蚁群算法及算例
- 格式:pptx
- 大小:635.93 KB
- 文档页数:54
[代码说明]蚁群算法解决VRP问题[算法说明]首先实现一个ant蚂蚁类,用此蚂蚁类实现搜索。
算法按照tsp问题去解决,但是在最后计算路径的时候有区别。
比如有10个城市,城市1是配送站,蚂蚁搜索的得到的路径是1,3,5,9,4,10,2,6,8,7。
计算路径的时候把城市依次放入派送线路中,每放入一个城市前,检查该城市放入后是否会超过车辆最大载重如果没有超过就放入如果超过,就重新开始一条派送路线……直到最后一个城市放完就会得到多条派送路线这样处理比较简单可以把vrp问题转为tsp问题求解但是实际效果还需要验证。
[作者]Wugsh@2011.12.16wuguangsheng@guangsheng.wu@%}%清除所有变量和类的定义clear;clear classes;%蚁群算法参数(全局变量)global ALPHA; %启发因子global BETA; %期望因子global ANT_COUNT; %蚂蚁数量global CITY_COUNT; %城市数量global RHO; %信息素残留系数!!!global IT_COUNT; %迭代次数global DAry; %两两城市间距离global TAry; %两两城市间信息素global CITYW Ary; %城市货物需求量global VW; %车辆最大载重%===================================================================%设置参数变量值ALPHA=1.0;BETA=2.0;RHO=0.95;IT_COUNT=200;VW=100;%=================================================================== %读取数据并根据读取的数据设置其他参数load data.txt; %从文本文件加载数据city_xy_ary=data(:,2:3); %得到城市的坐标数据CITYW Ary=data(:,4); %得到每个城市的货物需求量CITY_COUNT=length(CITYW Ary); %得到城市数量(包括配送站在内)ANT_COUNT=round(CITY_COUNT*2/3)+1; %根据城市数量设置蚂蚁数量,一般设置为城市数量的2/3%MMAS信息素参数%计算最大信息素和最小信息素之间的比值PBest=0.05; %蚂蚁一次搜索找到最优解的概率temp=PBest^(1/CITY_COUNT);TRate=(1-temp)/((CITY_COUNT/2-1)*temp); %最大信息素和最小信息素之间的比值%信息素的最大最小值开始的时候设置成多大无所谓%第一次搜索完成会生成一个最优解,然后用这个解会重新产生最大最小值Tmax=1; %信息素最大值Tmin=Tmax*TRate; %信息素最小值% 计算两两城市间距离DAry=zeros(CITY_COUNT);for i=1:CITY_COUNTfor j=1:CITY_COUNTDAry(i,j)=sqrt((city_xy_ary(i,1)-city_xy_ary(j,1))^2+(city_xy_ary(i,2)-city_xy_ary(j,2))^2);endend% 初始化城市间信息素TAry=zeros(CITY_COUNT);TAry=TAry+Tmax;%===================================================================%初始化随机种子rand('state', sum(100*clock));%另一种方法%rand('twister',sum(100*clock))%定义蚂蚁mayi=ant();Best_Path_Length=10e9; %最佳路径长度,先设置成一个很大的值tm1=datenum(clock); %记录算法开始执行时的时间FoundBetter=0; %一次搜索是否有更优解产生%开始搜索for i=1:IT_COUNTfprintf('开始第%d次搜索, 剩余%d次',i,IT_COUNT-i);FoundBetter=0; %搜索前先置为没有更优解产生for j=1:ANT_COUNT%蚂蚁搜索一次mayi=Search(mayi);%得到蚂蚁搜索路径长度Length_Ary(j)=get(mayi,'path_length');%得到蚂蚁搜索的路径Path_Ary{j}=get(mayi,'path');%保存最优解if (Length_Ary(j) < Best_Path_Length);Best_Path_Length=Length_Ary(j);Best_Path=Path_Ary{j};%有更优解产生,设置标志FoundBetter=1;endend%有更好解产生,进行2-OPT优化if (FoundBetter == 1)fprintf(' , 本次搜索找到更好解!');Best_Path=opt2(Best_Path);Best_Path_Length=PathLength(Best_Path);end%-------------------------------------------------------------%全部蚂蚁搜索完一次,更新环境信息素TAry=TAry*RHO;%只有全局最优蚂蚁释放信息素dbQ=1/Best_Path_Length;for k=2:CITY_COUNTm=Best_Path(k-1); %上一个城市编号n=Best_Path(k); %下一个城市编号%更新路径上的信息素TAry(m,n)=TAry(m,n)+dbQ;TAry(n,m)=TAry(m,n);end%更新最后城市返回出发城市路径上的信息素TAry(n,1)=TAry(n,1)+dbQ;TAry(1,n)=TAry(n,1);%-------------------------------------------------------------%更新完信息素,进行边界检查Tmax=1/((1-RHO)*Best_Path_Length); %信息素最大值Tmin=Tmax*TRate; %信息素最小值for m=1:CITY_COUNTfor n=1:CITY_COUNTif (TAry(m,n)>Tmax)TAry(m,n)=Tmax;endif (TAry(m,n)<Tmin)TAry(m,n)=Tmin;endendend%-------------------------------------------------------------%换行fprintf('\n');endtm2=datenum(clock); %记录算法结束执行时的时间fprintf('\n搜索完成, 用时%.3f秒, 最佳路径长为%.3f , 派送方案如下::\n\n[1]',(tm2-tm1)*86400,Best_Path_Length);%=================================================================== %输出结果dbW=0;for i=2:CITY_COUNTm=Best_Path(i-1); %上一个城市n=Best_Path(i); %当前城市if (dbW+CITYW Ary(n)>VW) %运送的货物超过限制fprintf(' (满载率: %.1f%%)\n[1]-%d',dbW*100/VW,n);dbW=CITYW Ary(n); %运输的重量等于该城市的需求量else %没有超过限制fprintf('-%d',n);dbW=dbW+CITYWAry(n); %运输的重量加上该城市的需求量endendfprintf(' (满载率: %.1f%%)',dbW*100/VW);fprintf('\n\n');%====== [程序结束]===================================================== %对结果进行2-OPT优化function f=opt2(Line)%数组长度size=length(Line);NewLine=Line; % 返回结果先设置成原来路径Flag=1;while (Flag == 1)Flag=0;for i=1:size-2a=Line(1,1:i); %路径前段b=fliplr(Line(1,i+1:size)); %路径后段倒置c=cat(2,a,b); %新路径%新路径更好就替换if (PathLength(c)<PathLength(NewLine))NewLine=c;Flag=1;fprintf('\n======================= 2-OPT 优化成功! ===');endendend%返回结果f=NewLine;end1 14.5 13.0 0.02 12.8 8.5 0.13 18.4 3.4 0.44 15.4 16.6 1.25 18.9 15.2 1.56 15.5 11.6 0.87 3.9 10.6 1.38 10.6 7.6 1.79 8.6 8.4 0.610 12.5 2.1 1.211 13.8 5.2 0.412 6.7 16.9 0.913 14.8 2.6 1.314 1.8 8.7 1.315 17.1 11.0 1.916 7.4 1.0 1.717 0.2 2.8 1.118 11.9 19.8 1.519 13.2 15.1 1.620 6.4 5.6 1.721 9.6 14.8 1.51 0 0 02 3639 1315 123 4177 2244 134 3712 1399 145 3488 1535 536 3326 1556 457 3238 1229 228 4196 1004 119 4312 790 1110 4386 570 5611 3007 1970 4312 2562 1756 2413 2788 1491 6514 2381 1676 3215 1332 695 5616 3715 1678 6717 3918 2179 6718 4061 2370 2219 3780 2212 3420 3676 2578 5621 4029 2838 2422 4263 2931 2523 3429 1908 2624 3507 2367 4625 3394 2643 8726 3439 3201 3327 2935 3240 2228 3140 3550 2429 2545 2357 5630 2778 2826 2431 2370 2975 4332 1304 2312 12。
蚁群算法概述一、蚁群算法蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来寻找最优解决方案的机率型技术。
它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
蚂蚁在路径上前进时会根据前边走过的蚂蚁所留下的分泌物选择其要走的路径。
其选择一条路径的概率与该路径上分泌物的强度成正比。
因此,由大量蚂蚁组成的群体的集体行为实际上构成一种学习信息的正反馈现象:某一条路径走过的蚂蚁越多,后面的蚂蚁选择该路径的可能性就越大。
蚂蚁的个体间通过这种信息的交流寻求通向食物的最短路径。
蚁群算法就是根据这一特点,通过模仿蚂蚁的行为,从而实现寻优。
这种算法有别于传统编程模式,其优势在于,避免了冗长的编程和筹划,程序本身是基于一定规则的随机运行来寻找最佳配置。
也就是说,当程序最开始找到目标的时候,路径几乎不可能是最优的,甚至可能是包含了无数错误的选择而极度冗长的。
但是,程序可以通过蚂蚁寻找食物的时候的信息素原理,不断地去修正原来的路线,使整个路线越来越短,也就是说,程序执行的时间越长,所获得的路径就越可能接近最优路径。
这看起来很类似与我们所见的由无数例子进行归纳概括形成最佳路径的过程。
实际上好似是程序的一个自我学习的过程。
3、人工蚂蚁和真实蚂蚁的异同ACO是一种基于群体的、用于求解复杂优化问题的通用搜索技术。
与真实蚂蚁通过外激素的留存/跟随行为进行间接通讯相似,ACO中一群简单的人工蚂蚁(主体)通过信息素(一种分布式的数字信息,与真实蚂蚁释放的外激素相对应)进行间接通讯,并利用该信息和与问题相关的启发式信息逐步构造问题的解。
人工蚂蚁具有双重特性:一方面,他们是真实蚂蚁的抽象,具有真实蚂蚁的特性,另一方面,他们还有一些在真实蚂蚁中找不到的特性,这些新的特性,使人工蚂蚁在解决实际优化问题时,具有更好地搜索较好解的能力。
人工蚂蚁与真实蚂蚁的相同点为:1.都是一群相互协作的个体。
蚁群算法⼀、蚁群算法蚁群算法是在20世纪90年代由澳⼤利亚学者Marco Dorigo等⼈通过观察蚁群觅⾷的过程,发现众多蚂蚁在寻找⾷物的过程中,总能找到⼀条从蚂蚁巢⽳到⾷物源之间的最短路径。
随后他们在蚂蚁巢⽳到⾷物源之间设置了⼀个障碍,⼀段时间以后发现蚂蚁⼜重新⾛出了⼀条到⾷物源最短的路径。
通过对这种现象的不断研究,最后提出了蚁群算法。
蚁群算法在解决(即TSP问题)时,取得了⽐较理想的结果。
⼆、基本⼈⼯蚁群算法原理运⽤⼈⼯蚁群算法求解TSP问题时的基本原理是:将m个蚂蚁随机地放在多个城市,让这些蚂蚁从所在的城市出发,n步(⼀个蚂蚁从⼀个城市到另外⼀个城市为1步)之后返回到出发的城市。
如果m个蚂蚁所⾛出的m条路经对应的中最短者不是TSP问题的最短路程,则重复这⼀过程,直⾄寻找到满意的TSP问题的最短路径为⽌。
为了说明这⼀个算法下⾯⽤⼀个算法流程图来表⽰⼀下:三、蚁群算法中涉及到的参数及其符号::蚂蚁数量,约为城市数量的1.5倍。
如果蚂蚁数量过⼤,则每条路径上的信息素浓度趋于平均,正反馈作⽤减弱,从⽽导致收敛速度减慢;如果过⼩,则可能导致⼀些从未搜索过的路径信息素浓度减⼩为0,导致过早收敛,解的全局最优性降低:信息素因⼦,反映了蚂蚁运动过程中积累的信息量在指导蚁群搜索中的相对重要程度,取值范围通常在[1, 4]之间。
如果信息素因⼦值设置过⼤,则容易使随机搜索性减弱;其值过⼩容易过早陷⼊局部最优:启发函数因⼦,反映了启发式信息在指导蚁群搜索中的相对重要程度,取值范围在[3, 4.5]之间。
如果值设置过⼤,虽然收敛速度加快,但是易陷⼊局部最优;其值过⼩,蚁群易陷⼊纯粹的随机搜索,很难找到最优解:信息素挥发因⼦,反映了信息素的消失⽔平,相反的反映了信息素的保持⽔平,取值范围通常在[0.2, 0.5]之间。
当取值过⼤时,容易影响随机性和全局最优性;反之,收敛速度降低:信息素常数,表⽰蚂蚁遍历⼀次所有城市所释放的信息素总量。
数据分析知识:数据挖掘中的蚁群算法蚁群算法是一种模拟蚂蚁觅食行为的启发式算法。
它是一种基于群体智能的方法,能够有效地用于数据挖掘和机器学习领域。
本文将介绍蚁群算法的基本原理和应用案例。
一、蚁群算法的基本原理蚁群算法受到了蚂蚁觅食行为的启发。
蚂蚁在觅食过程中会遵循一定的规则,例如在路径上释放信息素,吸引其他蚂蚁前往同一方向;在路径上的信息素浓度较高的路径更容易选择。
蚁群算法利用了这些规则,以一种群体智能的方式搜索解空间。
具体来说,蚁群算法由以下几个步骤组成:1.初始化:定义问题的解空间和初试信息素浓度。
解空间可以是任何基于排列、图形或其他对象的集合,例如TSP问题中的城市序列集合。
信息素浓度矩阵是一个与解空间大小相同的矩阵,用于反映每个解的吸引力。
2.移动规则:蚂蚁在解空间中移动的规则。
通常规则包括根据当前解和信息素浓度选择下一步解以及更新当前解的信息素浓度。
3.信息素更新:蚁群中的蚂蚁经过路径后,更新路径上的信息素浓度。
通常信息素浓度的更新涉及一个挥发系数和一个信息素增量。
4.终止条件:确定蚁群算法的运行时间,例如最大迭代次数或达到特定解的准确度。
蚁群算法是一种群体智能的方法,每只蚂蚁只能看到局部的解。
通过信息素的释放和更新,蚁群最终能够找到全局最优解。
二、蚁群算法的应用案例蚁群算法最常用于解决组合优化问题,例如TSP问题、车辆路径问题和任务分配问题。
下面将介绍蚁群算法在TSP问题和车辆路径问题中的应用。
1. TSP问题TSP问题是一个NP难问题,是指在旅行时,如何有效地走遍所有篮子,使得总的旅行距离最小。
蚁群算法是适用于TSP问题的一种有效的算法。
在每一代,蚂蚁会在城市之间移动,假设当前城市为i,则下一个选择的城市j是基于概率函数计算得到的。
概率函数考虑了当前城市的信息素浓度以及城市之间的距离。
每条路径释放的信息素浓度大小根据路径长度而定。
这样,蚂蚁可以在TSP问题上找到最优解。
2.车辆路径问题车辆路径问题是指在有限时间内如何合理地分配车辆到不同的客户,以最小化送货时间和车辆的旅行距离。
蚁群算法这算是填3年前的⼀个坑吧,已经懒癌晚期了,想必也还是要挣扎下,那今天先从蚁群算法这个坑说起,如果你是要寻找怎么优化蚁群算法,可以直接跳过本⽂,如果你还不了解什么是蚁群算法,或许本⽂能够提起你的兴趣。
如果你同样对遗传算法和粒⼦群算法感兴趣,请查看3年前我对于这两个算法见解的⽂章。
简单蚁群算法模拟实验:这个模拟实验⽐较简单,并没有对信息素、路径选择等做优化,主要是⽅便⼤家查看简单的蚂蚁系统能够带来⼀个什么样的效果,详细说明见后⽂。
什么是蚁群算法按百度百科的话来说,蚁群算法(ant colony optimization, ACO),⼜称蚂蚁算法,是⼀种⽤来在图中寻找优化路径的机率型算法。
它由Marco Dorigo于1992年在他的博⼠论⽂中提出,其灵感来源于蚂蚁在寻找⾷物过程中发现路径的⾏为。
蚁群算法是⼀种模拟进化算法,初步的研究表明该算法具有许多优良的性质,并且现在已⽤于我们⽣活的⽅⽅⾯⾯。
基本原理蚂蚁在运动过程中,会留下⼀种称为信息素的东西,并且会随着移动的距离,播散的信息素越来越少,所以往往在家或者⾷物的周围,信息素的浓度是最强的,⽽蚂蚁⾃⾝会根据信息素去选择⽅向,当然信息素越浓,被选择的概率也就越⼤,并且信息素本⾝具有⼀定的挥发作⽤。
蚂蚁的运动过程可以简单归纳如下:1. 当周围没有信息素指引时,蚂蚁的运动具有⼀定的惯性,并有⼀定的概率选择其他⽅向2. 当周围有信息素的指引时,按照信息素的浓度强度概率性的选择运动⽅向3. 找⾷物时,蚂蚁留下家相关的A信息素,找家时,蚂蚁留下⾷物相关的B信息素,并随着移动距离的增加,洒播的信息素越来越少4. 随着时间推移,信息素会⾃⾏挥发⼀个简单的例⼦,如果现在有两条通往⾷物的路径,⼀条较长路径A,⼀条较短路径B,虽然刚开始A,B路径上都有蚂蚁,⼜因为B⽐A短,蚂蚁通过B花费的时间较短,随着时间的推移和信息素的挥发,逐渐的B上的信息素浓度会强于A,这时候因为B的浓度⽐A强,越来越多多蚂蚁会选择B,⽽这时候B上的浓度只会越来越强。