地理信息系统GIS—第3章矢量数据
- 格式:ppt
- 大小:7.39 MB
- 文档页数:78
1 、试分析 GIS 的几种主要的数据模型各自的优缺点。
答:GIS主要的数据模型有:矢量数据模型、栅格数据模型、矢量-栅格一体化数据模型、镶嵌数据模型、面向对象数据模型。
矢量数据模型:优点:1.便于面向现象(土壤类、土地利用单元等);2.数据结构紧凑、冗余度低;3.有利于网络分析;4.图形显示质量好、精度高。
缺点:1.数据结构复杂;2.软件与硬件的技术要求比较高;3.多边形叠合等分析比较困难;4.显示与绘图成本比较高。
栅格数据模型:优点:1.数据结构简单;2.空间分析和地理现象的模拟均比较容易;3.有利于与遥感数据的匹配应用和分析;4.输出方法快速,成本比较低廉。
缺点:1.图形数据量大;2.投影转换比较困难;3.栅格地图的图形质量相对较低;4.现象识别的效果不如矢量方法。
2 、简述栅格数据压缩编码的几种方式和各自优缺点。
答:1.游程长度编码结构优缺点:对于游程长度编码,区域越大,数据的相关性越强,则压缩越大,适用于类型区域面积较大的专题图,而不适合于类型连续变化或类别区域分散的分类图(压缩比与图的复杂程度成反比)。
这种编码在栅格加密时,数据量不会明显增加,压缩率高,并最大限度地保留原始栅格结构,编码解码运算简单,且易于检索,叠加,合并等操作,这种编码应用广泛。
2. 块码结构优缺点:具有可变分辨率,即当属性变化小时图块大,对于大块图斑记录单元大,分辨率低,压缩比高。
小块图斑记录单元小,分辨率高,压缩比低。
所以,与行程编码类似,随图形复杂程度的提高而降低分辨率。
3. 链式编码(弗里曼编码或边界链码)优缺点:可以有效的压缩栅格数据,特别是对计算面积、长度、转折方向和凹凸度等运算十分方便。
缺点是对边界做合并和插入等修改,编辑比较困难。
这种结构有些类似矢量结构,但不具有区域的性质,因此对区域空间分析运算比较困难。
4. 四叉树编码优缺点:对于团块图像,四叉树表示法占用空间要少得多,四叉树表示法基本上是一种非冗余表示法。
矢量数据与栅格数据概述:矢量数据和栅格数据是地理信息系统(GIS)中常见的两种数据类型。
矢量数据以点、线和面等几何对象的形式表示地理现象,而栅格数据以像素网格的形式表示地理现象。
本文将详细介绍矢量数据和栅格数据的定义、特点、应用领域以及优缺点。
一、矢量数据1. 定义:矢量数据是由离散的点、线和面等几何对象组成的数据类型。
每一个对象都具有特定的位置、形状和属性信息。
矢量数据可以用于描述地理要素的几何形状和拓扑关系。
2. 特点:- 精确性:矢量数据能够准确描述地理要素的几何形状和位置。
- 灵便性:矢量数据可以进行编辑、更新和分析,具有较高的灵便性。
- 拓扑关系:矢量数据能够描述地理要素之间的拓扑关系,如邻接关系、包含关系等。
- 属性信息:矢量数据可以与属性数据关联,用于描述地理要素的属性特征。
3. 应用领域:矢量数据广泛应用于各个领域,包括地理空间分析、地图制作、城市规划、环境保护、交通规划等。
例如,利用矢量数据可以进行地理空间分析,如路径分析、缓冲区分析等;可以制作各种类型的地图,如道路地图、土地利用图等。
4. 优缺点:- 优点:矢量数据具有精确性高、灵便性强、能够描述拓扑关系和属性信息等优点,适合于复杂地理现象的描述和分析。
- 缺点:矢量数据对存储空间要求较高,对数据处理和计算机性能要求较高,不适合于连续型数据的表示。
二、栅格数据1. 定义:栅格数据是以像素网格的形式表示地理现象的数据类型。
每一个像素都具有特定的位置和属性值。
栅格数据可以用于描述地理现象的分布和变化。
2. 特点:- 简单性:栅格数据以规则的像素网格形式表示地理现象,简单易懂。
- 连续性:栅格数据能够描述地理现象的分布和变化,适合于连续型数据的表示。
- 空间分辨率:栅格数据可以通过调整像素大小来控制空间分辨率,适合于不同精度的分析需求。
- 分析效率:栅格数据在某些分析操作上具有较高的计算效率。
3. 应用领域:栅格数据广泛应用于遥感图象处理、地表摹拟、环境模型构建等领域。
矢量数据与栅格数据概述:矢量数据和栅格数据是地理信息系统(GIS)中常用的两种数据表示方式。
矢量数据以点、线、面等几何要素为基本单位,栅格数据则以像素为基本单位。
本文将详细介绍矢量数据和栅格数据的定义、特点、应用以及数据格式等相关内容。
一、矢量数据1. 定义:矢量数据是用坐标点和线段等几何要素来表示地理空间对象的数据。
它以点、线、面等几何要素的位置、形状和属性来描述地理现象。
2. 特点:- 精确性:矢量数据能够精确描述地理要素的位置和形状。
- 可编辑性:矢量数据可以进行编辑和修改,方便用户对地理要素进行更新和维护。
- 数据量小:相比栅格数据,矢量数据通常具有较小的数据量,适合存储和传输。
3. 应用:矢量数据广泛应用于地图制作、地理分析、空间查询等领域。
例如,矢量数据可用于绘制道路网络、河流、建筑物等地理要素,以及进行空间分析,如缓冲区分析、路径分析等。
4. 数据格式:常见的矢量数据格式包括Shapefile(SHP)、GeoJSON、KML等。
Shapefile是一种常用的矢量数据存储格式,它由多个文件组成,包括.shp、.shx、.dbf等。
二、栅格数据1. 定义:栅格数据是将地理空间划分为规则的像元(像素)网格,每个像元都包含有关地理现象的属性值。
栅格数据以栅格单元的位置和属性来表示地理空间。
2. 特点:- 空间连续性:栅格数据能够较好地表示地理空间的连续性,适合用于模拟和分析自然现象。
- 数据丰富:栅格数据可以存储大量的属性信息,如高程、温度、植被类型等。
- 数据处理:栅格数据可以进行各种数学和统计分析,如栅格代数运算、空间插值等。
3. 应用:栅格数据广泛应用于地形分析、遥感影像处理、环境模拟等领域。
例如,栅格数据可用于生成数字高程模型(DEM)、遥感图像分类、洪水模拟等。
4. 数据格式:常见的栅格数据格式包括TIFF(Tagged Image File Format)、JPEG2000、GeoTIFF等。
矢量数据与栅格数据矢量数据与栅格数据是地理信息系统(GIS)中常用的两种数据类型。
矢量数据以点、线和面等几何形状来表示地理对象,而栅格数据则以像素网格的形式表示地理对象。
本文将详细介绍矢量数据和栅格数据的定义、特点、应用以及优缺点。
1. 矢量数据矢量数据是由离散点、线段和多边形等几何形状构成的地理对象。
它通过坐标点的连接和属性信息的关联来描述地理现象。
矢量数据的特点如下:- 精确性:矢量数据可以精确地表示地理对象的形状和位置。
- 拓扑结构:矢量数据可以描述地理对象之间的拓扑关系,如相邻、相交等。
- 属性信息:矢量数据可以关联属性信息,如名称、面积、长度等。
矢量数据的应用广泛,常见的应用包括地图制作、空间分析、地理定位等。
例如,通过矢量数据可以绘制道路、河流、建筑物等地理要素,进行路径分析、缓冲区分析等空间分析操作。
然而,矢量数据也存在一些限制。
首先,矢量数据通常需要较大的存储空间,特别是对于复杂的地理对象。
其次,矢量数据在处理连续表面数据时存在一定的困难,例如地形数据。
此外,矢量数据对于某些地理现象的表示可能不够精确,如海岸线的曲线形状。
2. 栅格数据栅格数据是由像素网格组成的地理对象。
每个像素都包含一个值,表示该位置上的地理属性。
栅格数据的特点如下:- 简单性:栅格数据的存储和处理相对简单,适合于大规模数据集。
- 连续性:栅格数据可以连续地表示地理现象,如高程、温度等。
- 空间分析:栅格数据可以进行各种空间分析操作,如栅格代数、栅格统计等。
栅格数据在很多领域有广泛的应用,包括地表覆盖分类、遥感影像处理、气候模拟等。
例如,通过栅格数据可以分析土地利用类型、监测植被覆盖度、模拟洪水扩展等。
然而,栅格数据也有一些限制。
首先,栅格数据的空间分辨率对结果的精度有较大影响,较低的分辨率可能导致信息丢失。
其次,栅格数据的存储和处理需要较大的计算资源和时间。
此外,栅格数据在表示线状和面状地理对象时存在一定的模糊性。
矢量数据和栅格数据的异同点矢量数据和栅格数据是地理信息系统(GIS)中常用的两种数据类型。
矢量数据是基于几何特征的数据类型,而栅格数据则是基于像素的数据类型。
在本文中,我们将详细讨论矢量数据和栅格数据的异同点。
一、定义和特点1. 矢量数据:矢量数据是由点、线和面等几何要素构成的数据类型。
它使用坐标系来表示地理位置,并通过节点、线段和多边形等几何要素来描述地理现象。
矢量数据具有精确性高、图形清晰、数据结构简单等特点。
2. 栅格数据:栅格数据是由像素组成的数据类型。
它将地理现象划分为等大小的像素单元,并使用像素值来表示地理属性。
栅格数据具有空间分辨率高、数据结构复杂、图形表达不够精确等特点。
二、数据结构和存储方式1. 矢量数据:矢量数据以几何要素为基本单位,通常采用点、线和面等要素来表示地理现象。
矢量数据可以使用多种数据格式进行存储,如Shapefile、GeoJSON和KML等。
2. 栅格数据:栅格数据以像素为基本单位,将地理现象划分为等大小的像素单元。
每个像素单元都有一个像素值来表示地理属性。
栅格数据通常以栅格图像的形式进行存储,如TIFF、JPEG和PNG等格式。
三、数据精度和表达能力1. 矢量数据:矢量数据具有较高的精度和准确性,可以精确表示地理现象的形状和位置。
矢量数据可以进行拓扑分析、空间查询和几何运算等操作,具有较强的表达能力。
2. 栅格数据:栅格数据的精度受到像素大小的限制,无法精确表示地理现象的形状和位置。
栅格数据适合用于表达连续变化的地理现象,如地形高程、降雨量和植被覆盖等。
四、数据处理和分析能力1. 矢量数据:矢量数据可以进行拓扑分析、空间查询和几何运算等复杂的空间分析操作。
矢量数据适合用于边界分析、路径分析和空间关系分析等任务。
2. 栅格数据:栅格数据可以进行栅格代数运算、统计分析和遥感分类等操作。
栅格数据适合用于地形分析、遥感影像处理和环境模拟等任务。
五、数据存储和传输大小1. 矢量数据:矢量数据的存储空间通常较小,因为它只需要存储几何要素的坐标和属性信息。
矢量数据与栅格数据矢量数据和栅格数据是地理信息系统(GIS)中常用的两种数据类型。
矢量数据是基于几何形状的数据表示方法,而栅格数据则以像素为基本单元进行表示。
在GIS应用中,根据不同的需求和数据特点,选择合适的数据类型非常重要。
本文将详细介绍矢量数据和栅格数据的定义、特点、应用以及优缺点。
一、矢量数据矢量数据是通过点、线、面等几何形状进行描述的数据类型。
在矢量数据中,每个几何形状都由一系列坐标点构成。
常见的矢量数据格式包括Shapefile、GeoJSON、KML等。
1. 特点:- 精确性高:矢量数据能够准确地表示地理现象的位置和形状。
- 可编辑性强:可以对矢量数据进行编辑、修改和更新。
- 数据量小:相对于栅格数据而言,矢量数据的存储空间较小。
- 可以进行拓扑分析:矢量数据能够进行拓扑关系的分析,如求交、求并、求差等。
2. 应用:- 地图制作:矢量数据可以用于绘制各种类型的地图,如道路地图、土地利用地图等。
- 空间分析:矢量数据可以进行空间查询、缓冲区分析、叠加分析等空间分析操作。
- 地理定位:矢量数据可以用于地理定位服务,如导航系统、地理编码等。
3. 优点:- 可以精确地表示地理现象的形状和位置。
- 可以进行拓扑关系的分析。
- 数据量相对较小,方便存储和传输。
4. 缺点:- 对于连续变化的地理现象,如高程、温度等,矢量数据无法直接表示。
- 矢量数据的处理和分析相对复杂,需要进行拓扑构建和拓扑分析。
二、栅格数据栅格数据是将地理现象划分为等大小的像素单元进行表示的数据类型。
在栅格数据中,每个像素单元都有一个值来表示地理现象的属性。
常见的栅格数据格式包括TIFF、JPEG、GeoTIFF等。
1. 特点:- 可以表示连续变化的地理现象,如高程、温度等。
- 数据结构简单:栅格数据以像素为基本单元,存储和处理相对简单。
- 可以进行空间分析:栅格数据可以进行栅格代数运算、邻域分析等。
2. 应用:- 遥感影像处理:栅格数据可以用于处理遥感影像,如分类、辐射校正等。
ArcGIS地理信息系统空间分析实验教程PPT第章矢量数据的空间分析矢量数据与空间分析在地理信息系统中,矢量数据是一种常用的表示地理空间信息的形式。
矢量数据由一系列构成要素的点、线和面构成,每个要素都具有一组坐标和属性信息。
矢量数据可以用来表示地图上的各种要素,如建筑、道路、河流等。
空间分析是地理信息系统中非常重要的一个分支,它是利用矢量数据进行空间分析、空间统计和空间建模的过程。
空间分析可以用来分析各种地理问题,如地理环境、交通运输、城市规划等。
空间分析主要包括以下几个方面:•空间查询和筛选•空间测量和量算•空间统计分析•空间模型分析矢量数据的基本操作在进行空间分析之前,我们需要对矢量数据进行一些基本的操作,如创建新的图层、编辑要素、选择要素等。
下面是一些常用的矢量数据操作:创建新的图层在 ArcMap 中创建新的图层非常简单,只需要选择 File -> New -> Map Document,然后在新建的地图文档中创建新的图层即可。
可以通过右键单击图层名字来选择图层的类型,如点、线、面等。
编辑要素在 ArcMap 中编辑要素可以手动编辑,也可以通过导入数据进行编辑。
在编辑模式下,可以添加新的要素、删除现有的要素、移动要素等。
选择要素在进行空间分析之前,我们需要选择要素并进行操作。
ArcMap 中提供了多种选择方式,如框选、属性筛选等。
可以通过右键单击图层选择 Selection -> Select By Attributes 或 Selection -> Select By Location 进行要素选择。
矢量数据的空间分析ArcMap 提供了多种空间分析工具,如缓冲区分析、点密度分析、热点分析等。
下面我们将介绍一些常用的空间分析操作。
缓冲区分析缓冲区分析是指从某个要素对象生成一个缓冲区,即在该要素周围生成一段距离范围内的区域。
缓冲区分析可以用来分析道路的周围环境、城市的规划等。
矢量数据的名词解释矢量数据是地理信息系统(GIS)中用于描述现实世界中空间特征的一种数据类型。
与其对应的是栅格数据,栅格数据将地理空间划分为均等大小的单元格并以像素表示。
相比之下,矢量数据以点、线、面等几何元素来表示自然和人文现象。
矢量数据的特点在于其精确性和准确性。
矢量数据使用坐标系统来确定特定位置,因此可以精确到很小的空间范围,提供高精度的地理位置信息。
同时,矢量数据以拓扑关系来描述对象之间的连接和邻近关系,使得数据的空间关系更加准确。
在矢量数据中,点是最简单的几何元素,用于表示离散的对象,如一个城市、一个村庄或一个孤立的地标。
线则是由一系列连续坐标点连接而成,用于表示延伸的物体,如河流、道路、管道等。
而面表示了一个封闭的区域,用于表示地块、建筑物、土地利用等。
矢量数据的优势在于其能够精确地表示现实世界中的复杂空间现象。
通过将点、线、面等元素进行组合和叠加,可以构建出丰富多样的地理图层。
例如,可以将不同类型的点叠加在一起,形成一个点图层,表示各种地名、景点或设施的分布情况。
同样地,可以将不同的线元素组合成线图层,用于表示不同的交通网络、河流网络等。
最为常见的应用就是将各种面元素叠加在一起构成面图层,用于表示土地利用、行政区划等。
矢量数据的应用范围广泛。
在城市规划中,矢量数据可以用于分析土地利用、交通规划等;在环境保护中,矢量数据可以用于分析植被分布、湿地分布等;在资源管理中,矢量数据可以用于分析矿产储量、农作物品种分布等。
它的用途几乎涵盖了各个领域。
虽然矢量数据具有高精度和准确性的优势,但其也存在一些挑战和限制。
首先,矢量数据无法准确地表示连续变量和空间关系的连续性。
对于例如气温、降雨量等连续变量,由于矢量数据以离散的形式存在,无法直接表示其空间分布特征。
其次,矢量数据的处理和分析较为复杂,需要利用专业软件进行矢量数据的输入、编辑、分析和输出。
总的来说,矢量数据是地理信息系统中的重要数据类型,用于描述现实世界中的空间特征。