最新初中数学二次函数真题汇编附解析
- 格式:doc
- 大小:786.00 KB
- 文档页数:19
二次函数考试题目及答案1. 已知二次函数y=ax^2+bx+c的图象开口向上,且经过点(1,0)和(3,0),求二次函数的解析式。
答案:由于二次函数的图象开口向上,所以a>0。
又因为函数图象经过点(1,0)和(3,0),可以设二次函数的解析式为y=a(x-1)(x-3)。
将点(2,-4)代入,得到-4=a(2-1)(2-3),解得a=4。
因此,二次函数的解析式为y=4(x-1)(x-3)。
2. 抛物线y=ax^2+bx+c与x轴交于点A(-1,0)和点B(3,0),且抛物线的顶点在直线y=-2x上,求抛物线的解析式。
答案:设抛物线的解析式为y=a(x+1)(x-3)。
由于顶点在直线y=-2x上,设顶点坐标为(m,n),则有n=-2m。
根据抛物线的对称性,顶点的横坐标m=(3-1)/2=1,所以n=-2。
将顶点坐标(1,-2)代入抛物线解析式,得到-2=a(1+1)(1-3),解得a=1。
因此,抛物线的解析式为y=(x+1)(x-3)。
3. 已知二次函数y=ax^2+bx+c的图象经过点(0,2)和(2,0),且对称轴为直线x=1,求二次函数的解析式。
答案:由于二次函数的对称轴为直线x=1,可以设二次函数的解析式为y=a(x-1)^2+k。
将点(0,2)代入,得到2=a(0-1)^2+k,即2=a+k。
又因为函数图象经过点(2,0),代入得到0=a(2-1)^2+k,即0=a+k。
解得a=-2,k=2。
因此,二次函数的解析式为y=-2(x-1)^2+2。
4. 抛物线y=ax^2+bx+c与x轴的交点为A(-2,0)和B(4,0),且抛物线经过点(1,3),求抛物线的解析式。
答案:设抛物线的解析式为y=a(x+2)(x-4)。
将点(1,3)代入,得到3=a(1+2)(1-4),解得a=-1/3。
因此,抛物线的解析式为y=-1/3(x+2)(x-4)。
5. 二次函数y=ax^2+bx+c的图象开口向下,且经过点(-1,0)和(3,0),求二次函数的解析式。
二次函数重难点题型汇编【题型01:二次函数的概念】【题型02:二次函数的条件】【题型03:列处二次函数关系式】【题型04:特殊二次函数的图像和性质】【题型05:与特殊二次函数有关的几何知识】【题型06:二次函数y=ax2+bx+c的图像和性质】【题型07:二次函数y=ax2+bx+c的最值与求参数范围问题】【题型08:根据二次函数y=ax2+bx+c的图像判断有关的信息】【题型09:二次函数的平移变换】【题型10:二次函数的交点个数问题】【题型01:二次函数的概念】1下列函数是关于x的二次函数的是()A.y=x2+1x2B.y=x1-xC.y=x+12-x2 D.y=ax2+bx+c【答案】B【分析】本题考查了二次函数的定义,根据形如y=ax2+bx+c(a,b,c为常数,a≠0)的函数是二次函数,判断即可,熟练掌握二次函数的一般形式是解题的关键.【详解】解:A、y=x2+1x2的分母含有自变量,不是y关于x的二次函数,故A不符合题意;B、y=x1-x=-x2+x,是y关于x的二次函数,故B符合题意;C、y=x+12-x2=2x+1,不是y关于x的二次函数,故C不符合题意;D、y=ax2+bx+c,当a=0时不是二次函数,故D不符合题意;故选:B.2下列各式中,是二次函数的是()A.y=2x+1B.y=-2x+1C.y=x2+2D.y=2x2-1x【答案】C【分析】本题主要考查了二次函数的定义,解题的关键是掌握一般地,形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数,叫做二次函数.【详解】解:A、y=2x+1,是一次函数,故本选项不合题意;B、y=-2x+1,是一次函数,故本选项不合题意;C、y=x2+2,是二次函数,故本选项符合题意;D、y=2x2-1x,右边中-1x不是整式,不是二次函数,故本选项不合题意.故选:C.3下列函数解析式中,y是x的二次函数的是()A.y=ax2+bx+cB.y=-5x+1C.y=-23x2+x-34D.y=2x2-1x【答案】C【分析】根据:形如y=ax2+bx+c a≠0,这样的函数叫做二次函数,进行判断即可.【详解】解:A、当a=0时,y=ax2+bx+c不是二次函数,不符合题意;B、y=-5x+1,是一次函数,不是二次函数,不符合题意;C、y=-23x2+x-34,是二次函数,符合题意;D、y=2x2-1x,不是二次函数,不符合题意;故选C.4如图,分别在正方形ABCD边AB、AD上取E、F点,并以AE、AF的长分别作正方形.已知DF= 3,BE=5.设正方形ABCD的边长为x,阴影部分的面积为y,则y与x满足的函数关系是()A.一次函数关系B.二次函数关系C.正比例函数关系D.反比例函数关系【答案】A【分析】本题考查函数关系的识别,完全平方公式,列函数关系式,根据题意表示出AE、AF的长度,再结合阴影部分的面积等于以AE、AF的长的正方形的面积之差可得y=4x-16,理解题意,列出函数关系式是解决问题的关键.【详解】解:由题意可得:AE=AB-BE=x-5,AF=AD-DF=x-3,则阴影部分的面积为y=x-32-x-52=x2-6x+9-x2+10x-25=4x-16,即:y=4x-16,为一次函数,故选:A.【题型02:二次函数的条件】5抛物线y=ax2+a-2x-a-1经过原点,那么a的值等于()A.0B.1C.-1D.35【答案】C【分析】本题考查了抛物线与点的关系,熟练掌握把(0,0)代入函数解析式,求解关于a的一元一次方程是解题的关键.【详解】解:∵抛物线y=ax2+a-2x-a-1经过原点,∴a≠0-a-1=0,解得:a=-1,故选C.6已知y=m-1x m2+1-2x+5是二次函数,则m的值为()A.1或-1B.1C.-1D.0【答案】C【分析】本题考查了二次函数的定义,根据二次函数y=ax2+bx+c的定义条件是:a、b、c为常数,a≠0,自变量最高次数为2即可求解.【详解】解:根据二次函数的定义:m2+1=2,且m-1≠0,解得:m=1或m=-1,又∵m≠1,∴m=-1,故选:C.7已知二次函数y=m-2x m2-2+3x+1,则m=.【答案】-2【分析】此题考查了二次函数的定义,根据二次函数的定义:形如y=ax2+bx+c a≠0,这样的函数叫做二次函数,得到m-2≠0,m2-2=2,进行求解即可.解题的关键是熟练掌握二次函数的定义.【详解】解:∵函数y=m-2x m2-2+3x+1是二次函数,∴m-2≠0,m2-2=2,∴m=-2.故答案为:-2.【题型03:列处二次函数关系式】8某厂今年一月份新产品的研发资金为9万元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年一季度新产品的研发资金y(元)关于x的函数关系式为()A.y=91+x2 B.y=9+9x+x2C.y=9+91+x+91+x2 D.y=91+x2【答案】C【分析】此题主要考查了根据实际问题抽象出二次函数解析式.根据题意得到二月的研发资金为:91+x,三月份新产品的研发资金为:91+x2,再求和即可,正确表示出三月份的研发资金.【详解】解:根据题意可得二月的研发资金为:91+x,三月份新产品的研发资金为:91+x2,今年一季度新产品的研发资金y=9+91+x+91+x2,故选:C.9已知一正方体的棱长是3cm,设棱长增加xcm时,正方体的表面积增加ycm2,则y与x之间的函数关系式是()A.y=6x2-36xB.y=-6x2+36xC.y=x2+36xD.y=6x2+36x【答案】D【分析】本题考查了二次函数的应用,根据题意直接列式即可作答.【详解】根据题意有:y=6x+32-6×32=6x2+36x,故选:D.10某商店购进某种商品的价格是7.5元/件,在一段时间里,单价是13.5元,销售量是500件,而单价每降低1元就可多售出200件,当销售价为x元/件(7.5<x<13.5)时,获取利润y元,则y与x的函数关系为()A.y=x-7.5500+xB.y=13.5-x500+200xC.y=x-7.5500+200xD.以上答案都不对【答案】D【分析】当销售价为x元/件时,每件利润为(x-7.5)元,销售量为[500+200×(13.5-x)],根据利润=每件利润×销售量列出函数关系式即可.【详解】解:由题意得w=(x-7.5)×[500+200×(13.5-x)],故选:D.【点睛】题考查了根据实际问题列二次函数关系式,用含x的代数式分别表示出每件利润及销售量是解题的关键.11正方形边长3,若边长增加x,增加后正方形的面积为y,y与x的函数关系式为.【答案】y=x+32/y=3+x2【分析】本题考查了列二次函数关系式,根据正方形面积等于边长的平方,即可求解.【详解】解:依题意,y=x+32,故答案为:y=x+32.【题型04:特殊二次函数的图像和性质】12已知函数y=-(x-2)2的图象上有A-32,y1,B3,y2,C4,y3三点,则y1,y2,y3的大小关系是()A.y 1<y 2<y 3B.y 2<y 1<y 3C.y 1<y 3<y 2D.y 2<y 3<y 1【答案】C【分析】本题考查二次函数的性质,当开口向上时,距离对称轴越近,函数值越小;当开口向下时,距离对称轴越近,函数值越大,解题的关键是熟练掌握二次函数的图象与性质.先找到对称轴和开口方向,根据点到对称轴的距离比较函数值的大小即可.【详解】解:∵函数y =-(x -2)2,∴图象开口向下,对称轴为直线x =2,∴图象上的点距离对称轴越近,函数值越大,2--32=72,3-2 =1,4-2 =2,∵1<2<72,∴y 1<y 3<y 2,故选:C .13对于二次函数y =2x -1 2+3,下列说法正确的是()A.开口方向向下B.顶点坐标(1,-3)C.对称轴是y 轴D.当x =1时,y 有最小值【答案】D【分析】本题考查了二次函数的性质:根据抛物线的性质,由a =2得到图象开口向上,根据顶点式得到顶点坐标为(1,3),对称轴为直线x =1,当x =1时,y 有最小值3,再进行判断即可.【详解】解:二次函数y =2(x -1)2+3的图象开口向上,顶点坐标为(1,3),对称轴为直线x =1,当x =1时,y 有最小值3.故选项D 正确,故选:D14下列抛物线中,对称轴为直线x =12的是()A.y =x -122B.y =12x 2C.y =x 2+12D.y =x +122-3【答案】A【分析】本题考查了抛物线求对称轴方程的公式:x =-b2a.利用抛物线对称轴的公式即可确定每一个函数的对称轴,然后即可确定选项.【详解】解:A 、y =x -122的对称轴为直线x =12,故选项符合题意.B 、y =12x 2的对称轴为直线x =0,故选项不符合题意.C 、y =x 2+12的对称轴为直线x =0,故选项不符合题意.D、y=x+122-3的对称轴为直线x=-12,故选项不符合题意.故选:A.15在二次函数y=-x-12+3的图象中,若y随x的增大而减小,则x的取值范围是()A.x>-1B.x<-1C.x>1D.x<1【答案】C【分析】本题考查了二次函数的性质,熟练掌握二次函数的性质是解题的关键;由题可知,函数图象开口向下,对称轴为x=1,在对称轴右侧,y随x的增大而减小;在对称轴左侧,y随x 的增大而增大,据此即可得到答案.【详解】解:由二次函数的解析式得,抛物线开口向下,对称轴为x=1,当x>1时,y 随 x 的增大而减小.故选:C .16抛物线y=-2x+12+2的顶点的坐标是.【答案】(-1,2)【分析】本题考查了二次函数的性质,根据顶点式y=a(x-h)2+k的顶点坐标为h,k,即可求解.【详解】解:抛物线y=-2x+12+2的顶点坐标是(-1,2),故答案为:(-1,2).17点A-3,y1,B2,y2均在二次函数y=-x2+2的图象上,则y1y2.(填“>”或“<”)【答案】<【分析】本题主要考查了二次函数的图象和性质.根据开口向下的二次函数,离对称轴越远函数值越小进行求解即可.【详解】解:∵二次函数解析式为y=-x2+2,∴二次函数开口向下,对称轴为y轴,∴离对称轴越远函数值越小,∵0--3=3>2-0=2,∴y1<y2,故答案为:<.【题型05:与特殊二次函数有关的几何知识】18如图,⊙O的半径为2,C1是函数y=12x2的图象,C2是函数y=-12x2的图象,则阴影部分的面积是()A.4πB.2πC.πD.无法确定【答案】B【分析】据函数y =12x 2与函数y =-12x 2的图象关于x 轴对称,得出阴影部分面积即是半圆面积求出即可.【详解】解:∵C 1是函数y =-12x 2的图象,C 2是函数y =-12x 2的图象,且当x 相等时,两个函数的函数值互为相反数,∴函数y =12x 2的图象与函数y =-12x 2的图象关于x 轴对称,∴阴影部分面积即是半圆面积,∴面积为:12π×22=2π.故选:B .【点睛】此题主要考查了二次函数的图象,根据已知得出阴影部分面积即是半圆面积是解题关键.19如图,已知点A 1,A 2,...,A 2024在函数y =2x 2位于第二象限的图像上,点B 1,B 2,...,B 2024在函数y =2x 2位于第一象限的图像上,点C 1,C 2,...,C 2024在y 轴的正半轴上,若四边形O 1A 1C 1B 1,C 1A 2C 2B 2,...,C 2023A 2024C 2024B 2024都是正方形,则正方形C 2023A 2024C 2024B 2024的边长为()A.1012B.10122C.20232D.202322【答案】B【分析】根据正方形对角线平分一组对角可得OB 1与y 轴的夹角为45°,然后表示出OB 1的解析式,再与抛物线解析式联立求出点B 1的坐标,然后求出OB 1的长,再根据正方形的性质求出OC 1,表示出C 1B 2的解析式,与抛物线联立求出B 2的坐标,然后求出C 1B 2的长,再求出C 1C 2的长,然后表示出C 2B 3的解析式,与抛物线联立求出B 3的坐标,然后求出C 2B 3的长,从而根据边长的变化规律解答即可.【详解】解:∵OA 1C 1B 1是正方形,∴OB 1与y 轴的夹角为45°,∴OB 1的解析式为y =x ,联立方程组得:y =xy =2x 2 ,解得x 1=0y 1=0 ,x 2=12y 2=12.∴B 点的坐标是:12,12,∴OB 1=122+122=22=1×22;同理可得:正方形C 1A 2C 2B 2的边长C 1B 2=2×22;⋯依此类推,正方形C 2023A 2024C 2024B 2024的边长是为2024×22=10122.故选B .【点睛】本题考查了二次函数的对称性,正方形的性质,表示出正方形的边长所在直线的解析式,与抛物线解析式联立求出正方形的顶点的坐标,从而求出边长是解题的关键.20如图,正方形OABC 有三个顶点在抛物线y =14x 2上,点O 是原点,顶点B 在y 轴上则顶点A 的坐标是()A.2,2B.2,2C.4,4D.22,22【答案】C【分析】连接AC 交y 轴于点D ,设点B 坐标为0,m ,根据正方形的性质可得OD =12m ,AD =12m ,从而得到A 12m ,12m,再代入y =14x 2,即可求解.【详解】解:如图,连接AC 交y 轴于点D ,设点B 坐标为0,m ,∵四边形OABC 是正方形,∴OD =12OB ,CD =AD ,AC ⊥y 轴,∴OD =12m ,AD =12m ,∴A 12m ,12m,∵A 在抛物线y =14x 2上,∴12m =14×12m 2,解得m =0(舍去)或8,∴点A 的坐标为4,4 .故选:C .【点睛】本题主要考查了二次函数的性质,正方形的性质,利用数形结合思想解答是解题的关键.21如图,在平面直角坐标系中,正方形ABCD 的顶点A 、B 、C 的坐标分别为1,1 、1,4 、4,4 .若抛物线y =ax 2的图象与正方形ABCD 有公共点,则a 的取值范围是.【答案】116≤α≤4【分析】本题考查二次函数图象与系数的关系,二次函数图象上的点的坐标特征等知识,求出抛物线经过两个特殊点时的a 的值即可解决问题.【详解】解:∵正方形ABCD 的顶点A 、B 、C 的坐标分别为1,1 、1,4 、4,4 .∴D 4,1 ,当抛物线经过点B 1,4 时,则a =4,当抛物线经过D4,1时,a=1 16,观察图象可知,抛物线y=ax2的图象与正方形ABCD有公共点,则a的取值范围是116≤α≤4,故答案为:116≤α≤4.【题型06:二次函数y=ax2+bx+c的图像和性质】22将抛物线y=x2-4x+3绕原点O顺时针旋转180°,则旋转后的函数表达式为()A.y=x2+4x-3B.y=-x2+4x+3C.y=-x2-4x-3D.y=-x2+4x-3【答案】C【分析】本题考查了二次函数的旋转变换,熟练掌握二次函数的性质和旋转的性质是解题的关键.设P x,y为旋转之后所得抛物线上的一点,P绕原点O顺时针旋转180°点P -x,-y,则P 是在旋转后的抛物线上,然后代入化简即可解答.【详解】解:设P x,y为旋转之后所得抛物线上的一点,P绕原点O顺时针旋转180°点P -x,-y,由题意可知:P -x,-y是在抛物线y=x2-4x+3上,即:-y=x2+4x+3,化简得:y=-x2-4x-3.故选C.23直线y=ax+b与抛物线y=ax2+bx+b在同一坐标系里的大致图象正确的是()A. B. C. D.【答案】D【分析】本题考查二次函数的图象、一次函数的图象,根据题意和各个选项中的函数图象,可以得到一次函数中a和b的正负情况和二次函数图象中a、b的正负情况,然后即可判断哪个选项中的图象符合题意,解题的关键是明确题意,利用数形结合的思想解答.【详解】解:A、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b<0,故选项不符合题意;B、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b<0,故选项不符合题意;C、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b>0,ab>0,而抛物线对称轴位于y轴右侧,则ab<0,故选项不符合题意;D、由一次函数的图象可知a>0,b>0,由二次函数的性质可知图象a>0,b>0,对称轴位于y轴左侧,则ab>0,故选项符合题意;故选:D.24已知一个二次函数y=ax2+bx+c的自变量x与函数y的几组对应值如下表,x⋯-4-2035⋯y ⋯-24-80-3-15⋯则下列关于这个二次函数的结论正确的是()A.图象的开口向上B.当x >0时,y 的值随x 的值增大而增大C.图象经过第二、三、四象限D.图象的对称轴是直线x =1【答案】D【分析】本题考查了待定系数法求二次函数解析式,二次函数的性质.先利用待定系数法求得二次函数解析式,再根据二次函数的性质逐一判断即可.【详解】解:由题意得4a -2b +c =-8c =09a +3b +c =-3 ,解得a =-1c =0b =2,∴二次函数的解析式为y =-x 2+2x =-x -1 2+1,∵a =-1<0,∴图象的开口向下,故选项A 不符合题意;图象的对称轴是直线x =1,故选项D 符合题意;当0<x <1时,y 的值随x 的值增大而增大,当x >1时,y 的值随x 的值增大而减小,故选项B 不符合题意;∵顶点坐标为1,1 且经过原点,图象的开口向下,∴图象经过第一、三、四象限,故选项C 不符合题意;故选:D .25如图,平面直角坐标系中有两条抛物线,它们的顶点P ,Q 都在x 轴上,平行于x 轴的直线与两条抛物线相交于A ,B ,C ,D 四点,若AB =10,BC =5,CD =6,则PQ 的长度为()A.7B.8C.9D.10【答案】B【分析】分别作出两条抛物线的对称轴PM ,QN ,交AD 于点M ,N ,得四边形PMNQ 是矩形,利用抛物线的对称性计算即可.本题考查了抛物线的性质,矩形的性质,熟练掌握抛物线的性质是解题的关键.【详解】分别作出两条抛物线的对称轴PM ,QN ,交AD 于点M ,N ,∴四边形PMNQ 是矩形,∴MN =PQ ,∵AB=10,BC=5,CD=6,∴MA=MC=12AC=12AB+BC=152,BN=ND=12BD=12CD+BC=112,∴MN=AD-AM-ND=AB+BC+CD-AM-ND,=21-112-152=8,∴PQ=8,故选B.26二次函数y=ax2+bx+c的图象如图所示,则关于x的一元二次方程x2-bx+a=0的根的情况是()A.只有一个实数根B.没有实数根C.有两个不相等的实数根D.有两个相等的实数根【答案】C【分析】此题考查了二次函数的图象和性质,一元二次方程的判别式,首先根据二次函数的图象得到a<0,b>0,然后判断一元二次方程的判别式求解即可.【详解】∵二次函数图象开口向下,对称轴大于零,∴a<0,-b2a>0∴b>0∴方程x2-bx+a=0的判别式Δ=b2-4ac=-b2-4×1×a=b2-4a>0∴关于x的一元二次方程x2-bx+a=0的根的情况是有两个不相等的实数根.故选:C.27抛物线y=x2+14x+54的顶点坐标是()A.7,5B.7,-5C.-7,5D.-7,-5【答案】C【分析】依据题意,由抛物线为y=x2+14x+54=(x+7)2+5,从而可以判断得解.本题主要考查了二次函数图象与性质,解题时要熟练掌握并能利用顶点式进行判断是关键.【详解】解:由题意,∵抛物线为y=x2+14x+54=(x+7)2+5,∴顶点为-7,5.故选:C.28用配方法将二次函数y=-x2-2x-3化为y=a x-h2+k的形式为()A.y=-x-12-2 D.y=x-12+22-4 C.y=-x+12+3 B.y=x+1【答案】C【分析】本题考查了二次函数的三种表达形式,正确运用配方法把二次函数的一般式化为顶点式是解题的关键.运用配方法即可将其化为顶点式.【详解】解:y=-x2-2x-3=-x2+2x+1-2=-x+12-2故选:C.29如图,抛物线y=ax2+bx+c的对称轴为x=1,点P、点Q是抛物线与x轴的两个交点,若点P的坐标为-1,0,则点Q的坐标为()A.0,-1D.3,0C.4,0B.2,0【答案】D【分析】本题考查二次函数的图象和性质,由题意可得点P、点Q关于对称轴对称即可求解.【详解】解:由题意得:点P、点Q关于对称轴对称,∴点Q的坐标为3,0,故选:D.【题型07:二次函数y=ax2+bx+c的最值与求参数范围问题】30已知抛物线y=-x2+2x+1在自变量x的值满足t≤x≤t+2时,与其对应的函数值y的最小值为-7,求此时t的值为()A.1或-2B.2或-2C.3或-1D.-1或-2【答案】B【分析】本题考查二次函数的图象和性质,根据二次函数的性质,分2种情况进行讨论求解即可.【详解】解:∵y=-x2+2x+1=-x-12+2,∴抛物线的开口向下,对称轴为直线x=1,∴抛物线的上的点离对称轴越远,函数值越小,∵t≤x≤t+2时,与其对应的函数值y的最小值为-7,分两种情况:①当t-1≤t+2-1时,即:t≥0时,当x=t+2时,y=-t+22+2t+2+1=-7,解得:t=-4(舍去)或t=2;②当t-1>t+2-1时,即:t<0时,当x=t时,y=-t2+2t+1=-7,解得:t=4(舍去)或t=-2;综上:t的值为2或-2;故选B.31已知二次函数y=x2-2x-1≤x≤t-1,当x=-1时,函数取得最大值;当x=1时,函数取得最小值,则t的取值范围是()A.0<t≤2B.0<t≤4C.2≤t≤4D.t≥2【答案】C【分析】本题考查了二次函数的图象与性质,二次函数的最值等知识.熟练掌握二次函数的图象与性质是解题的关键.由y=x2-2x=x-12-1,可知图象开口向上,对称轴为直线x=1,顶点坐标为1,-1,当x=-1时,y =3,即-1,3关于对称轴对称的点坐标为3,3,由当x=-1时,函数取得最大值;当x=1时,函数取得最小值,可得1≤t-1≤3,计算求解,然后作答即可.【详解】解:∵y=x2-2x=x-12-1,∴图象开口向上,对称轴为直线x=1,顶点坐标为1,-1,当x=-1时,y=3,∴-1,3关于对称轴对称的点坐标为3,3,∵当x=-1时,函数取得最大值;当x=1时,函数取得最小值,∴1≤t-1≤3,解得,2≤t≤4,故选:C.32已知抛物线y=x2+(2a-1)x-3,当-1≤x≤3时,函数最大值为1,则a值为()A.-12B.-13C.-12或-13D.-1或-13【答案】D【分析】根据顶点的位置分两种情况讨论即可.【详解】解:∵y=x2+(2a-1)x-3,∴图象开口向上,对称轴为直线x=-2a-12,∵-1≤x≤3,∴当-2a-12≤1时,即a≥-12,x=3时有最大值1,∴9+(2a-1)×3-3=1,∴a=-13,当-2a-12≥1时,即a≤-12,x=-1时有最大值1,∴1+(2a-1)×(-1)-3=1,∴a=-1,∴a=-1或-13,故选:D.【点睛】本题考查了二次函数性质以及二次函数的最值,分类讨论是解题的关键.33已知二次函数y=x-m2-1(m为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y 的最小值为3,则m的值为()A.0或3B.0或7C.3或4D.4或7【答案】B【分析】利用二次函数的性质,分三种情况求解即可.【详解】解:∵y=x-m2-1,∴当x=m时,y的最小值为-1.当m<2时,在2≤x≤5中,y随x的增大而增大,∴2-m2-1=3,解得:m1=0,m2=4(舍去);当2≤m≤5时,y的最小值为-1,舍去;当m>5时,在2≤x≤5中,y随x的增大而减小,∴5-m2-1=3,解得:m1=3(舍去),m2=7.∴m的值为0或7.故选:B.【点睛】本题考查了二次函数的性质,以及二次函数图象上点的坐标特征,分三种情况求解是解题的关键.34已知二次函数y=mx2-2mx+2(m≠0)在-2≤x≤2时有最小值-2,则m=()A.-4或-12B.4或-12C.-4或12D.4或12【答案】B【分析】本题考查了二次函数的性质,根据解析式可得对称轴为直线x=1,进而分m>0和m<0两种情况讨论,根据二次函数的性质,即可求解.【详解】解:∵二次函数解析式为y=mx2-2mx+2(m≠0),∴二次函数对称轴为直线x=-2m-2m=1,当m>0时,∵在-2≤x≤2时有最小值-2,∴当x=1时,y=m-2m+2=-2,∴m=4;当m<0时,∵在-2≤x≤2时有最小值-2,∴当x=-2时,y=4m+4m+2=-2,∴m=-12;综上所述,m=4或m=-1 2,故选:B.35已知二次函数y=-x2-2x+2,当m≤x≤m+2时,函数y的最大值是3,则m的取值范围是()A.m≥-1B.m≤2C.-3≤m≤-1D.0≤m≤2【答案】C【分析】本题主要考查二次函数的性质,依据题意,由y=-x2-2x+2=-x+12+3,可得当x=-1时,y取最大值是3,又当m≤x≤m+2时,函数y的最大值是3,故m≤-1≤m+2,进而计算可以得解.【详解】解:由题意,∵y=-x2-2x+2=-x+12+3,∴当x=-1时,y取最大值是3.又当m≤x≤m+2时,函数y的最大值是3,∴m≤-1≤m+2.∴-3≤m≤-1.故选:C.【题型08:根据二次函数y=ax2+bx+c的图像判断有关的信息】36已知二次函数y=ax2+bx+c a≠0的图象如图所示,对称轴为x=32,且经过点-1,0,下列结论:①ab<0;②8b-3c=0;③若y≤c,则0≤x≤3.其中正确的有()A.0个B.1个C.2个D.3个【答案】C【分析】本题考查了二次函数的性质及二次函数图象上点的坐标特征,熟知二次函数的性质是解题的关键.由对称轴为x =32即可判断①,由抛物线经过点-1,0 ,得出a -b +c =0,对称轴x =-b 2a =32,得出a =-13b ,代入即可判断②;根据二次函数的性质以及抛物线的对称性即可判断③.【详解】解:∵对称轴x =-b 2a =32,∴b =-3a ,∴ab =-3a 2<0,①正确;∵经过点-1,0 ,∴a -b +c =0,∵对称轴x =-b 2a =32,∴a =-13b ,∴-13b -b +c =0,∴3c =4b ,∴4b -3c =0,故②错误;∵对称轴x =32,∴点0,c 的对称点为3,c ,∵开口向上,∴y ≤c 时,0≤x ≤3.故③正确;综上所述,正确的有2个.故选:C .37二次函数y =ax 2+bx +c 的图像如图所示,下列结论错误的是()A.y有最小值B.当-1<x<2时,y<0C.a+b+c>0D.当x<-1时,y随x的增大而减小【答案】C【分析】本题考查了抛物线的图像及其性质,根据性质,结合图像判断解答即可.【详解】解:A、由图像可知函数有最小值,故正确;B、由抛物线可知当-1<x<2时,y<0,故正确;C、当x=1时,y<0,即a+b+c<0,故错误;D、由图像可知在对称轴的左侧y随x的增大而减小,故正确.故选:C.38二次函数y=ax2+bx+c的图象如图所示,与x轴左侧交点为-1,0,对称轴是直线x=1.下列结论:①abc>0;②3a+c>0;③a+c2-b2<0;④a+b≤m am+b(m为实数).其中结论正确的为()A.①④B.②③④C.①②④D.①②③④【答案】A【分析】本题考查了二次函数图象与系数的关系,掌握二次函数的性质是解题关键.根据抛物线开口方向,对称轴位置,以及与y轴交点位置,可判断①结论;由抛物线对称轴得到b=-2a,再结合当x=-1时,y= 0,可判断②结论;根据平方差公式展开,可判断③结论;根据抛物线的最小值,可判断④结论.【详解】解:由图象可知,抛物线开口向上,对称轴在y轴右侧,与y轴交点在负半轴,∴a>0,a、b异号,c<0,∴b<0,∴abc>0,①结论正确;∵抛物线对称轴是直线x=1,=1,∴-b2a∴b=-2a,由图象可知,当x=-1时,y=0,∴a-b+c=a--2a+c=3a+c=0,②结论错误;由图象可知,当x=1时,y<0,∴a+b+c<0,又∵a-b+c=0,∴a+ca+c-b=0,③结论错误;2-b2=a+c+b∵当x=1时,y=a+b+c为最小值,∴a+b+c≤am2+bm+c,∴a+b≤m am+b,④结论正确,故选:A.39已知二次函数y=ax2+bx+c的部分图象如图所示,则下列结论正确的是()A.abc>0B.关于x的一元二次方程ax2+bx+c=0的根是x1=-2,x2=3C.a+b=c-bD.a+4b=3c【答案】C【分析】本题考查了二次函数的图象和性质;熟练掌握二次函数的图象和性质是解题的关键.根据二次函数的图象先判定a,b,c的符号,再结合对称轴求解抛物线与x轴的交点坐标,再进一步逐一分析即可.【详解】解:由函数图像可知开口向下,与y轴交于正半轴,∴a<0,c>0,∵对称轴为x=-b=1,2a∴b>0,∴abc <0,故A 不符合题意;∵抛物线与x 轴交于3,0 ,对称轴为直线x =1,∴抛物线与x 轴的另一个交点为-1,0 ,∴关于x 的一元二次方程ax 2+bx +c =0的根是x 1=-1,x 2=3;故B 不符合题意;∵抛物线与x 轴交于3,0 ,-1,0 ,对称轴为直线x =1,∴b =-2aa -b +c =09a +3b +c =0,解得:b =-2ac =-3a ,∴∵a +b =a -2a =-a ,c -b =-3a --2a =-a ∴a +b =c -b ,故C 符合题意;∴a +4b =a +-8a =-7a ≠-9a ;∴a +4b =3c 错误,故D 不符合题意;故选:C .40如图,二次函数y =ax 2+bx +c a ≠0 的图象与x 轴交于点A 3,0 ,与y 轴交于点B ,对称轴为直线x =1,下列四个结论:①bc <0;②3a +2c <0;③ax 2+bx ≥a +b ;④若-2<c <-1,则-83<a +b +c <-43,其中正确结论的个数为()A.1个B.2个C.3个D.4【答案】C【分析】此题考查了二次函数的图象和性质,数形结合是解题的关键,利用开口方向和对称轴的位置即可判断①,利用对称轴和特殊点的函数值即可判断②,利用二次函数的最值即可判断③,求出c =-3a ,进一步得到13<a <23,又根据b =-2a 得到a +b +c =a -2a -3a =-4a ,即可判断④.【详解】解:①∵函数图象开口方向向上,∴a >0;∵对称轴在y 轴右侧,∴a 、b 异号,∴b <0,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴bc>0,故①错误;②∵二次函数y=ax2+bx+c的图象与x轴交于点A3,0,与y轴交于点B,对称轴为直线x=1,∴-b2a=1,∵b=-2a,∴x=-1时,y=0,∴a-b+c=0,∴3a+c=0,∴3a+2c<0,故②正确;③∵对称轴为直线x=1,a>0,∴y=a+b+c最小值,ax2+bx+c≥a+b+c,∴ax2+bx≥a+b,故③正确;④∵-2<c<-1,∴根据抛物线与相应方程的根与系数的关系可得x1x2=-1×3=-3=c a,∴c=-3a,∴-2<-3a<-1,∴1 3<a<23,∵b=-2a,∴a+b+c=a-2a-3a=-4a,∴-83<a+b+c<-43,故④正确;综上所述,正确的有②③④,故选:C【题型09:二次函数的平移变换】41将抛物线y=2(x+1)2-3向右平移2个单位,再向上平移1个单位得到的抛物线解析式为()A.y=2(x+3)2-4B.y=2(x+3)2-2C.y=2(x-1)2-2D.y=2x-1【答案】C【分析】本题考查的是二次函数的图象与几何变换,熟知函数图象平移的规律是解答此题的关键.根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=2(x+1)2-3向右平移2个单位,向上平移1个单位得到的抛物线解析式是:y=2 (x+1-2)2-3+1,即y=2(x-1)2-2.故选:C.42将抛物线y=-3x2+2向左平移1个单位,再向下平移3个单位后所得到的抛物线为()A.y=-3(x-1)2-3B.y=-3(x-1)2-1C.y=-3(x+1)2-3D.y=-3(x+1)2-1【答案】D【分析】此题主要考查了二次函数图象的平移,根据“左加右减、上加下减”的原则进行解答即可.【详解】解:将抛物线y=-3x2+2向左平移1个单位所得直线解析式为:y=-3(x+1)2+2;再向下平移3个单位为:y=-3(x+1)2+2-3,即y=-3(x+1)2-1.故选:D.【题型10:二次函数交点的个数问题】43如图所示,已知函数y1=x2x≤28xx>2的图象与一次函数y2=x+b的图象有三个交点,则b的取值范围是()A.-14≤b≤2 B.b>-14C.-14≤b<2 D.-14<b<2【答案】D【分析】此题考查了一次函数和二次函数图象交点问题,一元二次方程的判别式,首先根据题意画出图象,然后求出A2,4,代入y2=x+b求出b=2;然后得到当一次函数y2=x+b的图象与y=x2相切时,得到x2-x-b=0的Δ=b2-4ac=0,进而求出b=-14,然后根据图象求解即可.【详解】解:如图所示,当x=2时,函数y=x2=22=4,∴A2,4,当一次函数y2=x+b的图象经过点A时,∴4=2+b,解得b=2;当一次函数y2=x+b的图象与y=x2相切时,∴x2=x+b,即x2-x-b=0,∴Δ=b2-4ac=0,∴-12-4×1×-b=0,解得b=-1 4,∴由图象可得,当-14<b<2时,函数y1=x2x≤28xx>2的图象与一次函数y2=x+b的图象有三个交点.故选:D.44如图,二次函数y=-x2+x+2及一次函数y=x+m,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新函数,当直线y=x+m与新图象有4个交点时,m的取值范围是()A.14<m<-3 B.254<m≤1 C.-2<m<1 D.-3<m<-2【答案】D【分析】如图所示,过点B作直线y=x+m,将直线向下平移到恰在点C处相切,则一次函数y=x+m在两条直线之间时,两个图象有4个交点,即可求解【详解】解:在y=-x2+x+2中,当y=0,0=-x2+x+2,解得x1=-1,x2=2,A-1,0,B2,0,当x=0时,y=2,∴原抛物线与y轴交点坐标为0,2,∴翻折后与y轴的交点坐标为0,-2,如图,当直线y=x+m经过点B时,直线y=x+m与新图有3个交点,把B2,0代入y=x+m中,得m=-2,∵抛物线y=-x2+x+2翻折到x轴下方的部分的解析式为:-y=-x2+x+2,∴翻折后的部分解析式为:y=x2-x-2-1<x<2,当直线y=x+m与抛物线y=x2-x-2-1<x<2只有一个交点C时,直线y=x+m与图象有3个交点,把y=x+m代入y=x2-x-2-1<x<2中,得到方程x+m=x2-x-2有两个相等的实数根,整理得x2-2x-2-m=0,∴Δ=-22-4×1×-2-m=0,解得m=-3,∴当直线y=x+m与新图象有4个交点时,m的取值范围是-3<m<-2.故选:D.【点睛】本题主要考查了二次函数与一次函数综合应用,理解题意,找准临界点是解题关键.45抛物线y=-x2+kx+k-54与x轴的一个交点为A(m,0),若-2≤m≤1,则实数k的取值范围是()A.-214≤k≤1 B.k≤-214或k≥1 C.-5≤k≤98D.k≤-5或k≥98【答案】B【分析】根据抛物线有交点,则-x2+kx+k-54=0有实数根,得出k≤-5或k≥1,分类讨论,分别求得当x=-2和x=1时k的范围,即可求解.。
(专题精选)初中数学二次函数真题汇编含答案解析一、选择题1.已知在平面直角坐标系中,有两个二次函数()()39m x x y =++及()()26y n x x =--图象,将二次函数()()39m x x y =++的图象按下列哪一种平移方式平移后,会使得此两个函数图象的对称轴重叠( ) A .向左平移2个单位长度 B .向右平移2个单位长度C .向左平移10个单位长度 D .向右平移10个单位长度【答案】D 【解析】 【分析】将二次函数解析式展开,结合二次函数的性质找出两二次函数的对称轴,二者做差后即可得出平移方向及距离. 【详解】解:∵y =m (x +3)(x +9)=mx 2+12mx +27m ,y =n (x -2)(x -6)=nx 2-8nx +12n ,∴二次函数y =m (x +3)(x +9)的对称轴为直线x =-6,二次函数y =n (x -2)(x -6)的对称轴为直线x =4, ∵4-(-6)=10,∴将二次函数y =m (x +3)(x +9)的图形向右平移10个单位长度,两图象的对称轴重叠. 故选:D . 【点睛】本题考查了二次函数图象与几何变换以及二次函数的性质,根据二次函数的性质找出两个二次函数的对称轴是解题的关键.2.已知,二次函数y=ax 2+bx+a 2+b (a≠0)的图象为下列图象之一,则a 的值为( )A .-1B .1C .-3D .-4【答案】A 【解析】 【分析】分别对图形进行讨论:若二次函数的图形为第一个,则b=0,其顶点坐标为(0,a 2),与图形中的顶点坐标不符;若二次函数的图形为第二个,则b=0,根据顶点坐标有a 2=3,由抛物线与x 的交点坐标得到x 2=-a ,所以a=-4,它们相矛盾;若二次函数的图形为第三个,把点(-1,0)代入解析式得到a-b+a2+b=0,解得a=-1;若二次函数的图形为第四个,把(-2,0)和(0,0)分别代入解析式可计算出a的值.【详解】解:若二次函数的图形为第一个,对称轴为y轴,则b=0,y=ax2+a2,其顶点坐标为(0,a2),而a2>0,所以二次函数的图形不能为第一个;若二次函数的图形为第二个,对称轴为y轴,则b=0,y=ax2+a2,a2=3,而当y=0时,x2=−a,所以−a=4,a=−4,所以二次函数的图形不能为第二个;若二次函数的图形为第三个,令x=−1,y=0,则a−b+a2+b=0,所以a=−1;若二次函数的图形为第四个,令x=0,y=0,则a2+b=0①;令x=−2,y=0,则4a−2b+a2+b=0②,由①②得a=−2,这与图象开口向上不符合,所以二次函数的图形不能为第四个.故选A.【点睛】本题考查了二次函数y=ax2+bx+c(a≠0)的图象与系数的关系:a>0,开口向上;a<0,开口向下;抛物线的对称轴为直线x=-;顶点坐标为(-,);也考查了点在抛物线上则点的坐标满足抛物线的解析式.3.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,m),且与x铀的一个交点在点(3,0)和(4,0)之间,则下列结论:①abc>0;②a﹣b+c>0;③b2=4a(c﹣m);④一元二次方程ax2+bx+c=m+1有两个不相等的实数根,其中正确结论的个数是()A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据抛物线的开口方向和与坐标轴的交点及对称轴可判别a,b,c的正负;根据抛物线的对称轴位置可判别在x轴上另一个交点;根据抛物线与直线y=m的交点可判定方程的解.【详解】∵函数的图象开口向上,与y轴交于负半轴∴a>0,c<0∵抛物线的对称轴为直线x=-2b a=1 ∴b<0∴abc >0;①正确;∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间. ∴当x=-1时,y<0,即a-b+c<0,所以②不正确; ∵抛物线的顶点坐标为(1,m ), ∴244ac b a=m , ∴b 2=4ac-4am=4a (c-m ),所以③正确; ∵抛物线与直线y=m 有一个公共点, ∴抛物线与直线y=m+1有2个公共点,∴一元二次方程ax 2+bx+c=m+1有两个不相等的实数根,所以④正确. 故选:C . 【点睛】考核知识点:抛物线与一元二次方程.理解二次函数性质,弄清抛物线与一元二次方程的关系是关键.4.如图,正方形ABCD 中,AB =4cm ,点E 、F 同时从C 点出发,以1cm /s 的速度分别沿CB ﹣BA 、CD ﹣DA 运动,到点A 时停止运动.设运动时间为t (s ),△AEF 的面积为S (cm 2),则S (cm 2)与t (s )的函数关系可用图象表示为( )A .B .C .D .【答案】D 【解析】试题分析:分类讨论:当0≤t≤4时,利用S=S 正方形ABCD ﹣S △ADF ﹣S △ABE ﹣S △CEF 可得S=﹣t 2+4t ,配成顶点式得S=﹣(t ﹣4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=(8﹣t )2=(t ﹣8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断. 解:当0≤t≤4时,S=S 正方形ABCD ﹣S △ADF ﹣S △ABE ﹣S △CEF =4•4﹣•4•(4﹣t )﹣•4•(4﹣t )﹣•t•t =﹣t 2+4t =﹣(t ﹣4)2+8;当4<t≤8时,S=•(8﹣t )2=(t ﹣8)2. 故选D .考点:动点问题的函数图象.5.已知二次函数y =ax 2+bx +c 的图象如图所示,有以下结论:①a +b +c <0;②a ﹣b +c >1;③abc >0;④9a ﹣3b +c <0;⑤c ﹣a >1.其中所有正确结论的序号是( )A .①②B .①③④C .①②③④D .①②③④⑤【答案】D 【解析】 【分析】根据抛物线的开口方向可得出a 的符号,再由抛物线与y 轴的交点可得出c 的值,然后进一步根据对称轴以及抛物线得出当x 1=、 x 1=-、x 3=-时的情况进一步综合判断即可. 【详解】由图象可知,a <0,c=1,对称轴:x=b12a-=-, ∴b=2a ,①由图可知:当x=1时,y <0,∴a+b+c <0,正确; ②由图可知:当x=−1时,y >1,∴a −b+c >1,正确; ③abc=2a 2>0,正确;④由图可知:当x=−3时,y <0,∴9a −3b+c <0,正确; ⑤c−a=1−a >1,正确; ∴①②③④⑤正确. 故选:D . 【点睛】本题主要考查了抛物线的函数图像性质的综合运用,熟练掌握相关概念是解题关键.6.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表:下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线92t =;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m. 其中正确结论的个数是( ) A .1 B .2C .3D .4【答案】B 【解析】 【分析】 【详解】解:由题意,抛物线的解析式为y =ax (x ﹣9),把(1,8)代入可得a =﹣1, ∴y =﹣t 2+9t =﹣(t ﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m ,故①错误, ∴抛物线的对称轴t =4.5,故②正确,∵t =9时,y =0,∴足球被踢出9s 时落地,故③正确, ∵t =1.5时,y =11.25,故④错误,∴正确的有②③, 故选B .7.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断 【详解】解:抛物线的开口向下,则a <0; 抛物线的对称轴为x=1,则-2ba=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值 ∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误) 由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0 ∵1x ≠2x ∴a(x 1+x 2)+b=0 ∴x 1+x 2=2b aa a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.8.如图,坐标平面上,二次函数y =﹣x 2+4x ﹣k 的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:4,则k 值为何?( )A .1B .12C .43D .45【答案】D 【解析】 【分析】求出顶点和C 的坐标,由三角形的面积关系得出关于k 的方程,解方程即可. 【详解】解:∵y =﹣x 2+4x ﹣k =﹣(x ﹣2)2+4﹣k , ∴顶点D(2,4﹣k),C(0,﹣k), ∴OC =k , ∵△ABC 的面积=12AB•OC =12AB•k ,△ABD 的面积=12AB(4﹣k),△ABC 与△ABD 的面积比为1:4, ∴k =14(4﹣k), 解得:k =45. 故选:D . 【点睛】本题考查了抛物线与x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.9.抛物线2y ax bx c =++(,,a b c 是常数),0a >,顶点坐标为1(,)2m .给出下列结论:①若点1(,)n y 与点23(2)2n y -,在该抛物线上,当12n <时,则12y y <;②关于x 的一元二次方程210ax bx c m -+-+=无实数解,那么( )A .①正确,②正确B .①正确,②错误C .①错误,②正确D .①错误,②错误 【答案】A 【解析】 【分析】①根据二次函数的增减性进行判断便可;②先把顶点坐标代入抛物线的解析式,求得m ,再把m 代入一元二次方程ax 2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误.解:①∵顶点坐标为1,2m ⎛⎫⎪⎝⎭,12n <∴点(n ,y 1)关于抛物线的对称轴x=12的对称点为(1-n ,y 1), ∴点(1-n ,y 1)与2322n y ⎛⎫-⎪⎝⎭,在该抛物线的对称轴的右侧图像上, 31(1)2022n n n ⎛⎫---=-< ⎪⎝⎭Q3122n n ∴-<- ∵a >0,∴当x >12时,y 随x 的增大而增大, ∴y 1<y 2,故此小题结论正确;②把1,2m ⎛⎫⎪⎝⎭代入y=ax 2+bx+c 中,得1142m a b c =++,∴一元二次方程ax 2-bx+c-m+1=0中, △=b 2-4ac+4am-4a 2211444()4042b ac a a b c a a b a ⎛⎫=-+++-=+-<⎪⎝⎭∴一元二次方程ax 2-bx+c-m+1=0无实数解,故此小题正确; 故选A . 【点睛】本题主要考查了二次函数图象与二次函数的系数的关系,第①小题,关键是通过抛物线的对称性把两点坐标变换到对称轴的一边来,再通过二次函数的增减性进行比较,第②小题关键是判断一元二次方程根的判别式的正负.10.如图,矩形ABCD 中,AB =8,AD =4,E 为边AD 上一个动点,连接BE ,取BE 的中点G ,点G 绕点E 逆时针旋转90°得到点F ,连接CF ,则△CEF 面积的最小值是( )A .16B .15C .12D .11【答案】B【分析】过点F 作AD 的垂线交AD 的延长线于点H ,则△FEH ∽△EBA ,设AE=x ,可得出△CEF 面积与x 的函数关系式,再根据二次函数图象的性质求得最小值. 【详解】解:过点F 作AD 的垂线交AD 的延长线于点H , ∵∠A=∠H=90°,∠FEB=90°, ∴∠FEH=90°-∠BEA=∠EBA , ∴△FEH ∽△EBA , ∴,HF HE EFAE AB BE== G Q 为BE 的中点,1,2FE GE BE ∴==∴1,2HF HE EF AE AB BE === 设AE=x , ∵AB 8,4,AD ==∴HF 1,4,2x EH == ,DH AE x ∴==CEF DHFC CED EHF S S S S ∆∆∆∴=+-11111(8)8(4)422222x x x x =++⨯--⨯• 2141644x x x x =+--- 2116,4x x =-+ ∴当12124x -=-=⨯ 时,△CEF 面积的最小值1421615.4=⨯-+= 故选:B .【点睛】本题通过构造K 形图,考查了相似三角形的判定与性质.建立△CEF 面积与AE 长度的函数关系式是解题的关键.11.四位同学在研究函数2y x bx c =++(,b c 是常数)时,甲发现当1x =时,函数有最小值;乙发现1-是方程20x bx c ++=的一个根;丙发现函数的最小值为3;丁发现当2x =时,4y =,已知这四位同学中只有一位发现的结论是错误的,则该同学是( )A .甲B .乙C .丙D .丁【答案】B 【解析】 【分析】利用假设法逐一分析,分别求出二次函数的解析式,再判断与假设是否矛盾即可得出结论. 【详解】解:A .假设甲同学的结论错误,则乙、丙、丁的结论都正确 由乙、丁同学的结论可得01442b cb c =-+⎧⎨=++⎩解得:1323b c ⎧=⎪⎪⎨⎪=-⎪⎩∴二次函数的解析式为:221212533636⎛⎫=+-=+ ⎪⎝⎭-y x x x∴当x=16-时,y 的最小值为2536-,与丙的结论矛盾,故假设不成立,故本选项不符合题意;B .假设乙同学的结论错误,则甲、丙、丁的结论都正确 由甲、丙的结论可得二次函数解析式为()213y x =-+ 当x=2时,解得y=4,当x=-1时,y=7≠0 ∴此时符合假设条件,故本选项符合题意;C . 假设丙同学的结论错误,则甲、乙、丁的结论都正确 由甲乙的结论可得1201bb c⎧-=⎪⎨⎪=-+⎩ 解得:23b c =-⎧⎨=-⎩∴223y x x =--当x=2时,解得:y=-3,与丁的结论矛盾,故假设不成立,故本选项不符合题意; D . 假设丁同学的结论错误,则甲、乙、丙的结论都正确 由甲、丙的结论可得二次函数解析式为()213y x =-+当x=-1时,解得y=7≠0,与乙的结论矛盾,故假设不成立,故本选项不符合题意. 故选B . 【点睛】此题考查的是利用待定系数法求二次函数解析式,利用假设法求出b 、c 的值是解决此题的关键.12.如图是二次函数2y ax bx c =++的图象,其对称轴为1x =.下列结论:①0abc >;②20a b +=;③930a b c ++<;④若12310,,,23y y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是抛物线上两点,则12y y >.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B 【解析】 【分析】由抛物线开口方向得到a <0,根据对称轴得到b=-2a >0,由抛物线与y 轴的交点位置得到c >0,则可对①进行判断;由b=-2a 可对②进行判断;利用抛物线的对称性可得到抛物线与x 轴的另一个交点为(3,0),则可判断当x=3时,y=0,于是可对③进行判断;通过二次函数的增减性可对④进行判断. 【详解】解:∵抛物线开口向下, ∴a <0,∵抛物线的对称轴为直线12bx a=-= ,∴b=-2a >0, ∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以①错误; ∵b=-2a ,∴2a+b=0,所以②正确;∵抛物线与x 轴的一个交点为(-1,0),抛物线的对称轴为直线x=1, ∴抛物线与x 轴的另一个交点为(3,0), ∴当x=3时,y=0,∴930a b c ++=,所以③错误;∵抛物线的对称轴为直线x=1,且抛物线开口向下, ∴当x 1<时,y 随x 的增大而增大 ∵103132-<-< 点13,2y ⎛⎫- ⎪⎝⎭到对称轴的距离比点210,3y ⎛⎫- ⎪⎝⎭对称轴的距离近, ∴y 1>y 2,所以④正确.故选B . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.13.在平面直角坐标系内,已知点A (﹣1,0),点B (1,1)都在直线1122y x =+上,若抛物线y =ax 2﹣x +1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是( )A .a ≤﹣2B .a <98C .1≤a <98或a ≤﹣2 D .﹣2≤a <98【答案】C 【解析】 【分析】分a >0,a <0两种情况讨论,根据题意列出不等式组,可求a 的取值范围. 【详解】∵抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,∴令1122x+=ax2﹣x+1,则2ax2﹣3x+1=0∴△=9﹣8a>0∴a<9 8①当a<0时,110111 aa++≤⎧⎨-+≤⎩解得:a≤﹣2∴a≤﹣2②当a>0时,110111 aa++≥⎧⎨-+≥⎩解得:a≥1∴1≤a<9 8综上所述:1≤a<98或a≤﹣2故选:C.【点睛】本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键.14.如图,抛物线y=ax2+bx+c(a>0)过原点O,与x轴另一交点为A,顶点为B,若△AOB为等边三角形,则b的值为()A3B.﹣3C.﹣3D.﹣3【答案】B【解析】【分析】根据已知求出B(﹣2,24b ba a-),由△AOB为等边三角形,得到2b4a=tan60°×(﹣2ba),即可求解;【详解】解:抛物线y=ax2+bx+c(a>0)过原点O,∴c=0,B(﹣2,24b ba a),∵△AOB为等边三角形,∴2b4a=tan60°×(﹣2ba),∴b=﹣故选B.【点睛】本题考查二次函数图象及性质,等边三角形性质;能够将抛物线上点的关系转化为等边三角形的边关系是解题的关键.15.抛物线y=–x2+bx+c上部分点的横坐标x、纵坐标y的对应值如下表所示:从上表可知,下列说法错误的是A.抛物线与x轴的一个交点坐标为(–2,0) B.抛物线与y轴的交点坐标为(0,6) C.抛物线的对称轴是直线x=0 D.抛物线在对称轴左侧部分是上升的【答案】C【解析】【分析】【详解】解:当x=-2时,y=0,∴抛物线过(-2,0),∴抛物线与x轴的一个交点坐标为(-2,0),故A正确;当x=0时,y=6,∴抛物线与y轴的交点坐标为(0,6),故B正确;当x=0和x=1时,y=6,∴对称轴为x=12,故C错误;当x<12时,y随x的增大而增大,∴抛物线在对称轴左侧部分是上升的,故D正确;故选C.16.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】D 【解析】 【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得. 【详解】抛物线y =x 2+(2a +1)x +a 2﹣a 的顶点的横坐标为:x =﹣212a +=﹣a ﹣12, 纵坐标为:y =()()224214a a a --+=﹣2a ﹣14, ∴抛物线的顶点横坐标和纵坐标的关系式为:y =2x +34, ∴抛物线的顶点经过一二三象限,不经过第四象限, 故选:D . 【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.17.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D 【解析】 【分析】根据抛物线开口方向得到a 0>,根据对称轴02bx a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a b c ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02bx a=->得到b 0<,根据抛物线与y轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确. ②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a b c ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确. 故答案选D. 【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。
九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。
答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。
2. 求函数 $y = -x^2 + 4x + 1$ 的零点。
答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。
3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。
答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。
4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。
答案:由于两个函数有相同的图像,所以它们的系数相等。
比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。
5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。
答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。
代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。
整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。
由于该方程为二次方程,必然存在实数解。
专题10二次函数一、选择题1.(2023·四川绵阳·统考中考真题)将二次函数2y x =的图象先向下平移1个单位,再向右平移3个单位,得到的图象与一次函数y =2x +b 的图象有公共点,则实数b 的取值范围是()A .b >8B .b >﹣8C .b ≥8D .b ≥﹣8【答案】D【分析】先根据平移原则:上加下减,左加右减写出解析式,再列方程组,有公共点则△≥0,则可求出b 的取值.【详解】解:由题意得:平移后得到的二次函数的解析式为:2=(3)1y x --,则2(3)12y x y x b⎧=--⎨=+⎩,2(3)12--=+x x b ,2880-+-=x x b ,△=(﹣8)2﹣4×1×(8﹣b )≥0,b ≥﹣8,故选:D .【点睛】主要考查的是二次函数图象的平移和两函数的交点问题,二次函数与一次函数图象有公共点.2.(2023·四川眉山·统考中考真题)如图,二次函数()20y ax bx c a =++≠的图象与x 轴的一个交点坐标为()1,0,对称轴为直线=1x -,下列四个结论:①<0abc ;②420a b c -+<;③30a c +=;④当31x -<<时,20ax bx c ++<;其中正确结论的个数为()A .1个B .2个C .3个D .4个【答案】D 【分析】根据二次函数开口向上,与y 轴交于y 轴负半轴,00a c ><,,根据对称轴为直线=1x -可得20b a =>,由此即可判断①;求出二次函数与x 轴的另一个交点坐标为()3,0-,进而得到当2x =-时,0y <,由此即可判断②;根据1x =时,0y =,即可判断③;利用图象法即可判断④.A.4个B【答案】B【分析】由抛物线的开口方向、与正确;由抛物线的对称轴为判断③正确;由图知x=A .1个B .【答案】B 【分析】根据二次函数图像的性质、二次函数图像与系数的关系以及与可.【详解】解:由图可知,二次函数开口方向向下,与 图象与x 轴交于点(3,0A -10420a b c ∴-+=.5a ∴- 12b a-=-,2b a ∴=.当30a c ∴+=,3c a ∴=-,∴A .1个B .2【答案】C 【分析】开口方向,对称轴,与④即可.【详解】∵抛物线的开口向下,对称轴为直线0,0,0a b c <<<∴()11,A x y 和点()22,B x y 关于对称轴对称,∴abc B.A.<0【答案】C【分析】根据开口方向,与即可判断A;根据对称性可得当线开口向上,对称轴为直线【详解】解:∵抛物线开口向上,与A.抛物线的对称轴为直线C.A,B两点之间的距离为【答案】C【分析】待定系数法求得二次函数解析式,进而逐项分析判断即可求解.【详解】解:∵二次函数∴二次函数解析式为y故A,B选项不正确,不符合题意;a=>,抛物线开口向上,当∵10y=时,2x x+意;当0A .()55,B .246,5⎛⎫ ⎪⎝⎭C .3224,5⎛ ⎝【答案】C 【分析】如图所示,过点C 作CD AB ⊥于D ,连接CP 三角形,即90C ∠=︒,进而利用等面积法求出24CD =【点睛】本题主要考查了勾股定理和勾股定理的逆定理,矩形的性质与判断,垂线段最短,坐标与图形等等,正确作出辅助线是解题的关键.11.(2023·四川雅安·统考中考真题)如图,二次函数A.①②【答案】C【分析】根据抛物线开口方向可得函数的对称性可得∴-【点睛】本题考查圆的的性质,二次函数图象的性质,19.(2022·四川广元·统考中考真题)二次函数1,0),对称轴为直线x=2,下列结论:2,y1)、点B(﹣12,y2)、点C(72,为常数).其中正确的结论有()【详解】解:A 、根据抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3),且对称轴在y 轴的左侧可知0a >,该说法正确,故该选项不符合题意;B 、由抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3)可知03a b c c ++=⎧⎨=-⎩,解得3a b +=,该说法正确,故该选项不符合题意;C 、由抛物线y =ax 2+bx +c (a ≠0)经过点(1,0),对称轴在y 轴的左侧,则抛物线不经过(-1,0),该说法错误,故该选项符合题意;D 、关于x 的一元二次方程ax 2+bx +c =-1根的情况,可以转化为抛物线y =ax 2+bx +c (a ≠0)与直线1y =-的交点情况,根据抛物线y =ax 2+bx +c (a ≠0)经过点(1,0)和点(0,-3),310-<-<,结合抛物线开口向上,且对称轴在y 轴的左侧可知抛物线y =ax 2+bx +c (a ≠0)与直线1y =-的有两个不同的交点,该说法正确,故该选项不符合题意;故选:C .【点睛】本题考查二次函数的图像与性质,涉及到开口方向的判定、二次函数系数之间的关系、方程的根与函数图像交点的关系等知识点,根据题中条件得到抛物线草图是解决问题的关键.21.(2022·四川成都·统考中考真题)如图,二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,下列说法正确的是()A .0a >B .当1x >-时,y 的值随x 值的增大而增大C .点B 的坐标为()4,0D .420a b c ++>【答案】D 【分析】结合二次函数图像与性质,根据条件与图像,逐项判定即可.【详解】解:A 、根据图像可知抛物线开口向下,即a<0,故该选项不符合题意;B 、根据图像开口向下,对称轴为1x =,当1x >,y 随x 的增大而减小;当1x <,y 随x 的增大而增大,故当11x -<<时,y 随x 的增大而增大;当1x >,y 随x 的增大而减小,故该选项不符合题意;C 、根据二次函数2y ax bx c =++的图像与x 轴相交于()1,0A -,B 两点,对称轴是直线1x =,可得对8A.4B.92∵P 与OB 、AB 均相切,∴△OBP 边OB 上的高为∵P (m ,-m +6);∴△AOP 边OA 上的高为-m +6,∵AOB AOP APB BOP S S S S =++ ,∴1168622⨯⨯=⨯⨯2y ax =过点P ,∴5a =.故选D .二、填空题①当31x -≤≤时,1y ≤;AOB 内存在唯一点P ,使得其中正确的结论是___________【答案】②③【分析】根据条件可求抛物线与∴12ABM AMF BMF S S S MF =+=⨯V V V 把()0,3B a -,()30A -,代入得:当=1x -是,2y a =-,∴(F -∵点B 是抛物线与y 轴的交点,∴当则'AOA ,'POP 为等边三角形,∴∵'AOA 为等边三角形,(A -当320,2B ⎛⎫- ⎪ ⎪⎝⎭时,∵'2A B 骣琪=琪琪桫当()0,3B -时,2'232A B 骣骣琪琪琪=+琪琪琪琪桫桫【答案】149/519【分析】根据已知得出直角坐标系,通过代入x =4代入抛物线解析式得出下降高度,即可得出答案.【详解】解:建立平面直角坐标系,设横轴通过以上条件可设顶点式y =ax 2+2,把点A 点坐标(∴920a +=,∴29a =-,∴抛物线解析式为:当水面下降,水面宽为8米时,有把4x =代入解析式,得∴水面下降149米;故答案为:149;【点睛】此题主要考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题【答案】8【分析】由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,则当喷头高设y=ax2+bx+2.5,将(2.5,0)代入解析式得出0)代入解析式得9a+3b+4=0,联立可求出时的解析式为y=ax2+bx+h,将(4,0)代入可求出【详解】解:由题意可知,在调整喷头高度的过程中,水柱的形状不发生变化,【答案】17【分析】根据题意可知,当直线经过点(线只有一个交点时,(x-5)2+8=kx-3,可得出【详解】解:当直线经过点(1,12)时,当直线与抛物线只有一个交点时,(x-5)∴10+k=±12,解得k=2或k=-22(舍去),∴∴k的最大值与最小值的和为15+2=17.故答案为:【答案】1【分析】根据抛物线22y x x k =++与x 轴只有一个交点可知方程22x x k ++=0根的判别式△=0,解方程求出k 值即可得答案.【详解】∵抛物线22y x x k =++与x 轴只有一个交点,∴方程22x x k ++=0根的判别式△=0,即22-4k =0,解得:k =1,故答案为:1【点睛】本题考查二次函数与x 轴的交点问题,对于二次函数2y ax bx c =++(k≠0),当判别式△>0时,抛物线与x 轴有两个交点;当k=0时,抛物线与x 轴有一个交点;当x <0时,抛物线与x 轴没有交点;熟练掌握相关知识是解题关键.三、解答题支付专利费y 元,y (元)与每日产销x (件)满足关系式 2.800.01y x =+(1)若产销A ,B 两种产品的日利润分别为1w 元,2w 元,请分别写出1w ,2w 与x 的函数关系式,并写出x 的取值范围;(2)分别求出产销A ,B 两种产品的最大日利润.(A 产品的最大日利润用含m 的代数式表示)(3)为获得最大日利润,该工厂应该选择产销哪种产品?并说明理由.【利润=(售价-成本)⨯产销数量-专利费】【答案】(1)()()18300500w m x x =--<≤,()220.018800300w x x x =-+-<≤(2)()15003970w m =-+最大元,1420w =2最大(3)当4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;当 5.1m =时,该工厂应该选择产销任一产品都能获得最大日利润;当5.16m <≤时,该工厂应该选择产销B 产品能获得最大日利润,理由见解析【分析】(1)根据题木所给的利润计算公式求解即可;(2)根据(1)所求利用一次函数和二次函数的性质求解即可;(3)比较(2)中所求A 、B 两种产品的最大利润即可得到答案.【详解】(1)解:由题意得,()()18300500w m x x =--<≤,()()()2222012800.010.018800300w x x x x x =--+=-+-<≤(2)解:∵46m ≤≤,∴80m ->,∴1w 随x 增大而增大,∴当500x =时,1w 最大,最大为()()8500305003970m m -⨯-=-+元;()2220.018800.014001520w x x x =-+-=--+,∵0.010-<,∴当400x <时,2w 随x 增大而增大,∴当300x =时,2w 最大,最大为()20.0130040015201420-⨯-+=元;(3)解:当50039701420m -+>,即4 5.1m ≤<时,该工厂应该选择产销A 产品能获得最大日利润;(1)求抛物线的解析式;(2)设点P 是直线BC 上方抛物线上一点,求出坐标;(3)若点M 是抛物线对称轴上一动点,点N 为坐标平面内一点,是否存在以B C M N 、、、为顶点的四边形是菱形,若存在,请直接写出点【答案】(1)223y x x =-++(2)PBC 的最大面积为278,32P ⎛ ⎝(3)存在,()4,17或()4,17-或()2,143-+,(2,143--+【分析】(1)利用待定系数法代入求解即可;(2)利用待定系数法先确定直线BC 的解析式为3y x =-+作PD x ⊥轴于点D ,交BC 于点E ,得出23PE x x =-+,然后得出三角形面积的函数即可得出结果;(3)分两种情况进行分析:若BC 为菱形的边长,利用菱形的性质求解即可.【详解】(1)解:将点()()()1,0,3,,00,3A B C -代入解析式得:0930a b c a b c -+=⎧⎪12a b =-⎧⎪∴(),3E x x -+,∴2PE x =-+∴(1122PBCS PE OB ∆=⨯⨯=⨯-∴当32x =时,PBC 的最大面积为(3)存在,()2,2N 或(4,17∵()()3,0,0,3B C ,∵抛物线的解析式为设点()()1,,M t N x y ,,若BC 则22BC CM =,即(2181t =+∵31003x t y +=+⎧⎨+=+⎩,∴4,x y t ==-【答案】(1)21262y x x =-++(2)①【分析】(1)根据抛物线对称轴为待定系数法求得c ,即可解答;(设CD a =,则()0,6D a -,求得即可求出CD 的长;②过,E F1322S S S += ,2AD EF ∴+=设21,262F h h h ⎛⎫-++ ⎪⎝⎭,则AH ,EG AB FH AB ⊥⊥ ,EG ∴∥DI EG ⊥ ,90DIE ∴∠=︒,∴112333DI AB h ∴==+,即点D(1)求抛物线的表达式.(2)若直线值时,使得AN MN +有最大值,并求出最大值.一动点,将抛物线向左平移点M ,是否能与A 、P 、Q 【答案】(1)223y x x =-++(2)①当以AM 为对角线时,22Q P A M x x x x ++∴=,即-Q 在抛物线24y x =-+上AQ(1)求抛物线的解析式;(2)如图1,当:3:5BM MQ =时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线1l 下方的抛物线上一动点,连接PQ 、PO ,其中于点E ,设OQE 的面积为1S ,PQE 的面积为2S .求21S S 的最大值.【答案】(1)214y x x =-(2)()6,3N (3)1【分析】(1)待定系数法求解析式即可求解;(2),过点M 作2MD x ⊥=,垂足为D 根据已知条件得出:BD CD =:3:5BM MQ =,进而列出方程,解方程,即可求解;1⎛⎫⎛设21,4M m m m ⎛⎫- ⎪⎝⎭,则212,4D m m ⎛⎫- ⎪⎝⎭,∵MD QC ∥,∴:BD CD =:3:BM MQ =∵()2,2C -,∴()2210341524m m m m ⎛⎫-- ⎪⎝⎭=---,解得:∵其中点MQ 在抛物线对称轴的左侧.∴k b ⎧+⎪(1)求该运动员从跳出到着陆垂直下降了多少(2)以A为坐标原点建立直角坐标系,求该抛物线表达式;(3)若该运动员在空中共飞行了4s【答案】(1)该运动员从跳出到着陆垂直下降了过点B 作BD y ⊥轴于点D .在Rt OBD △中,sin 37OD AB =⋅︒=答:该运动员从跳出到着陆垂直下降了(2)解:在Rt OBD △中,BD =【分析】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,根据猪肉粽进价比豆沙粽进价每盒贵10元,一盒猪肉粽加两盒豆沙粽进价为100元列出方程组,解出即可.(2)根据当50a =时,每天可售出100盒,每盒猪肉粽售价为a 元时,每天可售出猪肉粽()100250a --⎡⎤⎣⎦盒,列出二次函数关系式,再化成顶点式即可得解.【详解】(1)设每盒猪肉粽的进价为x 元,每盒豆沙粽的进价为y 元,由题意得:102100x y x y -=⎧⎨+=⎩解得:4030x y =⎧⎨=⎩∴每盒猪肉粽的进价为40元,每盒豆沙粽进价为30元.(2)(40)[1002(50)]w a a =---22(70)1800a =--+.∴当70a =时,w 最大值为1800元.∴该商家每天销售猪肉粽获得的最大利润为1800元.【点睛】本题主要考查了二元一次方程组的实际应用以及二次函数的实际应用,根据题意列出相应的函数关系式是解此题的关键.47.(2022·四川广元·统考中考真题)为推进“书香社区”建设,某社区计划购进一批图书.已知购买2本科技类图书和3本文学类图书需154元,购买4本科技类图书和5本文学类图书需282元.(1)科技类图书与文学类图书的单价分别为多少元?(2)为了支持“书香社区”建设,助推科技发展,商家对科技类图书推出销售优惠活动(文学类图书售价不变):购买科技类图书超过40本但不超过50本时,每增加1本,单价降低1元;超过50本时,均按购买50本时的单价销售.社区计划购进两种图书共计100本,其中科技类图书不少于30本,但不超过60本.按此优惠,社区至少要准备多少购书款?【答案】(1)科技类图书的单价为38元,文学类图书的单价为26元.(2)社区至少要准备2700元购书款.【分析】(1)设科技类图书的单价为x 元,文学类图书的单价为y 元,然后根据题意可列出方程组进行求解;(2)设社区需要准备w 元购书款,购买科技类图书m 本,则文学类图书有(100-m )本,由(1)及题意可分当3040m ≤<时,当4050m ≤≤时及当5060m <≤时,进而问题可分类求解即可.【详解】(1)解:设科技类图书的单价为x 元,文学类图书的单价为y 元,由题意得:2315445282x y x y +=⎧⎨+=⎩,解得:3826x y =⎧⎨=⎩;答:科技类图书的单价为38元,文学类图书的单价为26元.(2)解:设社区需要准备w 元购书款,购买科技类图书m 本,则文学类图书有(100-m )本,由(1)可得:①当3040m ≤<时,则有:()3826100122600w m m m =+-=+,∵12>0,∴当m =30时,w 有最小值,即为36026002960w =+=;②当4050m ≤≤时,则有:()()2384026100522600w m m m m m =-++-=-++,∵-1<0,对称轴为直线26m =,∴当4050m ≤≤时,w 随m 的增大而减小,∴当m =50时,w 有最小值,即为250525026002700w =-+⨯+=;③当5060m <≤时,此时科技类图书的单价为785028-=(元),则有()282610022600w m m m =+-=+,∵2>0,∴当m =51时,w 有最小值,即为10226002702w =+=;综上所述:社区至少要准备2700元的购书款.【点睛】本题主要考查二元一次方程组的应用、一次函数与二次函数的应用,解题的关键是找准等量关系,注意分类讨论.48.(2021·四川雅安·统考中考真题)某药店选购了一批消毒液,进价为每瓶10元,在销售过程中发现销售量y (瓶)与每瓶售价x (元)之间存在一次函数关系(其中1021x ≤≤,且x 为整数),当每瓶消毒液售价为12元时,每天销售量为90瓶;当每瓶消毒液售价为15元时,每天销售量为75瓶;(1)求y 与x 之间的函数关系式;(2)设该药店销售该消毒液每天的销售利润为w 元,当每瓶消毒液售价为多少元时,药店销售该消毒液每天销售利润最大.【答案】(1)5150y x =-+;(2)当每瓶消毒液售价为20元时,药店销售该消毒液每天销售利润最大,最大为500元.(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点为t ,PAB 的面积为S ,求S 与t 的函数关系式;(3)在二次函数图象上是否存在点M 、N 为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点说明理由.【答案】(1)22y x x =-(2)2312S t t =-++(3)存在,(1,1)-N 或(3,3)【分析】(1)由二次函数的最小值为1-,点(1,)M m 是其对称轴上一点,得二次函数顶点为顶点式2(1)1y a x =--,将点(0,0)O 代入即可求出函数解析式;(2)连接OP ,根据AOB OAP OBP S S S S =+-△△△求出S 与t 的函数关系式;当0y =时,220x x -=,0x ∴=或 点P 在抛物线22y x x =-上,∴AOB OAP OBP S S S S ∴=+-△△△12=⨯(3)设()2,2N n n n -,当AB 为对角线时,由中点坐标公式得,当AM 为对角线时,由中点坐标公式得,当AN 为对角线时,由中点坐标公式得,综上:(1,1)-N 或(3,3)或(1,3)-.。
(易错题精选)初中数学二次函数真题汇编附答案解析一、选择题1.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( )A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a 【答案】C【解析】【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2),∴a ﹣b +c =2,a +b +c =﹣2,∴a +c =0,b =﹣2,∴A 正确;∵c =﹣a ,b =﹣2,∴y =ax 2﹣2x ﹣a ,∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点,∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a , 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0,∴m +n <0,2a >0, ∴m +n <2a;∴D 正确,故选:C .【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.2.如图是函数223(04)y x x x =--≤≤的图象,直线//l x 轴且过点(0,)m ,将该函数在直线l 上方的图象沿直线l 向下翻折,在直线1下方的图象保持不变,得到一个新图象.若新图象对应的函数的最大值与最小值之差不大于5,则m 的取值范围是( )A .m 1≥B .0m ≤C .01m ≤≤D .m 1≥或0m ≤【答案】C【解析】【分析】 找到最大值和最小值差刚好等于5的时刻,则M 的范围可知.【详解】解:如图1所示,当t 等于0时,∵2(1)4y x =--,∴顶点坐标为(1,4)-,当0x =时,3y =-,∴(0,3)A -,当4x =时,5y =,∴(4,5)C ,∴当0m =时, (4,5)D -,∴此时最大值为0,最小值为5-;如图2所示,当1m =时,此时最小值为4-,最大值为1.综上所述:01m ≤≤,故选:C .【点睛】此题考查了二次函数与几何图形结合的问题,找到最大值和最小值的差刚好为5的m 的值为解题关键.3.如图,二次函数y =ax 2+bx +c 的图象过点(-1,0)和点(3,0),有下列说法:①bc <0;②a +b +c >0;③2a +b =0;④4ac >b 2.其中错误的是( )A .②④B .①③④C .①②④D .②③④【答案】C【解析】【分析】 利用抛物线开口方向得到0a >,利用对称轴在y 轴的右侧得到0b <,利用抛物线与y 轴的交点在x 轴下方得到0c <,则可对A 进行判断;利用当1x =时,0y <可对B 进行判断;利用抛物线的对称性得到抛物线的对称轴为直线12b x a=-=,则可对C 进行判断;根据抛物线与x 轴的交点个数对D 进行判断.【详解】解:Q 抛物线开口向上, 0a ∴>,Q 对称轴在y 轴的右侧,a ∴和b 异号,0b ∴<,Q 抛物线与y 轴的交点在x 轴下方,0c ∴<,0bc ∴>,所以①错误;Q 当1x =时,0y <,0a b c ∴++<,所以②错误;Q 抛物线经过点(1,0)-和点(3,0),∴抛物线的对称轴为直线1x =, 即12b a-=, 20a b ∴+=,所以③正确; Q 抛物线与x 轴有2个交点,∴△240b ac =->,即24ac b <,所以④错误.综上所述:③正确;①②④错误.故选:C .【点睛】本题考查了二次函数图象与系数的关系:对于二次函数2(0)y ax bx c a =++≠,二次项系数a 决定抛物线的开口方向和大小;一次项系数b 和二次项系数a 共同决定对称轴的位置(左同右异).常数项c 决定抛物线与y 轴交点(0,)c .抛物线与x 轴交点个数由△决定.4.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数b y x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D【解析】【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案.【详解】∵二次函数y=ax 2+bx+c 的图象开口向下,∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点,∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧,∴a,b同号,∴b<0,∴一次函数y=ax+c,图象经过第二、四象限,反比例函数y=bx图象分布在第二、四象限,故选D.【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.5.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()A.当m=-3时,函数图象的顶点坐标是(13,83)B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x>14时,y随x的增大而减小【答案】D【解析】分析:A、把m=-3代入[2m,1-m,-1-m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.详解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣13)2+83,顶点坐标是(13,83);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣12﹣12m,|x2﹣x1|=32+12m>32,所以当m>0时,函数图象截x轴所得的线段长度大于32,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m ,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x 轴上一个定点此结论正确.D 、当m <0时,y=2mx 2+(1﹣m )x+(﹣1﹣m ) 是一个开口向下的抛物线,其对称轴是:直线x=14m m-,在对称轴的右边y 随x 的增大而减小.因为当m <0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.6.二次函数y =x 2+bx 的对称轴为直线x =2,若关于x 的一元二次方程x 2+bx ﹣t =0(t 为实数)在﹣1<x <4的范围内有解,则t 的取值范围是( )A .0<t <5B .﹣4≤t <5C .﹣4≤t <0D .t ≥﹣4【答案】B【解析】【分析】先求出b ,确定二次函数解析式,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点,﹣1<x <4时﹣4≤y <5,进而求解;【详解】解:∵对称轴为直线x =2,∴b =﹣4,∴y =x 2﹣4x ,关于x 的一元二次方程x 2+bx ﹣t =0的解可以看成二次函数y =x 2﹣4x 与直线y =t 的交点, ∵﹣1<x <4,∴二次函数y 的取值为﹣4≤y <5,∴﹣4≤t <5;故选:B .【点睛】本题考查二次函数图象的性质,一元二次方程的解;将一元二次方程的解转换为二次函数与直线交点问题,数形结合的解决问题是解题的关键.7.如图是二次函数2y ax bx c =++的图象,有下面四个结论:0abc >①;0a b c ②-+>; 230a b +>③;40c b ->④,其中正确的结论是( )A .①②B .①②③C . ①③④D . ①②④【答案】D【解析】【分析】 根据抛物线开口方向得到a 0>,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >;1x =-时,由图像可知此时0y >,所以0a b c -+>;由对称轴123b x a =-=,可得230a b +=;当2x =时,由图像可知此时0y >,即420a bc ++>,将23a b =-代入可得40c b ->.【详解】①根据抛物线开口方向得到0a >,根据对称轴02b x a=->得到b 0<,根据抛物线与y 轴的交点在x 轴下方得到c 0<,所以0abc >,故①正确.②1x =-时,由图像可知此时0y >,即0a b c -+>,故②正确.③由对称轴123b x a =-=,可得230a b +=,所以230a b +>错误,故③错误; ④当2x =时,由图像可知此时0y >,即420a bc ++>,将③中230a b +=变形为23a b =-,代入可得40c b ->,故④正确.故答案选D.【点睛】本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。
最新初中数学二次函数真题汇编附答案解析一、选择题1.已知二次函数y =ax 2+bx +c (a >0)经过点M (﹣1,2)和点N (1,﹣2),则下列说法错误的是( ) A .a +c =0B .无论a 取何值,此二次函数图象与x 轴必有两个交点,且函数图象截x 轴所得的线段长度必大于2C .当函数在x <110时,y 随x 的增大而减小 D .当﹣1<m <n <0时,m +n <2a【答案】C 【解析】 【分析】根据二次函数的图象和性质对各项进行判断即可. 【详解】解:∵函数经过点M (﹣1,2)和点N (1,﹣2), ∴a ﹣b +c =2,a +b +c =﹣2, ∴a +c =0,b =﹣2, ∴A 正确; ∵c =﹣a ,b =﹣2, ∴y =ax 2﹣2x ﹣a , ∴△=4+4a 2>0,∴无论a 为何值,函数图象与x 轴必有两个交点, ∵x 1+x 2=2a,x 1x 2=﹣1,∴|x 1﹣x 2|=>2, ∴B 正确;二次函数y =ax 2+bx +c (a >0)的对称轴x =﹣2b a =1a, 当a >0时,不能判定x <110时,y 随x 的增大而减小; ∴C 错误;∵﹣1<m <n <0,a >0, ∴m +n <0,2a>0, ∴m +n <2a;∴D 正确, 故选:C . 【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.2.二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b+=0;③当m ≠1时,+a b >2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤【答案】D 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断 【详解】解:抛物线的开口向下,则a <0; 抛物线的对称轴为x=1,则-2ba=1,b=-2a ∴b>0,2a+b=0 ② 抛物线交y 轴于正半轴,则c >0;由图像知x=1时 y=a+b+c 是抛物线顶点的纵坐标,是最大值,当m≠1 y=2am bm ++c 不是顶点纵坐标,不是最大值 ∴+a b >2am bm +(故③正确):b >0,b+2a=0;(故②正确) 又由①②③得:abc <0 (故①错误) 由图知:当x=-1时,y <0;即a-b+c <0,b >a+c ;(故④错误)⑤若211ax bx +=222ax bx +得211ax bx +-(222ax bx +)=211ax bx +-ax 22-bx 2=a(x 12-x 22)+b(x 1-x 2)=a(x 1+x 2)(x 1-x 2)+b(x 1-x 2)= (x 1-x 2)[a(x 1+x 2)+b]= 0 ∵1x ≠2x ∴a(x 1+x 2)+b=0 ∴x 1+x 2=2b aa a-=-=2 (故⑤正确) 故选D .考点:二次函数图像与系数的关系.3.如图,二次函数()200y ax bx c a =++=≠的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线2x =,且OA OC =,则下列结论:①0abc >;②930a b c ++<;③1c >-;④关于x 的方程()200ax bx c a ++=≠有一个根为1a-,其中正确的结论个数有( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】由二次图像开口方向、对称轴与y 轴的交点可判断出a 、b 、c 的符号,从而可判断①;由图像可知当x =3时,y <0,可判断②;由OA =OC ,且OA <1,可判断③;把﹣1a代入方程整理得ac 2-bc +c =0,结合③可判断④;从而得出答案. 【详解】由图像开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x =2,∴﹣2ba>0,∴b >0,∴abc >0,故①正确;由图像可知当x =3时,y >0,∴9a +3b +c >0,故②错误;由图像可知OA <1,∵OA =OC ,∴OC <1,即﹣c <1,故③正确;假设方程的一个根为x =﹣1a ,把﹣1a代入方程,整理得ac 2-bc +c =0, 即方程有一个根为x =﹣c ,由②知﹣c =OA ,而当x =OA 是方程的根,∴x =﹣c 是方程的根,即假设成立,故④正确.故选C. 【点睛】本题主要考查二次函数的图像与性质以及二次函数与一元二次方程的联系,熟练掌握二次函数的相关知识是解答此题的关键.4.要将抛物线2y x =平移后得到抛物线223y x x =++,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位 【答案】A 【解析】【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法. 【详解】y=x 2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x 2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x 2向左平移1个单位长度,再向上平移2个单位长度. 故选:A . 【点睛】此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.5.如图是抛物线y =ax 2+bx +c (a ≠0)的部分图象,其顶点坐标为(1,m ),且与x 铀的一个交点在点(3,0)和(4,0)之间,则下列结论:①abc >0;②a ﹣b +c >0;③b 2=4a (c ﹣m );④一元二次方程ax 2+bx +c =m +1有两个不相等的实数根,其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【解析】 【分析】根据抛物线的开口方向和与坐标轴的交点及对称轴可判别a ,b ,c 的正负;根据抛物线的对称轴位置可判别在x 轴上另一个交点;根据抛物线与直线y=m 的交点可判定方程的解. 【详解】∵函数的图象开口向上,与y 轴交于负半轴 ∴a>0,c<0∵抛物线的对称轴为直线x=-2b a=1 ∴b<0∴abc >0;①正确;∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间. ∴当x=-1时,y<0,即a-b+c<0,所以②不正确; ∵抛物线的顶点坐标为(1,m ), ∴244ac b a- =m , ∴b 2=4ac-4am=4a (c-m ),所以③正确; ∵抛物线与直线y=m 有一个公共点, ∴抛物线与直线y=m+1有2个公共点,∴一元二次方程ax 2+bx+c=m+1有两个不相等的实数根,所以④正确. 故选:C . 【点睛】考核知识点:抛物线与一元二次方程.理解二次函数性质,弄清抛物线与一元二次方程的关系是关键.6.方程2x 3x 10+-=的根可视为函数3y x =+的图象与函数1y x=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( ) A .010<x <4B .011<x <43C .011<x <32D .01<x <12【答案】C 【解析】 【分析】首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围. 【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x ==,此时抛物线的图象在反比例函数下方; 当x=13时,21229y x =+=,1y 3x==,此时抛物线的图象在反比例函数下方;当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C . 【点睛】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.7.如图是抛物线y=ax 2+bx+c (a≠0)的部分图象,其顶点是(1,n ),且与x 的一个交点在点(3,0)和(4,0)之间,则下列结论:①a -b+c >0;②3a+b=0;③b 2=4a (c-n );④一元二次方程ax 2+bx+c=n-1有两个不等的实数根.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【解析】 【分析】利用抛物线的对称性得到抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间,则当x=-1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x=-2ba=1,即b=-2a ,则可对②进行判断;利用抛物线的顶点的纵坐标为n 得到244ac b a-=n ,则可对③进行判断;由于抛物线与直线y=n 有一个公共点,则抛物线与直线y=n-1有2个公共点,于是可对④进行判断. 【详解】∵抛物线与x 轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点在点(-2,0)和(-1,0)之间. ∴当x=-1时,y >0, 即a-b+c >0,所以①正确;∵抛物线的对称轴为直线x=-2ba=1,即b=-2a , ∴3a+b=3a-2a=a ,所以②错误;∵抛物线的顶点坐标为(1,n ), ∴244ac b a-=n , ∴b 2=4ac-4an=4a (c-n ),所以③正确; ∵抛物线与直线y=n 有一个公共点, ∴抛物线与直线y=n-1有2个公共点,∴一元二次方程ax 2+bx+c=n-1有两个不相等的实数根,所以④正确. 故选C . 【点睛】本题考查了二次函数图像与系数的关系,熟练掌握二次函数性质是解题的关键.8.若二次函数y =x 2﹣2x+2在自变量x 满足m≤x≤m+1时的最小值为6,则m 的值为( )A .5,5,15,12-+-B .5,51-+C .1D .5,15--【答案】B 【解析】 【分析】由抛物线解析式确定出其对称轴为x=1,分m >1或m+1<1两种情况,分别确定出其最小值,由最小值为6,则可得到关于m 的方程,可求得m 的值. 【详解】∵y =x 2﹣2x+2=(x ﹣1)2+1, ∴抛物线开口向上,对称轴为x =1,当m >1时,可知当自变量x 满足m≤x≤m+1时,y 随x 的增大而增大, ∴当x =m 时,y 有最小值,∴m 2﹣2m+2=6,解得m =1+5或m =1﹣5(舍去),当m+1<1时,可知当自变量x 满足m≤x≤m+1时,y 随x 的增大而减小, ∴当x =m+1时,y 有最小值,∴(m+1)2﹣2(m+1)+2=6,解得m =5(舍去)或m =﹣5, 综上可知m 的值为1+5或﹣5. 故选B . 【点睛】本题主要考查二次函数的性质,用m 表示出其最小值是解题的关键.9.如图,抛物线2y ax bx c =++ 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,3),(0,4)之间(包含端点),则下列结论:①abc >0;②3a +b <0;③﹣43≤a ≤﹣1;④a +b ≥am 2+bm (m 为任意实数);⑤一元二次方程2ax bx c n ++=有两个不相等的实数根,其中正确的有( )A .2个B .3个C .4个D .5个【答案】B 【解析】解:∵抛物线开口向下,∴a <0,∵顶点坐标(1,n ),∴对称轴为直线x =1,∴2b a-=1,∴b =﹣2a >0,∵与y 轴的交点在(0,3),(0,4)之间(包含端点),∴3≤c ≤4,∴abc <0,故①错误;3a +b =3a +(﹣2a )=a <0,故②正确;∵与x 轴交于点A (﹣1,0),∴a ﹣b +c =0,∴a ﹣(﹣2a )+c =0,∴c =﹣3a ,∴3≤﹣3a ≤4,∴﹣43≤a ≤﹣1,故③正确; ∵顶点坐标为(1,n ),∴当x =1时,函数有最大值n ,∴a +b +c ≥am 2+bm +c ,∴a +b ≥am 2+bm ,故④正确;一元二次方程2ax bx c n ++=有两个相等的实数根x 1=x 2=1,故⑤错误. 综上所述,结论正确的是②③④共3个.故选B .点睛:本题考查了抛物线与x 轴的交点,二次函数的性质,主要利用了二次函数的开口方向,对称轴,最值问题,以及二次函数图象上点的坐标特征,关键在于根据顶点横坐标表示出a 、b 的关系.10.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B 【解析】 【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意. 【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值, ∴选项B 符合题意,选项A 不合题意. 故选B . 【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.11.如图是二次函数2y ax bx c =++的图象,其对称轴为1x =.下列结论:①0abc >;②20a b +=;③930a b c ++<;④若12310,,,23y y ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭是抛物线上两点,则12y y >.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B 【解析】 【分析】由抛物线开口方向得到a <0,根据对称轴得到b=-2a >0,由抛物线与y 轴的交点位置得到c >0,则可对①进行判断;由b=-2a 可对②进行判断;利用抛物线的对称性可得到抛物线与x 轴的另一个交点为(3,0),则可判断当x=3时,y=0,于是可对③进行判断;通过二次函数的增减性可对④进行判断. 【详解】解:∵抛物线开口向下, ∴a <0,∵抛物线的对称轴为直线12bx a=-= ,∴b=-2a >0, ∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以①错误; ∵b=-2a ,∴2a+b=0,所以②正确;∵抛物线与x 轴的一个交点为(-1,0),抛物线的对称轴为直线x=1, ∴抛物线与x 轴的另一个交点为(3,0), ∴当x=3时,y=0,∴930a b c ++=,所以③错误;∵抛物线的对称轴为直线x=1,且抛物线开口向下, ∴当x 1<时,y 随x 的增大而增大 ∵103132-<-< 点13,2y ⎛⎫-⎪⎝⎭到对称轴的距离比点210,3y ⎛⎫- ⎪⎝⎭对称轴的距离近, ∴y 1>y 2,所以④正确. 故选B . 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.12.在平面直角坐标系内,已知点A (﹣1,0),点B (1,1)都在直线1122y x =+上,若抛物线y =ax 2﹣x +1(a ≠0)与线段AB 有两个不同的交点,则a 的取值范围是( )A .a ≤﹣2B .a <98C .1≤a <98或a ≤﹣2 D .﹣2≤a <98【答案】C 【解析】 【分析】分a >0,a <0两种情况讨论,根据题意列出不等式组,可求a 的取值范围. 【详解】∵抛物线y =ax 2﹣x +1(a ≠0)与线段AB 有两个不同的交点,∴令1122x +=ax 2﹣x +1,则2ax 2﹣3x +1=0 ∴△=9﹣8a >0∴a <98①当a <0时,110111a a ++≤⎧⎨-+≤⎩解得:a ≤﹣2 ∴a ≤﹣2②当a >0时,110111a a ++≥⎧⎨-+≥⎩解得:a ≥1 ∴1≤a <98综上所述:1≤a <98或a ≤﹣2 故选:C . 【点睛】本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键.13.如图,已知()4,1A --,线段AB 与x 轴平行,且2AB =,抛物线2y x mx n =-++经过点()0,3C 和()3,0D ,若线段AB 以每秒2个单位长度的速度向下平移,设平移的时间为t (秒).若抛物线与线段AB 有公共点,则t 的取值范围是( )A .010t ≤≤B .210t ≤≤C .28t ≤≤D .210t <<【答案】B 【解析】 【分析】直接利用待定系数法求出二次函数,得出B 点坐标,分别得出当抛物线l 经过点B 时,当抛物线l 经过点A 时,求出y 的值,进而得出t 的取值范围; 【详解】解:(1)把点C (0,3)和D (3,0)的坐标代入y=-x 2+mx+n 中, 得,23330n m n =⎧⎨-++=⎩解得32n m =⎧⎨=⎩∴抛物线l 解析式为y=-x 2+2x+3,设点B 的坐标为(-2,-1-2t ),点A 的坐标为(-4,-1-2t ), 当抛物线l 经过点B 时,有y=-(-2)2+2×(-2)+3=-5, 当抛物线l 经过点A 时,有y=-(-4)2+2×(-4)+3=-21, 当抛物线l 与线段AB 总有公共点时,有-21≤-1-2t≤-5, 解得:2≤t≤10. 故应选B 【点睛】此题主要考查了二次函数综合以及不等式组的解法等知识,正确利用数形结合分析得出关于t 的不等式是解题关键.14.若A (-4,1y ),B (-3,2y ),C (1,3y )为二次函数y =x 2+4x -m 的图象上的三点,则1y ,2y ,3y 的大小关系是( ) A .1y <2y <3y B .3y <1y <2yC .2y <1y <3yD .1y <3y <2y【答案】C 【解析】 【分析】分别将点的坐标代入二次函数解析式,然后进行判断即可. 【详解】解:y 1=(-4)2+4×(-4)m -=16-16m - =m -, y 2=(-3)2+4×(-3)m - =9-12m - =3m --, y 3=12+4×m - 1=1+4m - =5m -, ∵-3m -<m -<5m -, ∴y 2<y 1<y 3. 故选:C. 【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键在于三个函数值的大小不受m的影响.15.二次函数y=ax2+bx+c(a≠0)中的x与y的部分对应值如下表:给出以下结论:(1)二次函数y=ax2+bx+c有最小值,最小值为﹣3;(2)当﹣12<x<2时,y<0;(3)已知点A(x1,y1)、B(x2,y2)在函数的图象上,则当﹣1<x1<0,3<x2<4时,y1>y2.上述结论中正确的结论个数为()A.0 B.1 C.2 D.3【答案】B【解析】【分析】根据表格的数据,以及二次函数的性质,即可对每个选项进行判断.【详解】解:(1)函数的对称轴为:x=1,最小值为﹣4,故错误,不符合题意;(2)从表格可以看出,当﹣12<x<2时,y<0,符合题意;(3)﹣1<x1<0,3<x2<4时,x2离对称轴远,故错误,不符合题意;故选择:B.【点睛】本题考查了二次函数的最值,抛物线与x轴的交点,仔细分析表格数据,熟练掌握二次函数的性质是解题的关键.16.若平面直角坐标系内的点M满足横、纵坐标都为整数,则把点M叫做“整点”.例如:P(1,0)、Q(2,﹣2)都是“整点”.抛物线y=mx2﹣4mx+4m﹣2(m>0)与x轴交于点A、B两点,若该抛物线在A、B之间的部分与线段AB所围成的区域(包括边界)恰有七个整点,则m的取值范围是()A.12≤m<1 B.12<m≤1C.1<m≤2D.1<m<2【答案】B【解析】【分析】画出图象,利用图象可得m的取值范围【详解】∵y=mx2﹣4mx+4m﹣2=m(x﹣2)2﹣2且m>0,∴该抛物线开口向上,顶点坐标为(2,﹣2),对称轴是直线x =2. 由此可知点(2,0)、点(2,﹣1)、顶点(2,﹣2)符合题意.①当该抛物线经过点(1,﹣1)和(3,﹣1)时(如答案图1),这两个点符合题意. 将(1,﹣1)代入y =mx 2﹣4mx +4m ﹣2得到﹣1=m ﹣4m +4m ﹣2.解得m =1. 此时抛物线解析式为y =x 2﹣4x +2.由y =0得x 2﹣4x +2=0.解得12120.622 3.42x x ==-≈+≈,. ∴x 轴上的点(1,0)、(2,0)、(3,0)符合题意.则当m =1时,恰好有 (1,0)、(2,0)、(3,0)、(1,﹣1)、(3,﹣1)、(2,﹣1)、(2,﹣2)这7个整点符合题意.∴m ≤1.【注:m 的值越大,抛物线的开口越小,m 的值越小,抛物线的开口越大】答案图1(m =1时) 答案图2( m =时)②当该抛物线经过点(0,0)和点(4,0)时(如答案图2),这两个点符合题意. 此时x 轴上的点 (1,0)、(2,0)、(3,0)也符合题意. 将(0,0)代入y =mx 2﹣4mx +4m ﹣2得到0=0﹣4m +0﹣2.解得m =12. 此时抛物线解析式为y =12x 2﹣2x . 当x =1时,得13121122y =⨯-⨯=-<-.∴点(1,﹣1)符合题意.当x =3时,得13923122y =⨯-⨯=-<-.∴点(3,﹣1)符合题意. 综上可知:当m =12时,点(0,0)、(1,0)、(2,0)、(3,0)、(4,0)、(1,﹣1)、(3,﹣1)、(2,﹣2)、(2,﹣1)都符合题意,共有9个整点符合题意, ∴m =12不符合题. ∴m >12.综合①②可得:当12<m ≤1时,该函数的图象与x 轴所围成的区域(含边界)内有七个整点, 故选:B . 【点睛】考查二次函数图象与系数的关系,抛物线与x 轴的交点,画出图象,数形结合是解题的关键.17.在同一平面直角坐标系中,函数3y x a =+与2+3y ax x =的图象可能是( )A .B .C .D .【答案】C 【解析】 【分析】根据一次函数及二次函数的图像性质,逐一进行判断. 【详解】解:A.由一次函数图像可知a >0,因此二次函数图像开口向上,但对称轴302a-<应在y 轴左侧,故此选项错误;B. 由一次函数图像可知a <0,而由二次函数图像开口方向可知a >0,故此选项错误;C. 由一次函数图像可知a <0,因此二次函数图像开口向下,且对称轴302a->在y 轴右侧,故此选项正确;D. 由一次函数图像可知a >0,而由二次函数图像开口方向可知a <0,故此选项错误; 故选:C . 【点睛】本题考查二次函数与一次函数图象的性质,解题的关键是利用数形结合思想分析图像,本题属于中等题型.18.在同一直角坐标系中,反比例函数图像与二次函数图像的交点的个数至少有() A.0B.1C.2D.3【答案】B【解析】【分析】根据二次函数和反比例函数的图象位置,画出图象,直接判断交点个数.【详解】若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第一,三象限,故两个函数的交点只有一个,在第三象限.同理,若二次函数的图象在第三、四象限,开口向下,顶点在原点,y轴是对称轴;反比例函数的图象在第二,四象限,故两个函数的交点只有一个,在第四象限.故答案为:B.【点睛】本题考查了二次函数和反比例函数的图象问题,掌握二次函数和反比例函数的图象性质是解题的关键.19.如图1,在△ABC中,∠B=90°,∠C=30°,动点P从点B开始沿边BA、AC向点C以恒定的速度移动,动点Q从点B开始沿边BC向点C以恒定的速度移动,两点同时到达点C,设△BPQ的面积为y(cm2).运动时间为x(s),y与x之间关系如图2所示,当点P 恰好为AC的中点时,PQ的长为()A.2 B.4 C.3D.3【答案】C【解析】【分析】点P、Q的速度比为3:3,根据x=2,y=63,确定P、Q运动的速度,即可求解.【详解】解:设AB=a,∠C=30°,则AC=2a,BC=3a,设P、Q同时到达的时间为T,则点P的速度为3aT,点Q的速度为3aT,故点P、Q的速度比为3:3,故设点P、Q的速度分别为:3v、3v,由图2知,当x=2时,y=63,此时点P到达点A的位置,即AB=2×3v=6v,BQ=2×3v=23v,y=12⨯AB×BQ=12⨯6v×23v=63,解得:v=1,故点P、Q的速度分别为:3,3,AB=6v=6=a,则AC=12,BC=63,如图当点P在AC的中点时,PC=6,此时点P运动的距离为AB+AP=12,需要的时间为12÷3=4,则BQ=3x=43,CQ=BC﹣BQ=63﹣43=23,过点P作PH⊥BC于点H,PC=6,则PH=PC sin C=6×12=3,同理CH=33,则HQ=CH﹣CQ=33﹣23=3,PQ=22PH HQ+=39+=23,故选:C.【点睛】本题考查的是动点图象问题,此类问题关键是:弄清楚不同时间段,图象和图形的对应关系,进而求解.20.如图抛物线交轴于和点,交轴负半轴于点,且.有下列结论:①;②;③.其中,正确结论的个数是()A.B.C.D.【答案】C【解析】【分析】根据抛物线的开口方向,对称轴公式以及二次函数图象上点的坐标特征来判断a、b、c的符号以及它们之间的数量关系,即可得出结论.【详解】解:根据图象可知a>0,c<0,b>0,∴, 故③错误;∵.∴B(-c,0)∴抛物线y=ax2+bx+c与x轴交于A(-2,0)和B(-c,0)两点,∴, ac2-bc+c=0∴,ac-b+1=0,∴,故②正确;∴,b=ac+1∴,∴2b-c=2,故①正确;故选:C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a 决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异);常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.。
二次函数的实际应用(21题)一、单选题1(2024·天津·中考真题)从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t-5t20≤t≤6.有下列结论:①小球从抛出到落地需要6 s;②小球运动中的高度可以是30 m;③小球运动2 s时的高度小于运动5 s时的高度.其中,正确结论的个数是()A.0B.1C.2D.3【答案】C【分析】本题考查二次函数的图像和性质,令�=0解方程即可判断①;配方成顶点式即可判断②;把t=2和t=5代入计算即可判断③.【详解】解:令�=0,则30t-5t2=0,解得:t1=0,t2=6,∴小球从抛出到落地需要6 s,故①正确;∵�=30t-5t2=-5x-32+45,∴最大高度为45m,∴小球运动中的高度可以是30 m,故②正确;当t=2时,�=30×2-5×22=40;当t=5时,�=30×5-5×52=25;∴小球运动2 s时的高度大于运动5 s时的高度,故③错误;故选C.2(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰Rt△ABC中,∠BAC=90°,AB=12,动点E,F同时从点A出发,分别沿射线AB和射线AC的方向匀速运动,且速度大小相同,当点E停止运动时,点F也随之停止运动,连接EF,以EF为边向下做正方形EFGH,设点E运动的路程为x0<x<12,正方形EFGH和等腰Rt△ABC重合部分的面积为下列图像能反映y与x之间函数关系的是()A. B.C. D.【答案】A 【分析】本题考查动态问题与函数图象,能够明确y 与x 分别表示的意义,并找到几何图形与函数图象之间的关系,以及对应点是解题的关键,根据题意并结合选项分析当HG 与BC 重合时,及当x ≤4时图象的走势,和当x >4时图象的走势即可得到答案.【详解】解:当HG 与BC 重合时,设AE =x ,由题可得:∴EF =EH =2x ,BE =12-x ,在Rt △EHB 中,由勾股定理可得:BE 2=BH 2+EH 2,∴2x 2+2x 2=12-x 2,∴x =4,∴当0<x ≤4时,y =2x 2=2x 2,∵2>0,∴图象为开口向上的抛物线的一部分,当HG 在BC 下方时,设AE =x ,由题可得:∴EF =2x ,BE =12-x ,∵∠AEF =∠B =45°,∠A =∠EOB =90°,∴△FAE ∽△EOB ,∴AE EF =EO EB ,∴x 2x=EO 12-x ,∴EO =12-x 2,∴当4<x <12时,y =2x ·12-x 2=12-x x =-x 2+12x ,∵-1<0,∴图象为开口向下的抛物线的一部分,综上所述:A 正确,故选:A .3(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD 中,AB =6cm ,BC =8cm ,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,EF =23cm ,∠E =60°,现将菱形EFGH 以1cm/s 的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD重叠部分的面积S cm 2 与运动时间t s 之间的函数关系图象大致是()A. B.C. D.【答案】D 【分析】本题考查了解直角三角形的应用,菱形的性质,动点问题的函数图象,二次函数的图象的性质,先求得菱形的面积为63,进而分三种情形讨论,重合部分为三角形,重合部分为五边形,重合部分为菱形,分别求得面积与运动时间的函数关系式,结合选项,即可求解.【详解】解:如图所示,设EG ,HF 交于点O ,∵菱形EFGH ,∠E =60°,∴HG =GF又∵∠E =60°,∴△HFG 是等边三角形,∵EF =23cm ,∠HEF =60°,∴∠OEF =30°∴EG =2EO =2×EF cos30°=3EF =6∴S 菱形EFG H =12EG ⋅FH =12×6×23=63当0≤x ≤3时,重合部分为△MNG ,如图所示,依题意,△MNG 为等边三角形,运动时间为t ,则NG =t cos30°=233t ,∴S =12×NG ×NG ×sin60°=34233t 2=33t 2当3<x≤6时,如图所示,依题意,EM=EG-t=6-t,则EK=EMsin60°=6-t32=2336-t∴S△EKJ=12EJ⋅EM=12×2336-t2=336-t2∴S=S菱形EFGH-S△EKJ=6-336-t2=-33t2+43t-123+6∵EG=6<BC∴当6<x≤8时,S=63当8<x≤11时,同理可得,S=6-33t-82当11<x≤14时,同理可得,S=336-t-82=3314-t2综上所述,当0≤x≤3时,函数图象为开口向上的一段抛物线,当3<x≤6时,函数图象为开口向下的一段抛物线,当6<x≤8时,函数图象为一条线段,当8<x≤11时,函数图象为开口向下的一段抛物线,当11<x≤14时,函数图象为开口向上的一段抛物线;故选:D.二、填空题4(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是74m ,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM =m .【答案】353【分析】本题考查的是二次函数的实际应用,设抛物线为y =a x -5 2+4,把点0,74,代入即可求出解析式;当y =0时,求得x 的值,即为实心球被推出的水平距离OM .【详解】解:以点O 为坐标原点,射线OM 方向为x 轴正半轴,射线OP 方向为y 轴正半轴,建立平面直角坐标系,∵出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .设抛物线解析式为:y =a x -5 2+4,把点0,74 代入得:25a +4=74,解得:a =-9100,∴抛物线解析式为:y =-9100x -5 2+4;当y =0时,-9100x -5 2+4=0,解得,x 1=-53(舍去),x 2=353,即此次实心球被推出的水平距离OM 为353m .故答案为:3535(2024·甘肃·中考真题)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系y =-0.02x 2+0.3x +1.6的图象,点B 6,2.68 在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长CD =4m ,高DE =1.8m 的矩形,则可判定货车完全停到车棚内(填“能”或“不能”).【答案】能【分析】本题主要考查了二次函数的实际应用,根据题意求出当x =2时,y 的值,若此时y 的值大于1.8,则货车能完全停到车棚内,反之,不能,据此求解即可.【详解】解:∵CD =4m ,B 6,2.68 ,∴6-4=2,在y =-0.02x 2+0.3x +1.6中,当x =2时,y =-0.02×22+0.3×2+1.6=2.12,∵2.12>1.8,∴可判定货车能完全停到车棚内,故答案为:能.6(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB ⊥CD 于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得AE =6.6m ,OE =1.4m ,OB =6m ,OC =5m ,OD =3m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是cm 2.【答案】46.4【分析】本题考查了二次函数的应用.要利用围墙和围栏围成一个面积最大的封闭的矩形菜地,那就必须尽量使用原来的围墙,观察图形,利用AO 和OC 才能使该矩形菜地面积最大,分情况,利用矩形的面积公式列出二次函数,利用二次函数的性质求解即可.【详解】解:要使该矩形菜地面积最大,则要利用AO 和OC 构成矩形,设矩形在射线OA 上的一段长为xm ,矩形菜地面积为S ,当x ≤8时,如图,则在射线OC 上的长为16-x -1.4+52=19.6-x 2则S =x ⋅19.6-x 2=-12x 2+9.8x =-12x -9.8 2+48.02,∵-12<0,∴当x ≤9.8时,S 随x 的增大而增大,∴当x =8时,S 的最大值为46.4;当x >8时,如图,则矩形菜园的总长为16+6.6+5 =27.6m ,则在射线OC 上的长为27.6-2x 2则S =x ⋅13.8-x =-x 2+13.8x =-x -6.9 2+47.61,∵-1<0,∴当x <6.9时,S 随x 的增大而减少,∴当x >8时,S 的值均小于46.4;综上,矩形菜地的最大面积是46.4cm 2;故答案为:46.4.三、解答题7(2024·陕西·中考真题)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索L 1与缆索L 2均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线FF 为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索L 1所在抛物线与缆索L 2所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离OC =100m ,AO =BC =17m ,缆索L 1的最低点P 到FF 的距离PD =2m (桥塔的粗细忽略不计)(1)求缆索L 1所在抛物线的函数表达式;(2)点E 在缆索L 2上,EF ⊥FF ,且EF =2.6m ,FO <OD ,求FO 的长.【答案】(1)y =3500x -50 2+2;(2)FO 的长为40m .【分析】本题考查了二次函数的应用,待定系数法求二次函数解析式,根据题意求得函数解析式是解题的关键.(1)根据题意设缆索L 1所在抛物线的函数表达式为y =a x -50 2+2,把0,17 代入求解即可;(2)根据轴对称的性质得到缆索L 2所在抛物线的函数表达式为y =3500x +50 2+2,由EF =2.6m ,把y =2.6代入求得x 1=-40,x 2=-60,据此求解即可.【详解】(1)解:由题意得顶点P 的坐标为50,2 ,点A 的坐标为0,17 ,设缆索L 1所在抛物线的函数表达式为y =a x -50 2+2,把0,17 代入得17=a 0-50 2+2,解得a =3500,∴缆索L 1所在抛物线的函数表达式为y =3500x -50 2+2;(2)解:∵缆索L 1所在抛物线与缆索L 2所在抛物线关于y 轴对称,∴缆索L 2所在抛物线的函数表达式为y =3500x +50 2+2,∵EF =2.6,∴把y =2.6代入得,2.6=3500x +50 2+2,解得x 1=-40,x 2=-60,∴FO=40m或FO=60m,∵FO<OD,∴FO的长为40m.8(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长80m.设垂直于墙的边AB长为x米,平行于墙的边BC为y米,围成的矩形面积为Scm2.(1)求y与x,s与x的关系式.(2)围成的矩形花圃面积能否为750cm2,若能,求出x的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x的值.【答案】(1)y=80-2x19≤x<40;s=-2x2+80x(2)能,x=25(3)s的最大值为800,此时x=20【分析】本题主要考查一元二次方程的应用和二次函数的实际应用:(1)根据AB+BC+CD=80可求出y与x之间的关系,根据墙的长度可确定x的范围;根据面积公式可确立二次函数关系式;(2)令s=750,得一元二次方程,判断此方程有解,再解方程即可;(3)根据自变量的取值范围和二次函数的性质确定函数的最大值即可.【详解】(1)解:∵篱笆长80m,∴AB+BC+CD=80,∵AB=CD=x,BC=y,∴x+y+x=80,∴y=80-2x∵墙长42m,∴0<80-2x≤42,解得,19≤x<40,∴y=80-2x19≤x<40;又矩形面积s=BC⋅AB=y⋅x=80-2xx=-2x2+80x;(2)解:令s=750,则-2x2+80x=750,整理得:x2-40x+375=0,此时,Δ=b 2-4ac =-40 2-4×375=1600-1500=100>0,所以,一元二次方程x 2-40x +375=0有两个不相等的实数根,∴围成的矩形花圃面积能为750cm 2;∴x =--40 ±1002,∴x 1=25,x 2=15,∵19≤x <40,∴x =25;(3)解:s =-2x 2+80x =-2x -20 2+800∵-2<0,∴s 有最大值,又19≤x <40,∴当x =20时,s 取得最大值,此时s =800,即当x =20时,s 的最大值为8009(2024·河南·中考真题)从地面竖直向上发射的物体离地面的高度h m 满足关系式h =-5t 2+v 0t ,其中t s 是物体运动的时间,v 0m/s 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后s 时离地面的高度最大(用含v 0的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.【答案】(1)v 010(2)20m/s (3)小明的说法不正确,理由见解析【分析】本题考查了二次函数的应用,解题的关键是:(1)把函数解析式化成顶点式,然后利用二次函数的性质求解即可;(2)把t =v 010,h =20代入h =-5t 2+v 0t 求解即可;(3)由(2),得h =-5t 2+20t ,把h =15代入,求出t 的值,即可作出判断.【详解】(1)解:h =-5t 2+v 0t=-5t -v 010 2+v 0220,∴当t =v 010时,h 最大,故答案为:v 010;(2)解:根据题意,得当t =v 010时,h =20,∴-5×v 0102+v 0×v 010=20,∴v 0=20m/s (负值舍去);(3)解:小明的说法不正确.理由如下:由(2),得h =-5t 2+20t ,当h =15时,15=-5t 2+20t ,解方程,得t 1=1,t 2=3,∴两次间隔的时间为3-1=2s ,∴小明的说法不正确.10(2024·湖北武汉·中考真题)16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线y =ax 2+x 和直线y =-12x +b .其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .【答案】(1)①a =-115,b =8.1;②8.4km (2)-227<a <0【分析】本题考查了二次函数和一次函数的综合应用,涉及待定系数法求解析式,二次函数的图象和性质,一次函数的图象与性质等知识点,熟练掌握二次函数和一次函数的图象与性质是解题的关键.(1)①将9,3.6 代入即可求解;②将y =-115x 2+x 变为y =-115x -152 2+154,即可确定顶点坐标,得出y =2.4km ,进而求得当y =2.4km 时,对应的x 的值,然后进行比较再计算即可;(2)若火箭落地点与发射点的水平距离为15km ,求得a =-227,即可求解.【详解】(1)解:①∵火箭第二级的引发点的高度为3.6km∴抛物线y=ax2+x和直线y=-12x+b均经过点9,3.6∴3.6=81a+9,3.6=-12×9+b解得a=-115,b=8.1.②由①知,y=-12x+8.1,y=-115x2+x∴y=-115x2+x=-115x-1522+154∴最大值y=154km当y=154-1.35=2.4km时,则-115x2+x=2.4解得x1=12,x2=3又∵x=9时,y=3.6>2.4∴当y=2.4km时,则-12x+8.1=2.4解得x=11.44-3=8.4km∴这两个位置之间的距离8.4km.(2)解:当水平距离超过15km时,火箭第二级的引发点为9,81a+9,将9,81a+9,15,0代入y=-12x+b,得81a+9=-12×9+b,0=-12×15+b解得b=7.5,a=-2 27∴-227<a<0.11(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒.(1)求这两种粽子的进价;(2)设猪肉粽每盒售价x元52≤x≤70,y表示该商家销售猪肉粽的利润(单位:元),求y关于x的函数表达式并求出y的最大值.【答案】(1)猪肉粽每盒50元,豆沙粽每盒30元(2)y=-10x2+1200x-35000或y=-10x-602+1000,当x=60时,y取得最大值为1000元【分析】本题考查列分式方程解应用题和二次函数求最值,解决本题的关键是正确寻找本题的等量关系及二次函数配方求最值问题.(1)设豆沙粽每盒的进价为n元,则猪肉粽每盒的进价为n+20元.根据“用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同”即可列出方程,求解并检验即可;(2)根据题意可列出y关于x的函数解析式,再根据二次函数的性质即可解答.【详解】(1)解:设豆沙粽每盒的进价为n元,则猪肉粽每盒的进价为n+20元由题意得:5000n+20=3000n解得:n=30经检验:n=30是原方程的解且符合题意∴n+20=50答:猪肉粽每盒50元,豆沙粽每盒30元.(2)解:设猪肉粽每盒售价x元52≤x≤70,y表示该商家销售猪肉粽的利润(单位:元),则y=x-50180-10x-52=-10x2+1200x-35000=-10x-602+1000∵52≤x≤70,-10<0,∴当x=60时,y取得最大值为1000元.12(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.销售单价x/元⋯1214161820⋯销售量y/盒⋯5652484440⋯(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.【答案】(1)y=-2x+80(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元(3)2【分析】本题考查了二次函数的应用,解题的关键是:(1)利用待定系数法求解即可;(2)设日销售利润为w元,根据利润=单件利润×销售量求出w关于x的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w元,根据利润=单件利润×销售量-m×销售量求出w关于x的函数表达式,然后利用二次函数的性质求解即可.【详解】(1)解∶设y与x的函数表达式为y=kx+b,把x=12,y=56;x=20,y=40代入,得12k+b=56 20k+b=40 ,解得k =-2b =80 ,∴y 与x 的函数表达式为y =-2x +80;(2)解:设日销售利润为w 元,根据题意,得w =x -10 ⋅y=x -10 -2x +80=-2x 2+100x -800=-2x -25 2+450,∴当x =25时,w 有最大值为450,∴糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元;(3)解:设日销售利润为w 元,根据题意,得w =x -10-m ⋅y=x -10-m -2x +80=-2x 2+100+2m x -800-80m ,∴当x =-100+2m 2×-2=50+m 2时,w 有最大值为-250+m 2 2+100+2m 50+m 2 -800-80m ,∵糖果日销售获得的最大利润为392元,∴-250+m 22+100+2m 50+m 2 -800-80m =392,化简得m 2-60m +116=0解得m 1=2,m 2=58当m =58时,x =-b 2a=54,则每盒的利润为:54-10-58<0,舍去,∴m 的值为2.13(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)【答案】当定价为4.5万元每吨时,利润最大,最大值为312.5万元【分析】本题主要考查了二次函数的实际应用,设每吨降价x 万元,每天的利润为w 万元,根据利润=每吨的利润×销售量列出w 关于x 的二次函数关系式,利用二次函数的性质求解即可.【详解】解:设每吨降价x 万元,每天的利润为w 万元,由题意得,w =5-x -2 100+50x=-50x 2+50x +300=-50x-122+312.5,∵-50<0,∴当x=12时,w有最大值,最大值为312.5,∴5-x=4.5,答:当定价为4.5万元每吨时,利润最大,最大值为312.5万元.14(2024·四川遂宁·中考真题)某酒店有A、B两种客房、其中A种24间,B种20间.若全部入住,一天营业额为7200元;若A、B两种客房均有10间入住,一天营业额为3200元.(1)求A、B两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?【答案】(1)A种客房每间定价为200元,B种客房每间定价为为120元;(2)当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.【分析】(1)设A种客房每间定价为x元,B种客房每间定价为为y元,根据题意,列出方程组即可求解;(2)设A种客房每间定价为a元,根据题意,列出W与a的二次函数解析式,根据二次函数的性质即可求解;本题考查了二元一次方程组的应用,二次函数的应用,根据题意,正确列出二元一次方程组和二次函数解析式是解题的关键.【详解】(1)解:设A种客房每间定价为x元,B种客房每间定价为为y元,由题意可得,24x+20y=7200 10x+10y=3200,解得x=200 y=120 ,答:A种客房每间定价为200元,B种客房每间定价为为120元;(2)解:设A种客房每间定价为a元,则W=24-a-200 10a=-110a2+44a=-110a-2202+4840,∵-110<0,∴当a=220时,W取最大值,W最大值=4840元,答:当A种客房每间定价为220元时,A种客房一天的营业额W最大,最大营业额为4840元.15(2024·四川南充·中考真题)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A类特产和5件B类特产需540元.(1)求A类特产和B类特产每件的售价各是多少元?(2)A类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A类特产降价x元,每天的销售量为y件,求y与x的函数关系式,并写出自变量x的取值范围.(3)在(2)的条件下,由于B类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w元,求w与x的函数关系式,并求出每件A类特产降价多少元时总利润w最大,最大利润是多少元?(利润=售价-进价)【答案】(1)A类特产的售价为60元/件,B类特产的售价为72元/件(2)y=10x+60(0≤x≤10)(3)A类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,1 根据题意设每件A类特产的售价为x元,则每件B类特产的售价为132-x元,进一步得到关于x的一元一次方程求解即可;2 根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x得取值范围;3 结合(2)中A类特产降价x元与每天的销售量y件,得到A类特产的利润,同时求得B类特产的利润,整理得到关于x的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A类特产的售价为x元,则每件B类特产的售价为132-x元.根据题意得3x+5132-x=540.解得x=60.则每件B类特产的售价132-60=72(元).答:A类特产的售价为60元/件,B类特产的售价为72元/件.(2)由题意得y=10x+60∵A类特产进价50元/件,售价为60元/件,且每件售价不低于进价∴0≤x≤10.答:y=10x+60(0≤x≤10).(3)w=(60-50-x)(10x+60)+100×(72-60)=-10x2+40x+1800=-10(x-2)2+1840.∵-10<0,∴当x=2时,w有最大值1840.答:A类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.16(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.制定加工方案生产背景背景1◆某民族服装厂安排70名工人加工一批夏季服装,有“风”“雅”“正”三种样式.◆因工艺需要,每位工人每天可加工且只能加工“风”服装2件,或“雅”服装1件,或“正”服装1件.◆要求全厂每天加工“雅”服装至少10件,“正”服装总件数和“风”服装相等.背景2每天加工的服装都能销售出去,扣除各种成本,服装厂的获利情况为:①“风”服装:24元/件;②“正”服装:48元/件;③“雅”服装:当每天加工10件时,每件获利100元;如果每天多加工1件,那么平均每件获利将减少2元.信息整理现安排x名工人加工“雅”服装,y名工人加工“风”服装,列表如下:探究任务任务1探寻变量关系求x、y之间的数量关系.任务2建立数学模型设该工厂每天的总利润为w元,求w关于x的函数表达式.任务3拟定加工方案制定使每天总利润最大的加工方案.【答案】任务1:y=-13x+703;任务2:w=-2x2+72x+3360(x>10);任务3:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润【分析】题目主要考查一次函数及二次函数的应用,理解题意,根据二次函数的性质求解是解题关键.任务1:根据题意安排x名工人加工“雅”服装,y名工人加工“风”服装,得出加工“正”服装的有70-x-y人,然后利用“正”服装总件数和“风”服装相等,得出关系式即可得出结果;任务2:根据题意得:“雅”服装每天获利为:x100-2x-10,然后将2种服装的获利求和即可得出结果;任务3:根据任务2结果化为顶点式,然后结合题意,求解即可.【详解】解:任务1:根据题意安排70名工人加工一批夏季服装,∵安排x名工人加工“雅”服装,y名工人加工“风”服装,∴加工“正”服装的有70-x-y人,∵“正”服装总件数和“风”服装相等,∴70-x-y×1=2y,整理得:y=-13x+703;任务2:根据题意得:“雅”服装每天获利为:x100-2x-10,∴w=2y×24+70-x-y×48+x100-2x-10,整理得:w=-16x+1120+-32x+2240+-2x2+120x∴w=-2x2+72x+3360(x>10)任务3:由任务2得w=-2x2+72x+3360=-2x-182+4008,∴当x=18时,获得最大利润,y=-13×18+703=523,∴x≠18,∵开口向下,∴取x=17或x=19,当x=17时,y=533,不符合题意;当x=19时,y=513=17,符合题意;∴70-x-y=34,综上:安排17名工人加工“雅”服装,17名工人加工“风”服装,34名工人加工“正”服装,即可获得最大利润.17(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?【答案】(1)y=-25x2+20x+12000,每辆轮椅降价20元时,每天的利润最大,为12240元(2)这天售出了64辆轮椅【分析】本题考查二次函数的实际应用,正确的列出函数关系式,是解题的关键:(1)根据总利润等于单件利润乘以销量,列出二次函数关系式,再根据二次函数的性质求最值即可;(2)令y=12160,得到关于x的一元二次方程,进行求解即可.【详解】(1)解:由题意,得:y=200-x60+x10×4=-25x2+20x+12000;∵每辆轮椅的利润不低于180元,∴200-x≥180,∴x≤20,∵y=-25x2+20x+12000=-25x-252+12250,∴当x<25时,y随x的增大而增大,∴当x=20时,每天的利润最大,为-25×20-252+12250=12240元;答:每辆轮椅降价20元时,每天的利润最大,为12240元;(2)当y=12160时,-25x2+20x+12000=12160,解得:x1=10,x2=40(不合题意,舍去);∴60+1010×4=64(辆);答:这天售出了64辆轮椅.18(2024·江西·中考真题)如图,一小球从斜坡O点以一定的方向弹出球的飞行路线可以用二次函数y=ax2+bx a<0刻画,斜坡可以用一次函数y=14x刻画,小球飞行的水平距离x(米)与小球飞行的高度y(米)的变化规律如下表:x012m4567⋯y07261528152n72⋯(1)①m =,n =;②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系y =-5t 2+vt .①小球飞行的最大高度为米;②求v 的值.【答案】(1)①3,6;②152,158;(2)①8,②v =410【分析】本题主要考查二次函数的应用以及从图象和表格中获取数据,(1)①由抛物线的顶点坐标为4,8 可建立过于a ,b 的二元一次方程组,求出a ,b 的值即可;②联立两函数解析式求解,可求出交点A 的坐标;(2)①根据第一问可知最大高度为8米;②将小球飞行高度与飞行时间的函数关系式化简为顶点式即可求得v 值.【详解】(1)解:①根据小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律表可知:抛物线顶点坐标为4,8 ,∴-b 2a =4-b 24a =8 ,解得:a =-12b =4 ,∴二次函数解析式为y =-12x 2+4x ,当y =152时,-12x 2+4x =152,解得:x =3或x =5(舍去),∴m =3,当x =6时,n =y =-12×62+4×6=6,故答案为:3,6.②联立得:y =-12x 2+4x y =14x ,解得:x =0y =0 或x =152y =158,∴点A 的坐标是152,158,(2)①由题干可知小球飞行最大高度为8米,故答案为:8;②y =-5t 2+vt =-5t -v 10 2+v 220,则v 220=8,解得v =410(负值舍去).19(2024·江苏苏州·中考真题)如图,△ABC 中,AC =BC ,∠ACB =90°,A -2,0 ,C 6,0 ,反比例函数y =k xk ≠0,x >0 的图象与AB 交于点D m ,4 ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数y =k xk ≠0,x >0 图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM ∥AB ,交y 轴于点M ,过点P 作PN ∥x 轴,交BC 于点N ,连接MN ,求△PMN 面积的最大值,并求出此时点P 的坐标.【答案】(1)m =2,k =8(2)S △PMN 最大值是92,此时P 3,83【分析】本题考查了二次函数,反比例函数,等腰三角形的判定与性质等知识,解题的关键是:(1)先求出B 的坐标,然后利用待定系数法求出直线AB 的函数表达式,把D 的坐标代入直线AB 的函数表达式求出m ,再把D 的坐标代入反比例函数表达式求出k 即可;(2)延长NP 交y 轴于点Q ,交AB 于点L .利用等腰三角形的判定与性质可得出QM =QP ,设点P 的坐标为t ,8t ,2<t <6 ,则可求出S △PMN =12⋅6-t ⋅t ,然后利用二次函数的性质求解即可.【详解】(1)解:∵A -2,0 ,C 6,0 ,∴AC =8.又∵AC =BC ,∴BC =8.∵∠ACB =90°,∴点B 6,8 .设直线AB 的函数表达式为y =ax +b ,将A -2,0 ,B 6,8 代入y =ax +b ,得-2a +b =06a +b =8 ,。
二次函数精编测试题及参考答案(提高)一、选择题1.下列是二次函数的是()A.y=2x-1B. y=x2-(x-1)2C.y=x(x+1)-7D.y=1 x22.若二次函数y=(k-2)x2-3x+4与x轴有两个交点,则k的取值范围是()A.k≠2B.k≠4116C.k<4116且k≠2 D.k>4116且k≠23.将抛物线y=2x2-4x+1向左平移2022个单位,再向下平移2023个单位,则平移后抛物线的解析式为()A.y=2(x-1)2-1B.y=2(x+2021)2-2024C.y=2(x-2022)2-2024D.y=2(x-2024)2+20224.关于二次函数y=3x2+1的说法中,错误的是()A.抛物线顶点(0,1)B.当x>1时,y随x的增大而增大C.图象经过点(1,4)D.图象的对称轴是直线x=15.如果三点P1(1,y1),P2(3,y2)和P3(4,y3)在抛物线y=-x2+6x+c的图象上,那么y1,y2与y3之间的大小关系是()A y1<y3<y2 B.y3<y2<y1 C.y3<y1<y2 D.y1<y2<y36.根据下表中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程ax2+bx+c=0(a≠0a,b,c为常数)的一个解x的范围可能是()A.6<x<6.17B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.207.向空中抛一枚物体,第x秒时的高度为y米,且高度与时间的关系为y=ax2+bx+c(a≠0),若此物体在第6秒与第15秒时的高度相等,则下列时间中物体所在的高度最高是()A.第6秒B.第10秒C.第14秒D.第15秒8.如图,函数y=kx 2-2x+1和y=k(x-1)(k 是常数,且k ≠0)在同一平面直角坐标系的图象可能是( ) 9.三孔桥的三个桥孔呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米.当大孔水面宽度为20米时,单个小孔的水面宽度为( )A.2√3B. 4√3C. 5√2D. 6√310.如图,在四边形DEFG 中,∠E=∠F= 90°,∠DGF=45°,DE=1,FG=3,Rt △ABC 的直角顶点C 与点G 重合,另一个顶点B(在点C 左侧)在射线FG 上,且BC=1,AC=2,将△ABC 沿GF 方向平移,点C 与点F 重合时停止.设CG 的长为x,△ABC 在平移过程中与四边形DEFG 重叠部分的面积为y,则下列图象能正确反映y 与x 函数关系的是( )11.对于二次函数y=12x 2-6x+21,有以下结论:①当x>5时,y 随x 的增大而增大;②当x=6时,y 有最小值3;③图象与x 轴有两个交点;④图象是由抛物线y=12x 2先向左平移6个单位长度,再向上平移3个单位长度得到的.其中结论正确的个数为( )A.1B.2C.3D.412.如图,抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=-1,则下列结论: ①abc<0;②(4a+c)2<(2b)2;③若(x1,y1)和(x2,y2)是抛物线上的两点,则当|x1+1|>|x2+1|时,y1<y2;④抛物线的顶点坐标为(-1,m),则关于x的方程ax2+bx+c=m-1无实数根.其中正确结论的个数是()A.1B.2C.3D.4二、填空题13.二次函数y=3(x-3)2+2顶点坐标为_________.14.已知抛物线y=ax2+x+c与x轴交点的横坐标为-1,则a+c的值是_______.15.如图,在一幅长50cm,宽30cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂画,设整个挂画总面积为ycm2,金色纸边的宽为xcm,则y与x的关系式是_____________.第15题第16题第17题16.如图,有一座拱桥洞呈抛物线形状,这个桥洞的最大高度为16m,跨度为40m,现把它的示意图放在如图的平面直角坐标系中,则抛物线对应的函数关系式为________________.17.如图,把抛物线y=12x2平移得到抛物线m,抛物线m经过点A(-6,0)和原点O(0,0),它的顶点为P,它的对称轴与抛物线y=12x2交于点Q,则图中阴影部分的面积为_________.18.如图,在平面直角坐标系中,抛物线y=x2的图象如图所示,已知A点坐标为(1,1),过点A作AA1∥x轴交抛物线于点A1,过点A1作A1A2∥OA交抛物线于点A2,过点A2作A2A3∥x轴交抛物线于点A3,过点A3作A3A4∥OA交抛物线于点A4,…,依次进行下去,则点A2023的坐标是_____________.三、解答题19.已知函数y=(m2+2m)x2+mx+m+1,(1)当m为何值时,此函数是一次函数.(2)当m为何值时,此函数是二次函数.20.如图,一农户要建一矩形猪舍,猪舍的一边利用长12m的住房墙,另外三边用27m长的建筑材料围成,为了方便进出,在垂直于住房墙的一边留一个1m宽的门.所围成矩形猪舍的长、宽分别为多少时,猪舍的面积y最大,最大面积是多少?21.如图,已知直线y1=kx+n与抛物线y2=-x2+bx+c相交于A(4,0)和B(0,2).(1)求直线和抛物线解析式;(2)当y1>y2时,求x的取值范围;(3)若直线上方的抛物线有一点C,S△ABC=6,求点C的坐标.22.某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/吨,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(吨)之间的关系为m=50+0.2x,销售价y(万元/吨)与原料的质量x(吨)之间的关系如图所示.(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)当原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?23.抛物线y=-x2+bx+c经过点A(-3,0)和点C(0,3).(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)若过顶点D的直线将△ACD的面积分为1:2两部分,并与x轴交于点Q,求点Q的坐标.参考答案一、选择题1-5 CCBDA 6-10 CBBCB 11-12 AC二、填空题13.(3,2)14. 115.y=4x2+160x+150016.y=−125(x−20)2+1617. 13.518.(-1012,10122)三、解答题19(1)m=-2 (2)m≠0且m≠-220.设宽为x,y=-2x2+28x,当宽为8米,长为12米时,面积最大,最大是96平方米。