A ,∴∠DBE =∠DBC +∠CBE =∠DBC +∠A =90°, ∵CD ⊥AB , ∴∠CDB =90°, 又∵∠DCE =90°,∴四边形CDBE 是矩形;(8分)(3)解:画出图形如解图②,四边形CDBE 的面积为452.(12分)【解法提示】∵BC =6,∴AC =3,在Rt △ABC 中,由勾股定理得AB =35,如解图②,设DE 与BC 交于点F ,由(2)①可知∠CBE =∠A ,∴易证△ACB ∽△DCE ,∴∠A =∠CDE ,∵DE ⊥BC ,∠DCE =90°,易得∠ECB =∠CDE ,由(2)①可得∠A =∠CBE ,∴∠A =∠CDE =∠ECB =∠CBE ,∴EC =EB ,又∵DE ⊥BC ,∴点F 为BC 的中点,DF 为△ABC 中位线,∴CD =12AB =352,∵△ACB ∽△DCE ,∴AC DC =AB DE ,即3352=35DE,解得DE =152,S 四边形CDBE=S △CDB +S △CEB =12BC ·DF +12BC ·EF =12BC ·(DF +EF )=12BC ·DE =12×6×152=452.第2题解图②3. (1)解:DD ′⊥BB ′;(3分)【解法提示】如解图①,延长D ′D 交BB ′于点E .∵四边形ABCD 是矩形,∴∠DAB =90°,由旋转知,∠DAD ′=∠BAB ′=90°,AD =AD ′,AB =AB ′,∴∠DAD ′+∠BAB ′=180°,∠AD ′D =45°,∠ABB ′=45°,∴D ′、A 、B 三点在同一条直线上.∵∠AD ′D +∠ABB ′=45°+45°=90°,∴∠D ′EB =90°,∴D ′D ⊥BB ′.第3题解图①(2)证明:由旋转知,AB =AB ′,AD =AD ′,∠BAB ′=∠DAD ′=α, ∴∠AB ′B =180°-α2,∠AD ′D =180°-α2.∴∠AB ′B =∠AD ′D .第3题解图②∵∠AD ′C ′=90°, ∴∠AD ′D +∠C ′D ′P =90°. ∵∠AB ′C ′=90°,∴∠AB ′B +∠PB ′C ′=90°, ∴∠C ′D ′P =∠PB ′C ′.如解图②,设DP 与B ′C ′相交于点Q , ∵∠C ′QD ′=∠B ′QP , ∴∠B ′PD =∠C ′=90°, ∴△B ′DP 是直角三角形;(7分) (3)解:33-42;(10分)【解法提示】由(2)知,∠B ′PD =90°,如解图③,设BB ′与CD 交于点F ,∴△DFP 是直角三角形.∵B ′在AB 的垂直平分线上,∴AB ′=BB ′.又∵AB =AB ′,∴AB =AB ′=BB ′=4,∴△ABB ′是等边三角形,∴∠ABB ′=60°,∴∠CBF =30°.在Rt △BCF 中,CF =BC ·tan ∠CBF =3·tan30°=3,BF =BC cos ∠CBF =BC cos30°=23,∴DF =CD -CF =4-3,B ′F =BB ′-BF=4-2 3.∵∠CBF +∠CFB =90°,∴∠CFB =90°-30°=60°,∴∠DFP =∠CFB =60°.在Rt △DFP 中,PF =DF ·cos ∠DFP =(4-3)×cos60°=4-32,∴PB ′=PF -B ′F =4-32-(4-23)=33-42.第3题解图③(4)解:结论:△AD ′D ∽△AB ′B .(答案不唯一,合理即可)(12分)第3题解图④【解法提示】如解图④,由旋转知,AD =AD ′=3,AB =A ′B =4,∠B ′AD ′=∠BAD =90°,∴∠DAD ′=∠BAB ′,AB AD =AB ′AD ′=43,∴△AD ′D ∽△AB ′B .4. 解:(1)53;(2分)【解法提示】如解图①,连接AC ,在矩形ABCD 中,AB =4 cm ,AD =3 cm ,∴AC =BD =AD 2+AB 2=32+42=5 cm ,AE =AD =3 cm ,∴AC AE =53.第4题解图①(2)如解图②,过点C 作CF ⊥AB 于点F ,(3分) ∵图①中四边形ABCD 是矩形,AB =4,AD =3, ∴BD =BE =AB 2+AD 2=42+32=5. ∴sin ∠FBC =sin ∠EBC =EC EB =45,cos ∠FBC =cos ∠EBC =BC EB =35.在Rt △BFC 中,BF =BC ·cos ∠FBC =3×35=95,FC =BC ·sin ∠FBC =3×45=125,(4分)∴AF =AB -BF =4-95=115.在Rt △AFC 中,AC =AF 2+FC 2=(115)2+(125)2=2655.(5分) AE =BE -AB =5-4=1. ∴AC AE =26551=2655;(6分)第4题解图②(3)α的度数为60°.(7分)如解图③,设EC 的中点为G ,连接AG ,过点A 作AH ⊥BC 的延长线于点H , ∴∠GCH =180°-∠ECB =180°-90°=90°. ∵AC =AE , ∴AG ⊥EC .∴∠AGC =∠GCH =∠AHC =90°. ∴四边形AGCH 是矩形. ∴GC =AH =12EC =12×4=2(cm).在Rt △ABH 中,∵AH =2 cm ,AB =4 cm , ∴BH =AB 2-AH 2=23(cm),(9分) ∴∠ABH =30°,则α=90°-30°=60°. ∴AG =CH =BH -BC =(23-3)cm. ∴S △AEC =12EC ·AG=12×4×(23-3) =(43-6)cm 2;(10分)第4题解图③(4)AC 和AE 还能相等,△BCE 位置如解图④所示;(11分)第4题解图④S △AEC =(43+6) cm 2.(12分)【解法提示】如解图⑤,设EC 的中点为G ,连接AG ,过点A 作AH ⊥CB 的延长线于点H .∵AC =AE ,∴AG ⊥EC .∴∠AGC =∠GCH =∠AHC =90°.∴四边形AGCH 是矩形.∴GC =AH =12EC =12×4=2.在Rt △ABH 中,BH =AB 2-AH 2=23,∴AG =CH =BH+BC =23+3.∴S △AEC =12EC ·AG =12×4×(23+3)=(43+6)cm 2.第4题解图⑤5. 解:(1)①AD +CE =BE .(1分) 理由如下:如解图①,过点B 作BF ⊥AD .交DA 的延长线于点F .第5题解图①∵BE ⊥l ,BF ⊥AD , ∴∠BEC =∠F =90°. 又∵AD ⊥l . ∴∠FDE =90°.∴四边形DEBF 为矩形.(2分) ∴∠FBE =90°. 又∵∠ABC =90°,∴∠ABC -∠ABE =∠FBE -∠ABE , 即∠CBE =∠ABF . 在△CBE 和△ABF 中, ⎩⎪⎨⎪⎧∠CBE =∠ABF ,∠CEB =∠AFB =90°,CB =AB ,∴△CBE≌△ABF.∴CE=AF,BE=BF.又∵四边形DEBF为矩形,∴四边形DEBF为正方形,∴BE=DE=FD=FB.∴AD+CE=AD+AF=FD=BE;(4分)②DC+AD=2BE;(5分)【解法提示】由①可得BF=BE,易得四边形DEBF是正方形,∴BE=DF=DE=AF+AD.又∵CE=AF,∴BE=CE+AD.∵DC=DE+CE=BE+CE,∴DC+AD=AD+DE+CE =AD+BE+CE=BE+BE=2BE.(2)CD-AD=2BE.(6分)证明:如解图②,过点B作BG⊥AD,交AD延长线于点G.第5题解图②∵BE⊥l,BG⊥AD,∴∠BED=∠G=90°.又∵AD⊥l,∴∠GDE=90°.∴四边形DEBG为矩形.∴∠GBE=90°.又∵∠ABC=90°,∴∠ABC-∠ABE=∠GBE-∠ABE.即∠CBE=∠ABG.在△BCE 和△BAG 中, ⎩⎪⎨⎪⎧∠CBE =∠ABG ,∠CEB =∠AGB =90°,CB =AB ,∴△BCE ≌△BAG .(9分) ∴CE =AG ,BE =BG . 又∵四边形DEBG 为矩形, ∴四边形DEBG 为正方形, ∴DE =BE =BG =DG . ∵CD =CE +DE .∴CD =AG +BE =AD +DG +BE =AD +2BE . ∴CD -AD =2BE ;(10分) (3)DH 的长度为32;(11分)【解法提示】如解图③,过点B 作BF ⊥AD ,交DA 于点F .同理可证,△BAF ≌△BCE .四边形DEBF 为正方形.∴CE =AF ,ED =BE =DF .∵CD =CE -ED .∴CD =AF -BE =AD -DF -BE =AD -2BE .∴AD -CD =2BE .∵CD =3,AD =9.∴BE =ED =3,CE =CD +ED =6.∵DH ∥EB ,∴DH EB =CD CE .∴DH 3=36.∴DH =32.第5题解图③(4)(答案不唯一)画出图形如解图④,连接AE 交BC 于点F ,则:△BEC ∽△ABC ,△BFE ∽△CF A .(13分)第5题解图④【解法提示】∵AB =AC ,∠ABC =90°,∴∠BCA =45°,∵AD ⊥l ,点C 、D 重合,∴∠ECB =90°-45°=45°,又∵BE ⊥l ,∴∠BEC =∠ABC =90°,∴△BEC ∽△ABC ;∵AD ⊥l ,BE ⊥l ,∴△BFE ∽△CF A .6. 解:(1)∵在Rt △ABC 中,∠BAC =90°, ∴BC =AB 2+AC 2=62+82=10.(1分) 由折叠知:DE 垂直平分AC , ∴CE =AE ,∠DEC =∠DEA =90°. ∴∠A =∠DEC =90°. ∴DE ∥AB . ∴CE AE =DCBD=1.(2分) ∴DC =BD =12BC =5;(3分)(2)MF =ME .证明:如解图①,连接DM .第6题解图①由(1)得∠DEC =∠DEA =90°.由旋转知:∠DFG =∠DEC =90°,DF =DE .(4分) 在Rt △DFM 和Rt △DEM 中,⎩⎪⎨⎪⎧DM =DM ,DF =DE , ∴Rt △DFM ≌Rt △DEM (HL). ∴MF =ME ;(5分)(3)①如解图②,连接DM .第6题解图②由(2)得Rt △DFM ≌Rt △DEM , ∴∠1=∠2. ∵FG ∥BC , ∴∠1=∠MDC .(6分) ∴∠2=∠MDC . ∴CM =CD .(7分) ∵CD =5, ∴CM =5.∴AM =AC -CM =8-5=3;(8分) ②74;(10分) 【解法提示】如解图③,当GF 经过点B 时,连接DM ,由(2)易得∠BMD =∠CMD .∵点D 是BC 的中点,∴△BMC 是等腰三角形.∴MD ⊥BC ,则△CMD ∽△CBA .∴CM BC =CDAC,即CM 10=58.∴CM =58×10=254.∴AM =AC -CM =8-254=74.第6题解图③③如解图④,△DFG 和射线GF 为所求作的图形. 此时AM =10-3 5.(13分)第6题解图④【作法提示】先作∠EDC 的平分线,截取DG =CD ;再作∠FDG =∠EDC ,截取DF =DE ,连接GF 并延长,则△DFG 和射线GF 即为所求.【解法提示】如解图⑤,过点P 作PH ⊥CD 于点H ,根据作图可知PE =PH ,△CPH ∽△CDE ,∴CP PH =CD DE .由(1)知CD =5,CE =4,DE =3.∴CP PH =CD DE =53.则CP =53PH .∵CE =PE +CP ,∴4=PH +53PH .解得PH =32.则CP =52,CH =2,DH =DC -CH =3.在Rt △DPH 中,DP =DH 2+PH 2=352.PG =DG -DP =10-352.又∵△MGP ∽△DCP ,∴MPDP =PG CP ,则MP352=10-35252,解得MP =65-92.AM =AC -MP -CP =8-65-92-52=10-3 5.第6题解图⑤类型四 图形折叠型1. 解:(1)67.5°,2;(4分)【解法提示】∵四边形ABCD 是正方形,∴∠B =∠BCD =∠D =∠BAD =90°,AB =AD .∵正方形ABCD 折叠使得点B ,D 都在对角线AC 上的点N 处,∴∠BCE =∠ECN =∠NCF =∠DCF =14∠BCD =22.5°,∴∠BEC =∠CEN =67.5°;∴∠AEN =180°-2∠BEC =45°.∵AC 是正方形ABCD 的对角线,∴∠EAN =45°,∴△AEN 是等腰直角三角形,由折叠可知BE =EN ,∴AE EN =AEBE= 2.(2)四边形EMGF 是矩形.(5分) 理由如下:如解图①,∵四边形ABCD 是正方形, ∴∠B =∠BCD =∠D =90°.由折叠可知∠1=∠2=∠3=∠4,CM =CG ,∠BEC =∠NEC =∠NFC =∠DFC , ∴∠1=∠2=∠3=∠4=90°4=22.5°.∴∠BEC =∠NEC =∠NFC =∠DFC =67.5°. 由折叠可知MH ,GH 分别垂直平分EC ,FC , ∴MC =ME ,GC =GF .∴∠5=∠1=22.5°,∠6=∠4=22.5°. ∴∠MEF =∠GFE =90°.(7分) ∵∠MCG =90°,CM =CG , ∴∠CMG =45°.又∵∠BME =∠1+∠5=45°,∴∠EMG =180°-∠CMG -∠BME =90°.(8分) ∴四边形EMGF 是矩形;(9分)第1题解图①(3)画出菱形如解图;第1题解图(答案不唯一,画出一个即可).(10分) 菱形FGCH (或菱形EMCH ).(11分)2. 解:(1)∵将Rt △ABC 折叠使点B 与点C 重合,折痕为DE , ∴DE 垂直平分线段BC ,即DE 为Rt △ABC 的中位线, ∴DE =12AC ,∵△ADC 边AC 上的高与△DEC 边DE 上的高相等, ∴S △ADC ∶S △DEC =12;(3分)(2)不同意; 理由如下:图①中,DE =12AC =52,图②中,易证△BDE ∽△BCA , ∴BD BC =DECA, 在Rt △ABC 中,由勾股定理得AB =13, 由折叠可知DE 垂直平分AB ,∴BD =12AB =132,∴13212=DE 5,解得DE =6524≠52, 即图①、图②两种折叠方法折痕DE 的长是不相等的;(6分) (3)平行四边形; 理由如下:如解图①,延长B ′D 交BC 于点G , ∵B ′E ⊥AB ,∴∠B ′FD =∠BFE =90°, ∴∠B +∠BEF =90°,由折叠可知∠B =∠DB ′E ,BD =B ′D =13-8=5, ∴∠DB ′E +∠BEF =90° ∴∠B ′GE =90°,即B ′G ⊥BC , ∴B ′G ∥AC , 又∵B ′D =AC =5,∴以B ′、D 、C 、A 为顶点的四边形是平行四边形;(10分)第2题解图①(4)(答案不唯一)∠B 与∠B ′DF 互余(∠B 与∠BEF 互余).(12分) 证明:如解图②,由折叠性质可知,∠B =∠B ′, 又∵B ′E ⊥AB , ∴∠DFB ′=90°,∴∠B ′+∠B ′DF =90°, ∴∠B +∠B ′DF =90°, 即∠B 与∠B ′DF 互余.第2题解图②3. 解:(1)10 cm ;(3分)【解法提示】解法一:将矩形纸条按如题图①的方式折叠,得到的四边形ABCD 是正方形,∴AB =AD =3, ∠A =∠B =∠D =∠C =90°,根据折叠的性质,可设MB =MB ′=x ,且∠MB ′C ′=∠B =90°,则AM =3-x ,∵∠A =90°,∴根据勾股定理得AM 2+AB ′2=MB ′2,即(3-x )2+1=x 2,解得x =53,∴AM =3-x =43,∵∠MB ′C ′=∠A =90°,∴∠AMB ′+∠AB ′M=90°,∠AB ′M +∠DB ′C ′=90°,∴∠AMB ′=∠DB ′C ′,∴△AB ′M ∽△DEB ′,∴AB ′DE =AMDB ′,即1DE =432,解得DE =32,利用勾股定理得B ′E =B ′D 2+DE 2=52,∴EC ′=B ′C ′-B ′E =BC -B ′E =12,又∵∠D =∠C ′=90°,∠B ′ED =∠C ′EN ,∴△DB ′E ∽△C ′NE ,∴DB ′C ′N =DE C ′E ,解得C ′N =23=CN ,如解图①,过点N 作NQ ⊥AB 交AB 于点Q ,则四边形QBCN 是矩形,NQ =3,MQ =BM -BQ =BM -CN =1 , ∴MN =MQ 2+NQ 2=10 cm ;解法二:将矩形纸条按题图①的方式折叠,得到的四边形ABCD 是正方形,如解图①,连接BB ′,过点N 作NQ ⊥AB 交AB 于点Q , ∴NQ =AD =AB =3 cm.由折叠的性质可知,折痕MN 是线段BB ′的垂直平分线,∴∠ABB ′+∠QMN =90°,∵∠A =90°, ∴∠ABB ′+∠AB ′B =90°,∴∠AB ′B =∠QMN ,又∵∠A =∠MQN =90°, AB =NQ ,∴△ABB ′≌△QNM (AAS ),∴MN =BB ′=AB 2+AB ′2=32+12=10 cm.第3题解图①(2)将矩形纸条按题图③的方式折叠,得到的四边形EFGH是矩形,且HG=EF=3,∵∠PQG=30°,且折叠后点G恰好落在边EH上的点G′处,∴∠G′PQ=∠GPQ=90°-30°=60°,PG′=PG, ∠PG′Q=∠G=90°,∴∠G′PH=180°-∠G′PQ-∠GPQ=60°,∴∠HG′P=90°-∠G′PH=30°,∴PG=PG′=2HP,(4分)∵HP+PG=3,∴3HP=3,∴HP=1,∴PG=PG′=2,∴在Rt△HG′P中,HG′=PG′2-HP2= 3.∵∠PQG=30°,∠G=90°,∴PQ=2PG=4,∴在Rt△PG′Q中,G′Q=PQ2-PG′2=2 3.(5分)∴S四边形QPHG′=S△HG′P+S△PG′Q=HP·HG′2+PG′·G′Q2=1×32+2×232=532cm2;(7分)(3)四边形EJGI是菱形.(8分)理由如下:如解图②,连接IG,由折叠可知点E,点G关于折痕IJ对称,∴IE=IG,JE=JG,∠EJI=∠GJI,∵EH∥FG,∴∠GJI=∠EIJ,∴∠EIJ=∠EJI,∴JE=IE,∴IE =IG =JE =JG ,∴四边形EJGI 是菱形;(10分)第3题解图②(4)①EJ =154cm ;(12分), 【解法提示】已知FG =3EF =6,EF =3,设EJ =x ,FJ =6-x ,在Rt △EFJ 中,根据勾股定理得EJ 2=EF 2+FJ 2,即x 2=32+(6-x )2,解得x =154,即EJ =154cm. ②H ′I =94cm ;(12分) 【解法提示】如解图②,由折叠的性质得,EI =IG ,HI =H ′I ,∠H ′=∠G =90°,设HI =x ,则EI =6-x ,在Rt △EH ′I 中,由勾股定理得EI 2=H ′I 2+H ′E 2,即(6-x )2=x 2+32,解得x =94,即HI =94cm. ③IJ =352cm.(12分) 【解法提示】如解图③,过点I 作IM ⊥FG ,垂足为点M .由①②知FJ =94,EI =154,则JM =EI -FJ =154-94=32,在Rt △IJM 中,由勾股定理得IJ =IM 2+MJ 2=32+(32)2=352 (cm).第3题解图③。
2020年广东省初中毕业生数学学科学业考试大纲一、考试性质初中学业水平考试数学科目考试是义务教育阶段数学学科的终结性考试,目的是全面、准确地反映初中毕业生的数学学业水平.考试的结果既是评定我省初中毕业生数学学业水平是否达到毕业标准的主要依据,也是高中阶段学校招生的重要依据之一。
二、指导思想(一)初中学业水平考试数学科目考试要体现《义务教育数学课程标准(2011年版)》(以下简称《标准》)的评价理念,有利于引导数学教学全面落实《标准》所设立的课程目标,有利于改善学生的数学学习方式,有利于减轻过重的学业负担。
(二)初中学业水平考试数学科目考试既要重视对学生学习数学知识与技能的结果和过程的评价,也要重视对学生在数学思考能力和解决问题能力方面发展状况的评价,还应当重视对学生数学认识水平的评价。
(三)初中学业水平考试数学科目考试命题应当面向全体学生,根据学生的年龄特征、个性特点和生活经验编制试题,力求公正、客观、全面、准确地评价学生通过义务教育阶段的数学学习所获得的相应发展。
三、考试依据(一)教育部2002年颁发的《关于积极推进中小学评价与考试制度改革的通知》。
(二)教育部2011年颁发的《义务教育数学课程标准(2011年版)》。
(三)广东省初中数学教学的实际情况。
四、考试要求(一)以《标准》中的“课程内容”为基本依据,不拓展知识与技能的考试范围,不提高考试要求,选学内容不列入考试范围。
(二)试题主要考查如下方面:基础知识和基本技能;数学活动经验;数学思考;对数学的基本认识;解决问题的能力等。
(三)突出对学生基本数学素养的考查,注重考查学生掌握适应未来社会生活和进一步发展所必需的重要数学知识(包括数学事实、数学活动经验)以及基本的数学思想方法和必要的应用技能的情况,对在数学学习和应用数学解决问题过程中最为重要的、必须掌握的核心概念、思想方法和常用的技能重点考查。
(四)试卷内容大致比例:代数约占60分;几何约占50分;统计与概率约占10分。
2020年江苏省中考数学试题分类(8)——图形的变化一.翻折变换(折叠问题)(共3小题) 1.(2020•无锡)如图,在四边形ABCD 中(AB >CD ),∠ABC =∠BCD =90°,AB =3,BC =√3,把Rt △ABC 沿着AC 翻折得到Rt △AEC ,若tan ∠AED =√32,则线段DE 的长度( )A .√63B .√73C .√32D .2√752.(2020•南通)矩形ABCD 中,AB =8,AD =12.将矩形折叠,使点A 落在点P 处,折痕为DE . (1)如图①,若点P 恰好在边BC 上,连接AP ,求AA AA的值;(2)如图②,若E 是AB 的中点,EP 的延长线交BC 于点F ,求BF 的长.3.(2020•无锡)如图,在矩形ABCD 中,AB =2,AD =1,点E 为边CD 上的一点(与C 、D 不重合),四边形ABCE 关于直线AE 的对称图形为四边形ANME ,延长ME 交AB 于点P ,记四边形P ADE 的面积为S . (1)若DE =√33,求S 的值;(2)设DE =x ,求S 关于x 的函数表达式.二.平移的性质(共1小题) 4.(2020•镇江)如图,在△ABC 中,BC =3,将△ABC 平移5个单位长度得到△A 1B 1C 1,点P 、Q 分别是AB 、A 1C 1的中点,PQ 的最小值等于 .三.旋转的性质(共1小题)5.(2020•苏州)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△AB'C'.若点B'恰好落在BC边上,且AB'=CB',则∠C'的度数为()A.18°B.20°C.24°D.28°四.旋转对称图形(共1小题)6.(2020•镇江)点O是正五边形ABCDE的中心,分别以各边为直径向正五边形的外部作半圆,组成了一幅美丽的图案(如图).这个图案绕点O至少旋转°后能与原来的图案互相重合.五.中心对称图形(共1小题)7.(2020•徐州)下列垃圾分类标识的图案既是轴对称图形,又是中心对称图形的是()A.B.C.D.六.关于原点对称的点的坐标(共1小题)8.(2020•淮安)在平面直角坐标系中,点(3,2)关于原点对称的点的坐标是()A.(2,3)B.(﹣3,2)C.(﹣3,﹣2)D.(﹣2,﹣3)七.坐标与图形变化-旋转(共1小题)9.(2020•南通)以原点为中心,将点P(4,5)按逆时针方向旋转90°,得到的点Q所在的象限为()A.第一象限B.第二象限C.第三象限D.第四象限八.作图-旋转变换(共1小题) 10.(2020•常州)如图1,点B 在线段CE 上,Rt △ABC ≌Rt △CEF ,∠ABC =∠CEF =90°,∠BAC =30°,BC =1.(1)点F 到直线CA 的距离是 ;(2)固定△ABC ,将△CEF 绕点C 按顺时针方向旋转30°,使得CF 与CA 重合,并停止旋转. ①请你在图1中用直尺和圆规画出线段EF 经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为 ;②如图2,在旋转过程中,线段CF 与AB 交于点O ,当OE =OB 时,求OF 的长.九.几何变换综合题(共1小题) 11.(2020•淮安)[初步尝试](1)如图①,在三角形纸片ABC 中,∠ACB =90°,将△ABC 折叠,使点B 与点C 重合,折痕为MN ,则AM 与BM 的数量关系为 ; [思考说理](2)如图②,在三角形纸片ABC 中,AC =BC =6,AB =10,将△ABC 折叠,使点B 与点C 重合,折痕为MN ,求AA AA的值;[拓展延伸](3)如图③,在三角形纸片ABC 中,AB =9,BC =6,∠ACB =2∠A ,将△ABC 沿过顶点C 的直线折叠,使点B 落在边AC 上的点B ′处,折痕为CM . ①求线段AC 的长;②若点O 是边AC 的中点,点P 为线段OB ′上的一个动点,将△APM 沿PM 折叠得到△A ′PM ,点A 的对应点为点A ′,A ′M 与CP 交于点F ,求AA AA的取值范围.一十.平行线分线段成比例(共1小题) 12.(2020•无锡)如图,在Rt △ABC 中,∠ACB =90°,AB =4,点D ,E 分别在边AB ,AC 上,且DB =2AD ,AE =3EC ,连接BE ,CD ,相交于点O ,则△ABO 面积最大值为 .一十一.相似三角形的判定(共1小题)13.(2020•南京)如图,在△ABC 和△A 'B 'C '中,D 、D '分别是AB 、A 'B '上一点,AA AA=A′A′A′A′.(1)当AAA′A′=AA A′A′=AAA′A′时,求证△ABC ∽△A 'B 'C '.证明的途径可以用下面的框图表示,请填写其中的空格.(2)当AAA′A′=AA A′A′=AAA′A′时,判断△ABC 与△A 'B 'C ′是否相似,并说明理由.一十二.相似三角形的判定与性质(共6小题)14.(2020•无锡)如图,等边△ABC 的边长为3,点D 在边AC 上,AD =12,线段PQ 在边BA 上运动,PQ =12,有下列结论: ①CP 与QD 可能相等;②△AQD 与△BCP 可能相似; ③四边形PCDQ 面积的最大值为31√316;④四边形PCDQ 周长的最小值为3+√372. 其中,正确结论的序号为( )A .①④B .②④C .①③D .②③ 15.(2020•南通)如图,在正方形网格中,每个小正方形的边长均为1,△ABC 和△DEF 的顶点都在网格线的交点上.设△ABC 的周长为C 1,△DEF 的周长为C 2,则A 1A 2的值等于 .16.(2020•盐城)如图,BC∥DE,且BC<DE,AD=BC=4,AB+DE=10.则AAAA的值为.17.(2020•泰州)如图,在△ABC中,∠C=90°,AC=3,BC=4,P为BC边上的动点(与B、C不重合),PD∥AB,交AC于点D,连接AP,设CP=x,△ADP的面积为S.(1)用含x的代数式表示AD的长;(2)求S与x的函数表达式,并求当S随x增大而减小时x的取值范围.18.(2020•苏州)如图,在矩形ABCD中,E是BC的中点,DF⊥AE,垂足为F.(1)求证:△ABE∽△DF A;(2)若AB=6,BC=4,求DF的长.19.(2020•无锡)如图,DB过⊙O的圆心,交⊙O于点A、B,DC是⊙O的切线,点C是切点,已知∠D =30°,DC=√3.(1)求证:△BOC∽△BCD;(2)求△BCD的周长.一十三.相似形综合题(共2小题)20.(2020•宿迁)【感知】如图①,在四边形ABCD中,∠C=∠D=90°,点E在边CD上,∠AEB=90°,求证:AA AA=AA AA.【探究】如图②,在四边形ABCD 中,∠C =∠ADC =90°,点E 在边CD 上,点F 在边AD 的延长线上,∠FEG =∠AEB =90°,且AA AA=AA AA,连接BG 交CD 于点H .求证:BH =GH .【拓展】如图③,点E 在四边形ABCD 内,∠AEB 十∠DEC =180°,且AA AA=AA AA,过E 作EF 交AD于点F ,若∠EF A =∠AEB ,延长FE 交BC 于点G .求证:BG =CG .21.(2020•徐州)我们知道:如图①,点B 把线段AC 分成两部分,如果AA AA=AA AA,那么称点B 为线段AC的黄金分割点.它们的比值为√5−12. (1)在图①中,若AC =20cm ,则AB 的长为 cm ;(2)如图②,用边长为20cm 的正方形纸片进行如下操作:对折正方形ABCD 得折痕EF ,连接CE ,将CB 折叠到CE 上,点B 对应点H ,得折痕CG .试说明:G 是AB 的黄金分割点;(3)如图③,小明进一步探究:在边长为a 的正方形ABCD 的边AD 上任取点E (AE >DE ),连接BE ,作CF ⊥BE ,交AB 于点F ,延长EF 、CB 交于点P .他发现当PB 与BC 满足某种关系时,E 、F 恰好分别是AD 、AB 的黄金分割点.请猜想小明的发现,并说明理由.一十四.解直角三角形的应用(共3小题) 22.(2020•南通)如图,测角仪CD 竖直放在距建筑物AB 底部5m 的位置,在D 处测得建筑物顶端A 的仰角为50°.若测角仪的高度是1.5m ,则建筑物AB 的高度约为 m .(结果保留小数点后一位,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19)23.(2020•淮安)如图,三条笔直公路两两相交,交点分别为A 、B 、C ,测得∠CAB =30°,∠ABC =45°,AC =8千米,求A 、B 两点间的距离.(参考数据:√2≈1.4,√3≈1.7,结果精确到1千米).24.(2020•连云港)筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋》中写道:“水能利物,轮乃曲成”.如图,半径为3m 的筒车⊙O 按逆时针方向每分钟转56圈,筒车与水面分别交于点A 、B ,筒车的轴心O 距离水面的高度OC 长为2.2m ,筒车上均匀分布着若干个盛水筒.若以某个盛水筒P 刚浮出水面时开始计算时间.(1)经过多长时间,盛水筒P 首次到达最高点? (2)浮出水面3.4秒后,盛水筒P 距离水面多高?(3)若接水槽MN 所在直线是⊙O 的切线,且与直线AB 交于点M ,MO =8m .求盛水筒P 从最高点开始,至少经过多长时间恰好在直线MN 上. (参考数据:cos43°=sin47°≈1115,sin16°=cos74°≈1140,sin22°=cos68°≈38)一十五.解直角三角形的应用-仰角俯角问题(共3小题)25.(2020•苏州)如图,小明想要测量学校操场上旗杆AB 的高度,他作了如下操作: (1)在点C 处放置测角仪,测得旗杆顶的仰角∠ACE =α; (2)量得测角仪的高度CD =a ;(3)量得测角仪到旗杆的水平距离DB =b .利用锐角三角函数解直角三角形的知识,旗杆的高度可表示为( )A .a +b tan αB .a +b sin αC .a +A AAAAD .a +AAAAA26.(2020•镇江)如图,点E 与树AB 的根部点A 、建筑物CD 的底部点C 在一条直线上,AC =10m .小明站在点E 处观测树顶B 的仰角为30°,他从点E 出发沿EC 方向前进6m 到点G 时,观测树顶B 的仰角为45°,此时恰好看不到建筑物CD 的顶部D (H 、B 、D 三点在一条直线上).已知小明的眼睛离地面1.6m ,求建筑物CD 的高度(结果精确到0.1m ).(参考数据:√2≈1.41,√3≈1.73.)27.(2020•泰州)我市在凤城河风景区举办了端午节赛龙舟活动,小亮在河畔的一幢楼上看到一艘龙舟迎面驶来,他在高出水面15m的A处测得在C处的龙舟俯角为23°;他登高6m到正上方的B处测得驶至D处的龙舟俯角为50°,问两次观测期间龙舟前进了多少?(结果精确到1m,参考数据:tan23°≈0.42,tan40°≈0.84,tan50°≈1.19,tan67°≈2.36)一十六.解直角三角形的应用-方向角问题(共3小题)28.(2020•宿迁)如图,在一笔直的海岸线上有A,B两个观测站,A在B的正西方向,AB=2km,从观测站A测得船C在北偏东45°的方向,从观测站B测得船C在北偏西30°的方向.求船C离观测站A的距离.29.(2020•徐州)小红和爸爸绕着小区广场锻炼.如图,在矩形广场ABCD边AB的中点M处有一座雕塑.在某一时刻,小红到达点P处,爸爸到达点Q处,此时雕塑在小红的南偏东45°方向,爸爸在小红的北偏东60°方向,若小红到雕塑的距离PM=30m,求小红与爸爸的距离PQ.(结果精确到1m,参考数据:√2≈1.41,√3≈1.73,√6≈2.45)30.(2020•南京)如图,在港口A处的正东方向有两个相距6km的观测点B、C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B、C处分别测得∠ABD=45°、∠C=37°.求轮船航行的距离AD.(参考数据:sin26°≈0.44,cos26°≈0.90,tan26°≈0.49,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75.)一十七.简单几何体的三视图(共1小题)31.(2020•淮安)下列几何体中,主视图为圆的是()A.B.C.D.一十八.简单组合体的三视图(共3小题)32.(2020•镇江)如图,将棱长为6的正方体截去一个棱长为3的正方体后,得到一个新的几何体,这个几何体的主视图是()A.B.C.D.33.(2020•盐城)如图是由4个小正方体组合成的几何体,该几何体的俯视图是()A.B.C.D.34.(2020•苏州)如图,一个几何体由5个相同的小正方体搭成,该几何体的俯视图是()A.B.C.D.一十九.由三视图判断几何体(共1小题)35.(2020•常州)如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥2020年江苏省中考数学试题分类(8)——图形的变化参考答案与试题解析一.翻折变换(折叠问题)(共3小题) 1.【解答】解:方法一:如图,延长ED 交AC 于点M ,过点M 作MN ⊥AE 于点N ,设MN =√3x , ∵tan ∠AED =√32, ∴AA AA=√32, ∴NE =2x ,∵∠ABC =90°,AB =3,BC =√3, ∴∠CAB =30°, ∴AC =2√3, 由翻折可知: ∠EAC =30°,∴AM =2MN =2√3x , ∴AN =√3MN =3x , ∵AE =AB =3, ∴5x =3, ∴x =35,∴AN =95,MN =3√35,AM =6√35, ∵AC =2√3,∴CM =AC ﹣AM =4√35, ∵MN =3√35,NE =2x =65, ∴EM =√AA 2+AA 2=3√75,∵∠ABC =∠BCD =90°, ∴CD ∥AB ,∴∠DCA =30°,由翻折可知:∠ECA =∠BCA =60°, ∴∠ECD =30°,∴CD 是∠ECM 的角平分线, ∴A △AAA A △AAA =AAAA=AA AA,∴√34√35=3√75−AA ,解得,ED =√73. 方法二:如图,过点D 作DM ⊥CE ,由折叠可知:∠AEC =∠B =90°, ∴AE ∥DM ,∴∠AED =∠EDM , ∴tan ∠AED =tan ∠EDM =√32,∵∠ACB =60°,∠ECD =30°,设EM =√3m ,由折叠性质可知,EC =CB =√3, ∴CM =√3−√3m ,∴tan ∠ECD =AA AA =√33, ∴DM =(√3−√3m )×√33=1﹣m ,∴tan ∠EDM =AA AA =√32,即√3A 1−A=√32解得,m =13,∴DM =23,EM =√33,在直角三角形EDM 中,DE 2=DM 2+EM 2,解得,DE =√73.故选:B . 2.【解答】解:(1)如图①中,取DE 的中点M ,连接PM .∵四边形ABCD 是矩形, ∴∠BAD =∠C =90°,由翻折可知,AO =OP ,AP ⊥DE ,∠2=∠3,∠DAE =∠DPE =90°, 在Rt △EPD 中,∵EM =MD , ∴PM =EM =DM , ∴∠3=∠MPD ,∴∠1=∠3+∠MPD =2∠3, ∵∠ADP =2∠3, ∴∠1=∠ADP , ∵AD ∥BC ,∴∠ADP =∠DPC , ∴∠1=∠DPC ,∵∠MOP =∠C =90°, ∴△POM ∽△DCP , ∴AA AA =AAAA =812=23,∴AA AA=2AA 2AA=23.解法二:证明△ABP 和△DAE 相似,AA AA=AA AA=23.(2)如图②中,过点P 作GH ∥BC 交AB 于G ,交CD 于H .则四边形AGHD 是矩形,设EG =x ,则BG =4﹣x∵∠A =∠EPD =90°,∠EGP =∠DHP =90°, ∴∠EPG +∠DPH =90°,∠DPH +∠PDH =90°, ∴∠EPG =∠PDH , ∴△EGP ∽△PHD , ∴AA AA=AA AA=AA AA=412=13,∴PH =3EG =3x ,DH =AG =4+x , 在Rt △PHD 中,∵PH 2+DH 2=PD 2, ∴(3x )2+(4+x )2=122,解得x =165(负值已经舍弃), ∴BG =4−165=45,在Rt △EGP 中,GP =√AA 2−AA 2=125, ∵GH ∥BC ,∴△EGP ∽△EBF , ∴AA AA=AA AA,∴1654=125AA,∴BF =3.3.【解答】解:(1)∵在矩形ABCD 中,∠D =90°,AD =1,DE =√33,∴AE =√AA 2+AA 2=2√33,∴tan ∠AED =AAAA =√3,∴∠AED =60°, ∵AB ∥CD ,∴∠BAE =60°,∵四边形ABCE 关于直线AE 的对称图形为四边形ANME , ∴∠AEC =∠AEM , ∵∠PEC =∠DEM ,∴∠AEP =∠AED =60°, ∴△APE 为等边三角形, ∴S =12×(2√33+√33)×1=√32; (2)过E 作EF ⊥AB 于F ,由(1)可知,∠AEP =∠AED =∠P AE , ∴AP =PE ,设AP =PE =a ,AF =ED =x , 则PF =a ﹣x ,EF =AD =1,在Rt △PEF 中,(a ﹣x )2+1=a 2,解得:a =A 2+12A ,∴S =12⋅A ×1+12×A 2+12A ×1=12A +A 2+14A =3A 2+14A .二.平移的性质(共1小题) 4.【解答】解:取AC 的中点M ,A 1B 1的中点N ,连接PM ,MQ ,NQ ,PN , ∵将△ABC 平移5个单位长度得到△A 1B 1C 1, ∴B 1C 1=BC =3,PN =5,∵点P 、Q 分别是AB 、A 1C 1的中点, ∴NQ =12B 1C 1=32, ∴5−32≤PQ ≤5+32, 即72≤PQ ≤132, ∴PQ 的最小值等于72, 故答案为:72.三.旋转的性质(共1小题) 5.【解答】解:∵AB '=CB ', ∴∠C =∠CAB ',∴∠AB 'B =∠C +∠CAB '=2∠C ,∵将△ABC 绕点A 按逆时针方向旋转得到△AB 'C ', ∴∠C =∠C ',AB =AB ', ∴∠B =∠AB 'B =2∠C ,∵∠B +∠C +∠CAB =180°, ∴3∠C =180°﹣108°, ∴∠C =24°,∴∠C '=∠C =24°, 故选:C .四.旋转对称图形(共1小题) 6.【解答】解:连接OA ,OE ,则这个图形至少旋转∠AOE 才能与原图象重合, ∠AOE =360°5=72°.故答案为:72.五.中心对称图形(共1小题) 7.【解答】解:A 、不是中心对称图形,不是轴对称图形,故此选项不合题意; B 、不是中心对称图形,是轴对称图形,故此选项不合题意; C 、既是中心对称图形,也是轴对称图形,故此选项符合题意; D 、不是中心对称图形,不是轴对称图形,故此选项不合题意; 故选:C .六.关于原点对称的点的坐标(共1小题) 8.【解答】解:点(3,2)关于原点对称的点的坐标是:(﹣3,﹣2). 故选:C .七.坐标与图形变化-旋转(共1小题) 9.【解答】解:如图,∵点P (4,5)按逆时针方向旋转90°,得点Q 所在的象限为第二象限. 故选:B .八.作图-旋转变换(共1小题) 10.【解答】解:(1)如图1中,作FD ⊥AC 于D ,∵Rt △ABC ≌Rt △CEF ,∠ABC =∠CEF =90°,∠BAC =30°,BC =1. ∴∠ACB =60°,∠FCE =∠BAC =30°,AC =CF , ∴∠ACF =30°, ∴∠BAC =∠FCD , 在△ABC 和△CDF 中,{∠AAA =∠AAAAAAA =AAAA AA =AA, ∴△ABC ≌△CDF (AAS ), ∴FD =BC =1,法二:∵∠ECF =∠FCD =30°,FD ⊥CD ,FE ⊥CE , ∴DF =EF , ∵EF =BC =1,∴DF =1. 故答案为1;(2)线段EF 经旋转运动所形成的平面图形如图所示,此时点E 落在CF 上的点H 处.S 阴=S △EFC +S 扇形ACF ﹣S 扇形CEH ﹣S △AHC =S 扇形ACF ﹣S 扇形ECH =30⋅A ⋅22360−30⋅A ⋅(√3)2360=A12. 故答案为A12.(3)如图2中,过点E 作EH ⊥CF 于H .设OB =OE =x .在Rt △ECF 中,∵EF =1,∠ECF =30°,EH ⊥CF , ∴EC =√3EF =√3,EH =√32,CH =√3EH =32,在Rt △BOC 中,OC =√AA 2+AA 2=√1+A 2, ∴OH =CH ﹣OC =32−√1+A 2, 在Rt △EOH 中,则有x 2=(√32)2+(32−√1+A 2)2,解得x =√73或−√73(不合题意舍弃),∴OC =1+(√73)2=43,∵CF =2EF =2,∴OF =CF ﹣OC =2−43=23. 九.几何变换综合题(共1小题)11.【解答】解:(1)如图①中,∵△ABC 折叠,使点B 与点C 重合,折痕为MN , ∴MN 垂直平分线段BC , ∴CN =BN ,∵∠MNB =∠ACB =90°, ∴MN ∥AC , ∵CN =BN , ∴AM =BM .故答案为AM =BM .(2)如图②中,∵CA =CB =6, ∴∠A =∠B ,由题意MN 垂直平分线段BC , ∴BM =CM , ∴∠B =∠MCB , ∴∠BCM =∠A , ∵∠B =∠B ,∴△BCM ∽△BAC , ∴AA AA =AAAA ,∴610=AA6,∴BM =185, ∴AM =AB ﹣BM =10−185=325, ∴AA AA=325185=169.(3)①如图③中,由折叠的性质可知,CB =CB ′=6,∠BCM =∠ACM , ∵∠ACB =2∠A , ∴∠BCM =∠A , ∵∠B =∠B ,∴△BCM ∽△BAC , ∴AA AA =AAAA =AA AA∴69=AA 6,∴BM =4,∴AM =CM =5, ∴69=5AA ,∴AC =152.②如图③﹣1中,∵∠A =∠A ′=∠MCF ,∠PF A ′=∠MFC ,P A =P A ′, ∴△PF A ′∽△MFC , ∴AA AA =AA′AA,∵CM =5, ∴AA AA =AA′5,∵点P 在线段OB 上运动,OA =OC =154,AB ′=152−6=32, ∴32≤P A ′≤154, ∴310≤AA AA≤34.一十.平行线分线段成比例(共1小题) 12.【解答】解:如图,过点D 作DF ∥AE ,则AA AA =AA AA =23,∵AA AA=13,∴DF =2EC , ∴DO =2OC , ∴DO =23DC ,∴S △ADO =23S △ADC ,S △BDO =23S △BDC , ∴S △ABO =23S △ABC ,∵∠ACB =90°,∴C 在以AB 为直径的圆上,设圆心为G ,当CG ⊥AB 时,△ABC 的面积最大为:12×4×2=4, 此时△ABO 的面积最大为:23×4=83. 故答案为:83.一十一.相似三角形的判定(共1小题) 13.【解答】(1)证明:∵AA AA=A′A′A′A′,∴AA A′A′=AAA′A′, ∵AA A′A′=AA A′A′=AA A′A′, ∴AA A′A′=AA A′A′=AA A′A′,∴△ADC ∽△A ′D ′C ', ∴∠A =∠A ′, ∵AA A′A′=AAA′A′, ∴△ABC ∽△A ′B ′C ′. 故答案为:AAA′A′=AA A′A′=AAA′A′,∠A =∠A ′.(2)如图,过点D ,D ′分别作DE ∥BC ,D ′E ′∥B ′C ′,DE 交AC 于E ,D ′E ′交A ′C ′于E ′.∵DE ∥BC ,∴△ADE ∽△ABC , ∴AA AA=AA AA=AA AA,同理,A′A′A′A′=A′A′A′A′=A′A′A′A′,∵AA AA =A′A′A′A′, ∴AA AA =A′A′A′A′,∴AAA′A′=AAA′A′,同理,AA AA =A′A′A′A′,∴AA −AA AA =A′A′−A′A′A′A′,即AA AA=A′A′A′A′,∴AA A′A′=AAA′A′, ∵AA A′A′=AA A′A′=AA A′A′, ∴AA A′A′=AA A′A′=AA A′A′,∴△DCE ∽△D ′C ′E ′, ∴∠CED =∠C ′E ′D ′, ∵DE ∥BC ,∴∠CED +∠ACB =180°,同理,∠C ′E ′D ′+∠A ′C ′B ′=180°, ∴∠ACB =∠A ′C ′B ′, ∵AA A′A′=AAA′A′,∴△ABC ∽△A ′B ′C ′.一十二.相似三角形的判定与性质(共6小题)14.【解答】解:①利用图象法可知PC >DQ ,或通过计算可知DQ 的最大值为√212,PC 的最小值为3√32,所以PC >DQ ,故①错误.②设AQ =x ,则BP =AB ﹣AQ ﹣PQ =3﹣x −12=52−x , ∵∠A =∠B =60°, ∴当AA AA=AA AA 或AA AA=AA AA时,△ADQ 与△BPC 相似,即1252−A=A3或123=A52−A ,解得x =1或32或514,∴当AQ =1或32或514时,两三角形相似,故②正确③设AQ =x ,则四边形PCDQ 的面积=S △ABC ﹣S △ADQ ﹣S △BCP =√34×32−12×x ×√32×12−12×3×(3﹣x −12)×√32=3√38+5√38x ,∵x 的最大值为3−12=52,∴x =52时,四边形PCDQ 的面积最大,最大值=31√316,故③正确,如图,作点D 关于AB 的对称点D ′,作D ′F ∥PQ ,使得D ′F =PQ ,连接CF 交AB 于点P ′,在射线P ′A 上取P ′Q ′=PQ ,此时四边形P ′CDQ ′的周长最小.过点C 作CH ⊥D ′F 交D ′F 的延长线于H ,交AB 于J .由题意,DD ′=2AD •sin60°=√32,HJ =12DD ′=√34,CJ =3√32,FH =32−12−14=34, ∴CH =CJ +HJ =7√34,∴CF =√AA 2+AA 2=(34)2+(7√34)2=√392, ∴四边形P ′CDQ ′的周长的最小值=3+√392,故④错误, 故选:D .15.【解答】解:∵AA AA =√22=√2, AAAA=√22+222=√2, AA AA =√22√22=√2,∴AA AA =AA AA =AA AA =√2, ∴△ABC ∽△DEF ,∴A 1A 2=AA AA=√22, 故答案为:√22. 16.【解答】解:∵BC ∥DE , ∴△ADE ∽△ABC , ∴AA AA =AA AA =AAAA ,即4AA =AA 4=AA AA , ∴AB •DE =16,∵AB +DE =10, ∴AB =2,DE =8,∴AAAA=AA AA =84=2, 故答案为:2. 17.【解答】解:(1)∵PD ∥AB , ∴AAAA=AA AA , ∵AC =3,BC =4,CP =x , ∴A4=AA 3,∴CD =34A , ∴AD =AC ﹣CD =3−34A ,即AD =−34A +3;(2)根据题意得,S =12AA ⋅AA =12A (−34A +3)=−38(A −2)2+32,∴当x ≥2时,S 随x 的增大而减小,∵0<x <4,∴当S 随x 增大而减小时x 的取值范围为2≤x <4.18.【解答】解:(1)∵四边形ABCD 是矩形,∴AD ∥BC ,∠B =90°,∴∠DAF =∠AEB ,∵DF ⊥AE ,∴∠AFD =∠B =90°,∴△ABE ∽△DF A ;(2)∵E 是BC 的中点,BC =4,∴BE =2,∵AB =6,∴AE =√AA 2+AA 2=√62+22=2√10,∵四边形ABCD 是矩形,∴AD =BC =4,∵△ABE ∽△DF A ,∴AA AA =AA AA ,∴AA =AA ⋅AA AA =2√10=65√10. 19.【解答】证明:(1)∵DC 是⊙O 的切线,∴∠OCD =90°,∵∠D =30°,∴∠BOC =∠D +∠OCD =30°+90°=120°,∵OB =OC ,∴∠B =∠OCB =30°,∴∠DCB =120°=∠BOC ,又∵∠B =∠B =30°,∴△BOC ∽△BCD ;(2)∵∠D =30°,DC =√3,∠OCD =90°,∴DC =√3OC =√3,DO =2OC ,∴OC =1=OB ,DO =2,∵∠B =∠D =30°, ∴DC =BC =√3,∴△BCD 的周长=CD +BC +DB =√3+√3+2+1=3+2√3.一十三.相似形综合题(共2小题)20.【解答】【感知】证明:∵∠C =∠D =∠AEB =90°,∴∠BEC +∠AED =∠AED +∠EAD =90°,∴∠BEC =∠EAD ,∴Rt △AED ∽Rt △EBC ,∴AA AA =AA AA .【探究】证明:如图1,过点G 作GM ⊥CD 于点M ,由(1)可知AA AA =AA AA ,∵AA AA =AA AA ,AA AA =AA AA , ∴AA AA =AA AA ,∴BC =GM ,又∵∠C =∠GMH =90°,∠CHB =∠MHG ,∴△BCH ≌△GMH (AAS ),∴BH =GH ,【拓展】证明:如图2,在EG 上取点M ,使∠BME =∠AFE ,过点C 作CN ∥BM ,交EG 的延长线于点N ,则∠N =∠BMG ,∵∠EAF +∠AFE +∠AEF =∠AEF +∠AEB +∠BEM =180°,∠EF A =∠AEB ,∴∠EAF =∠BEM ,∴△AEF ∽△EBM ,∴AA AA =AA AA ,∵∠AEB +∠DEC =180°,∠EF A +∠DFE =180°,而∠EF A =∠AEB ,∴∠CED =∠EFD ,∵∠BMG +∠BME =180°,∴∠N =∠EFD ,∵∠EFD +∠EDF +∠FED =∠FED +∠DEC +∠CEN =180°,∴∠EDF =∠CEN ,∴△DEF ∽△ECN ,∴AA AA =AA AA , 又∵AA AA =AA AA , ∴AA AA =AA AA ,∴BM =CN ,又∵∠N =∠BMG ,∠BGM =∠CGN ,∴△BGM ≌△CGN (AAS ),∴BG =CG .21.【解答】解:(1)∵点B 为线段AC 的黄金分割点,AC =20cm ,∴AB =√5−12×20=(10√5−10)cm .故答案为:(10√5−10).(2)延长EA ,CG 交于点M ,∵四边形ABCD 为正方形,∴DM ∥BC ,∴∠EMC =∠BCG ,由折叠的性质可知,∠ECM =∠BCG ,∴∠EMC =∠ECM ,∴EM =EC ,∵DE =10,DC =20,∴EC =√AA 2+AA 2=√102+202=10√5,∴EM =10√5,∴DM =10√5+10,∴tan ∠DMC =AA AA =10√5+10=√5+1=√5−12. ∴tan ∠BCG =√5−12, 即AA AA =√5−12, ∵AB =BC , ∴AAAA =√5−12, ∴G 是AB 的黄金分割点;(3)当BP =BC 时,满足题意.理由如下:∵四边形ABCD 是正方形,∴AB =BC ,∠BAE =∠CBF =90°,∵BE ⊥CF ,∴∠ABE +∠CFB =90°,又∵∠BCF +∠BFC =90°,∴∠BCF =∠ABE ,∴△ABE ≌△BCF (ASA ),∴BF =AE ,∵AD ∥CP ,∴△AEF ∽△BPF , ∴AAAA=AA AA , 当E 、F 恰好分别是AD 、AB 的黄金分割点时, ∵AE >DE , ∴AAAA =AA AA ,∵BF =AE ,AB =BC ,∴AA AA =AA AA =AA AA , ∴AA AA =AA AA ,∴BP =BC .一十四.解直角三角形的应用(共3小题)22.【解答】解:如图,过点D 作DE ⊥AB ,垂足为点E ,则DE =BC =5,DC =BE =1.5,在Rt △ADE 中,∵tan ∠ADE =AA AA ,∴AE =tan ∠ADE •DE =tan50°×5≈1.19×5=5.95(米),∴AB =AE +BE =5.95+1.5≈7.5(米),故答案为:7.5.23.【解答】解:过点C 作CD ⊥AB 于点D ,如图所示.在Rt △ACD 中,AC =8(千米),∠CAD =30°,∠CDA =90°,∴CD =AC •sin ∠CAD =4(千米),AD =AC •cos ∠CAD =4√3(千米)≈6.8(千米).在Rt △BCD 中,CD =4(千米),∠BDC =90°,∠CBD =45°,∴∠BCD =45°,∴BD =CD =4(千米),∴AB =AD +BD =6.8+4≈11(千米).答:A 、B 两点间的距离约为11千米.24.【解答】解:(1)如图1中,连接OA .由题意,筒车每秒旋转360°×56÷60=5°,在Rt △ACO 中,cos ∠AOC =AA AA =2.23=1115. ∴∠AOC =43°,∴180−435=27.4(秒).答:经过27.4秒时间,盛水筒P 首次到达最高点.(2)如图2中,盛水筒P 浮出水面3.4秒后,此时∠AOP =3.4×5°=17°,∴∠POC =∠AOC +∠AOP =43°+17°=60°,过点P 作PD ⊥OC 于D ,在Rt △POD 中,OD =OP •cos60°=3×12=1.5(m ),2.2﹣1.5=0.7(m ),答:浮出水面3.4秒后,盛水筒P 距离水面0.7m .(3)如图3中,∵点P 在⊙O 上,且MN 与⊙O 相切,∴当点P 在MN 上时,此时点P 是切点,连接OP ,则OP ⊥MN ,在Rt △OPM 中,cos ∠POM =AA AA =38,∴∠POM =68°,在Rt △COM 中,cos ∠COM =AA AA =2.28=1140,∴∠COM =74°,∴∠POH =180°﹣∠POM ﹣∠COM =180°﹣68°﹣74°=38°,∴需要的时间为385=7.6(秒),答:盛水筒P 从最高点开始,至少经过7.6秒恰好在直线MN 上.一十五.解直角三角形的应用-仰角俯角问题(共3小题)25.【解答】解:过C 作CF ⊥AB 于F ,则四边形BFCD 是矩形,∴BF =CD =a ,CF =BD =b ,∵∠ACF =α,∴tan α=AA AA =AA A , ∴AF =b •tan α,∴AB =AF +BF =a +b tan α,故选:A .26.【解答】解:如图,延长FH,交CD于点M,交AB于点N,∵∠BHN=45°,BA⊥MH,则BN=NH,设BN=NH=x,∵HF=6,∠BFN=30°,∴tan∠BFN=AAAA=AAAA+AA,即tan30°=AA+6,解得x=8.19,根据题意可知:DM=MH=MN+NH,∵MN=AC=10,则DM=10+8.19=18.19,∴CD=DM+MC=DM+EF=18.19+1.6≈19.8(m).答:建筑物CD的高度约为19.8m.27.【解答】解:如图,根据题意得,∠C=23°,∠BDE=50°,AE=15m,BE=21m,在Rt△ACE中,tan C=tan23°=AAAA=15AA≈0.42,解得:CE≈35.7,在Rt△BDE中,tan∠BDE=tan50°=AAAA=21AA≈1.19,解得:DE≈17.6,∴CD=CE﹣DE=35.7﹣17.6=18.1≈18m,答:两次观测期间龙舟前进了18m.一十六.解直角三角形的应用-方向角问题(共3小题)28.【解答】解:如图,过点C作CD⊥AB于点D,则∠CAD=∠ACD=45°,∴AD=CD,设AD=x,则AC=√2x,∴BD=AB﹣AD=2﹣x,∵∠CBD=60°,在Rt△BCD中,∵tan∠CBD=AA AA,∴A2−A=√3,解得x=3−√3.经检验,x=3−√3是原方程的根.∴AC=√2x=√2(3−√3)=(3√2−√6)km.答:船C离观测站A的距离为(3√2−√6)km.29.【解答】解:过点P作PN⊥BC于N,如图,则四边形ABNP是矩形,∴PN=AB,∵四边形ABCD是矩形,∴∠A=90°,∵∠APM=45°,∴△APM是等腰直角三角形,∴AM=√22PM=√22×30=15√2(m),∵M是AB的中点,∴PN=AB=2AM=30√2m,在Rt△PNQ中,∠NPQ=90°﹣∠DPQ=90°﹣60°=30°,∴NQ=√33PN=10√6m,PQ=2NQ=20√6≈49(m);答:小红与爸爸的距离PQ约为49m.30.【解答】解:如图,过点D作DH⊥AC于点H,在Rt△DCH中,∠C=37°,∴CH=AA AAA37°,在Rt△DBH中,∠DBH=45°,∴BH=AA AAA45°,∵BC=CH﹣BH,∴AAAAA37°−AAAAA45°=6,解得DH≈18km,在Rt△DAH中,∠ADH=26°,∴AD=AAAAA26°≈20km.答:轮船航行的距离AD约为20km.一十七.简单几何体的三视图(共1小题)31.【解答】解:正方体的主视图为正方形,球的主视图为圆,圆柱的主视图是矩形,圆锥的主视图是等腰三角形,故选:B.一十八.简单组合体的三视图(共3小题)32.【解答】解:从正面看是一个正方形,正方形的右上角是一个小正方形,故选:A.33.【解答】解:观察图形可知,该几何体的俯视图是.故选:A.34.【解答】解:从上面看,是一行三个小正方形.故选:C.一十九.由三视图判断几何体(共1小题)35.【解答】解:该几何体的主视图为矩形,左视图为矩形,俯视图是一个正方形,则可得出该几何体是四棱柱.故选:C.。
2020年数学中考说明新变化
李昌荣
根据2020年中考改革教育部《考试命题意见》云南省《新中考实施意见》,2019年11月29日,教育部印发了《教育部关于加强初中学业水平考试命题工作的意见》要求严格依据义务教育课程标准科学命题,取消初中学业水平考试大纲,进一步提高初中学业水平考试命题质量。
要按照课程标准进行教学,学什么,考什么,而不是考什么、教什么、学什么。
要求各地应严格依据义务教育课程标准科学命题,不得超标命题。
取消初中学业水平考试大纲。
这是对中考命题的“最新定调”,对于2020年中考命题尤其今后10年中考命题具有非常明确和重要的指导意义!对于初中生学习和老师指导也有重要的方向性指引作用。
《考试命题意见》要求:
要提高命题质量,提升试题科学化水平。
试题命制既要注重考查基础知识、基本技能,还要注重考查思维过程、创新意识和分析问题、解决问题的实际能力。
要结合不同学科特点,合理设置试题结构,减少机械记忆试题和客观性试题比例,提高探究性、开放性、综合性试题比例,积极探索跨学科命题,提升试题情景设计水平。
客观性试题要有确定的答案。
2019年与2020年考试说明变化如下:
各项要求基本没有变化
题型示例更换3个例题
(一)选择题例15 (21页)
(二)填空题例15 (24页)
(三)解答题例12 (29页)
七、参考试卷无变化
第二部分测试练习
一、数与代数更换了4个题
第136题(61页)、第143题(63页)
第158题(69页)、第167题(73页)
其中,第136题、158题、167题是近三年的中考题
二、图形与几何无变化
三、统计与概率删去第73题
云南省省近五年数学中考试卷分析
中考数学复习分三阶段
第一阶段:全面复习(不留死角,突出重点),具体做到以下几点:
一、加强对全国各地历年中考数学试题的研究,原因如下:
1、历年中考试题中的雷同现象。
因为重要的、关键性的基础知识和基本方法极易雷同。
2、考题与课本例习题的对比研究。
因为中考中有些考题是课本例题、习题的原
题或是变式题或组合题。
3、如何研究中考试题。
研究近几年命题专家是如何将教学要求具体化的?是如何将教材中的例题、习题改造成试题的?是如何考查数学思想、方法的?是如何考查数学语言的阅读、理解与互译能力的?
中考研讨的中心,应是用好历年的中考试题;
中考复习的难度,在于如何用好历年的中考试题;
中考复习的成功,在于真正用好历年的中考试题。
但一定不能让学生搞题海战术,老师应在题海中漫游,学生作精题。
二、以解题训练为中心。
因为中考的选拔性特点是以解题能力的高低为标准的,是以考生解题的速度和解题的正确率来表现能力强弱的,它一次决定胜负。
注意以下问题:
1、解题训练应立足于中、低档综合题。
⑴中、低档综合题训练价值高,因为它占中考数学试题的70%~80%。
⑵中、低档综合题要讲的深、学的透,教师讲的清楚,学生听得明白。
2、一定要规范解题步骤。
3、习题的来源。
来自课本题和历年中考题的改编。
三、立足通法、兼顾巧法。
二种方法要兼顾,灵活运用。
四、抓好应用型性、探索性、开放性和动手操作性问题的复习,增强学生“用数学”的意识与分析、比较、综合、探索的能力。
四种题型是对考生“综合实力”的真实考查。
五、继续加强数学思想方法的渗透与训练。
六、教材整理。
重新组织教材,综合利用教材。
七、抓好单元过关测试,要特别重视搞好讲评。
八、要严格要求牢记基本知识。
只有熟记,才能应用,才能迁移,才能逐步转化为能力。
第二阶段:综合提高。
“二轮看水平”:一看教师是否明确“考什么”、“怎么考”、“考多少”;二是看学生是否学有新意,学有收获,学有发展;三是看学生是否形成系统化、条理化的知识框架;四是看练习检测与中考是否对路,是否重在基础知识的灵活运用。
需做到如下:
一、重点知识重点复习,重在联系。
二、注重能力培养。
三、做到“两个加强与三个突出”:
1、客观题要加强速度和正确率的强化训练。
2、加强代数与几何的联系,加强数学与实际的联系。
3、突出基础知识的灵活和综合运用。