2005江苏高考数学及答案
- 格式:doc
- 大小:490.60 KB
- 文档页数:7
2005年普通高等学校招生全国统一考试数学(江苏卷)第一卷(选择题共60分)参考公式:三角函数的和差化积公式sin sin 2sin cos sin sin 2cos sin 2222cos cos 2cos cos cos cos 2sin sin 2222αβαβαβαβαβαβαβαβαβαβαβαβ+-+-+=-=+-+-+=-=-若事件A 在一次试验中发生的概率是p ,则它在n 次独立重复试验中恰好发生k 次的概率()(1)k k n k n n P k C p p -=-一组数据12,,,n x x x 的方差2222121()()()n S x x x x x x n ⎡⎤=-+-++-⎣⎦ 其中x 为这组数据的平均数值一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
(1) 设集合A={1,2},B={1,2,3},C={2,3,4},则()A B C ⋂⋃=(A ){1,2,3} (B ){1,2,4} (C ){2,3,4} (D ){1,2,3,4}(2) 函数123()x y x R -=+∈的反函数的解析表达式为(A )22log 3y x =- (B )23log 2x y -= (C )23log 2x y -= (D )22log 3y x =- (3) 在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=(A )33 (B )72 (C )84 (D )189(4) 在正三棱柱ABC-A 1B 1C 1中,若AB=2,AA 1=1则点A 到平面A 1BC 的距离为(A)4 (B)2 (C)4(D(5) △ABC 中,,3,3A BC π==则△ABC 的周长为 (A))33B π++ (B))36B π++ (C )6sin()33B π++ (D )6sin()36B π++(6) 抛物线y=4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是(A )1716 (B )1516 (C )78(D )0 (7) 在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A )9.4, 0.484 (B )9.4, 0.016 (C )9.5, 0.04 (D )9.5, 0.016(8) 设,,αβγ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:①若,,αγβγ⊥⊥则α∥β;②若,,m n m αα⊂⊂∥,n β∥,β则α∥β;③若α∥,,l βα⊂则l ∥β;④若,,,l m n l αββγγα⋂=⋂=⋂=∥,γ则m ∥n .其中真命题的个数是(A )1 (B )2 (C )3 (D )4(9) 设k=1,2,3,4,5,则(x +2)5的展开式中x k 的系数不可能是(A )10 (B )40 (C )50 (D )80(10) 若1sin(),63πα-=则2cos(2)3πα+= (A )79- (B )13- (C )13 (D )79 (11) 点P (-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为(A )3 (B )13 (C)2 (D )12(12) 四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为(A )96 (B )48 (C )24 (D )0参考答案:DACBD CDBCA AB第二卷(非选择题共90分)二、填空题:本大题共6小题,每小题4分,共24分。
2005年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第I 卷一、选择题:1.设I 为全集,S 1、S 2、S 3是I 的三个非空子集且S 1∪S 2∪S 3=I ,则下面论断正确的是( ) A . I S I ∩(S 2∪S 3)= B .S 1⊆( I S 2∩ I S 3)C . I S I ∩ I S 2 ∩ I S 3=D .S 1⊆( I S 2∪ I S 3)2.一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 ( )A .8π2B .8πC .4π2D .4π3.已知直线l 过点(-2,0),当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是( )A .)22,22(-B .)2,2(-C .)42,42( D .)81,81(-4.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF//AB ,EF=2,则该多面体的体积为( )A .32 B .33C .34 D .23 5.已知双曲线)0(1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( )A .23 B .23 C .26 D .332 6.当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为( )A .2B .32C .4D .347.设0>b ,二次函数122-++=a bx ax y 的图象下列之一:则a 的值为( )A .1B .-1C .251-- D .251+- 8.设10<<a ,函数)22(log )(2--=xx a a a x f ,则使x x f 的0)(<取值范围是( )A .)0,(-∞B .),0(+∞C .)3log ,(a -∞D .),3(log +∞a9.在坐标平面上,不等式组⎩⎨⎧+-≤-≥1||3,1x y x y 所表示的平面区域的面积为( )A .2B .23 C .223 D .210.在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断:①1cot tan =⋅B A ②2sin sin 0≤+<B A ③1cos sin 22=+B A ④C B A 222sin cos cos =+其中正确的是( ) A .①③ B .②④ C .①④D .②③ 11.过三棱柱任意两个顶点的直线共15条,其中异面直线有( )A .18对B .24对C .30对D .36对 12.复数=--ii 2123( )A .iB .i -C .i -22D .i +-22第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷中. 2.答卷前将密封线内的项目填写清楚. 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.若正整数m 满足)3010.02.(lg ________,102105121≈=<<-m m m 则14.9)12(xx -的展开式中,常数项为 .(用数字作答)15.△ABC 的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m= .16.在正方体ABCD —A ′B ′C ′D ′中,过对角线BD ′的一个平面交AA ′于E ,交CC ′于F ,则①四边形BFD ′E 一定是平行四边形.②四边形BFD ′E 有可能是正方形.③四边形BFD ′E 在底面ABCD 内的投影一定是正方形. ④平面BFD ′E 有可能垂直于平面BB ′D.以上结论正确的为 .(写出所有正确结论的编号)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)设函数)(),0)(2sin()(x f y x f =<<-+=ϕπϕπ图象的一条对称轴是直线.8π=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)证明直线025=+-c y x 与函数)(x f y =的图象不相切.18.(本小题满分12分) 已知四棱锥P —ABCD 的底面为直角梯形,AB//DC ,∠DAB=90°,PA ⊥底面 ABCD ,且PA=AD=DE=21AB=1,M 是PB 的中点. (1)证明:面PAD ⊥面PCD ; (2)求AC 与PB 所成的角;(3)求面AMC 与面BMC 所成二面角的大小. 19.(本小题满分12分)设等比数列}{n a 的公比为q ,前n 项和S n >0(n=1,2,…)(1)求q 的取值范围; (2)设,2312++-=n n n a a b 记}{n b 的前n 项和为T n ,试比较S n 和T n 的大小. 20.(本小题满分12分) 9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑里的种子都没发芽,则这个坑需要补种,假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01) 21.(本小题满分14分) 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (1)求椭圆的离心率;(2)设M 为椭圆上任意一点,且),(R OB OA OM ∈+=μλλλ,证明22μλ+为定值.22.(本小题满分12分)(1)设函数)10)(1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; (2)设正数n p p p p 2321,,,, 满足12321=++++n p p p p , 求证.log log log log 222323222121n p p p p p p p p n n -≥++++2005年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题(本题考查基本知识和基本运算,每小题5分,满分60分)1.A 2.C 3.B 4.C 5.A 6.D 7.C 8.B 9.C 10.B 11.B 12.D 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.155 14.672 15.1 16.①③④ 三、解答题17.本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分. 解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<- (Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此 由题意得.,2243222Z k k x k ∈+≤-≤-πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为(Ⅲ)证明:,2|)432cos(2||))432(sin(|||≤-='-='ππx x y所以曲线)(x f y =的切线斜率取值范围为[-2,2],而直线025=+-c y x 的斜率为225>,所以直线025=+-c y x 与函数)432sin(π-=x y 的图像不相切. 18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力.满分12分. 方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD , ∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD.(Ⅱ)解:过点B 作BE//CA ,且BE=CA ,则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90° 在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PB BE PBE.510arccos所成的角为与PB AC ∴ (Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角. ∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM. 在等腰三角形AMC 中,AN ·MC=AC AC CM ⋅-22)2(, 5625223=⨯=∴AN . ∴AB=2,322cos 222-=⨯⨯-+=∠∴BN AN AB BN AN ANB 故所求的二面角为).32arccos(-方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21. (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故由题设知AD ⊥DC ,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD. (Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC.510||||,cos ,2,5||,2||=⋅⋅>=<=⋅==PB AC PBAC PB AC PB AC PB AC 所以故(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC要使.54,0210,==-=⋅⊥λ解得即只需z x MC AN MC AN),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角.).32arccos(.32||||),cos(.54,530||,530||--=⋅=∴-=⋅==故所求的二面角为BN AN BNAN BN AN BN AN BN AN19. 本小题主要考查等比数列的基本知识,考查分析问题能力和推理能力,满分12分. 解:(Ⅰ)因为}{n a 是等比数列,.0,0,011≠>=>q S a S n 可得 当;0,11>==na S q n 时),2,1(,011,01)1(,11 =>-->--=≠n qqq q a S q nn n 即时当上式等价于不等式组:),2,1(,01,01 =⎩⎨⎧<-<-n q q n① 或),2,1(,01,01 =⎩⎨⎧>->-n q q n②解①式得q>1;解②,由于n 可为奇数、可为偶数,得-1<q<1. 综上,q 的取值范围是).,0()0,1(+∞⋃-(Ⅱ)由得1223++-=n a n a a b .)23(),23(22n n n n S q q T q q a b -=-=于是)123(2--=-q q S S T n n n).2)(21(-+=q q S n.,0,2,21;,0,0221;,0,2211,,001,0n n n n n n n n n n n n n S T S T q q S T S T q q S T S T q q q q S ==-=-=<<-≠<<->>->-<<-><<->即时或当即时且当即时或当所以或且又因为 20.本小题主要考查相互独立事件和互斥事件有一个发生的概率的计算方法,考查运用概率知识解决实际问题的能力. 满分12分.(Ⅰ)解:因为甲坑内的3粒种子都不发芽的概率为81)5.01(3=-,所以甲坑不需要补种的概率为 .87811=-3个坑都不需要补种的概率,670.0)87()81(303=⨯⨯ C恰有1个坑需要补种的概率为,287.0)87(81213=⨯⨯C恰有2个坑需要补种的概率为,041.087)81(223=⨯⨯C3个坑都需要补种的概率为.002.0)87()81(0333=⨯⨯C补种费用ξ的分布为ξ的数学期望为75.3002.030041.020287.010670.00=⨯+⨯+⨯+⨯=ξE21.本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知训,考查综合运用数学知识解决问题及推理的能力,满分14分.(I )解:设椭圆方程为),0,(),0(12222c F b a by a x >>=+则直线AB 的方程为1,2222=+-=by a x c x y 代入化简得02)(22222222=-+-+b a c a cx a x b a .令),,(),,(2211y x B y x A则 .,22222222122221ba b a c a x x b a c a x x +-=+=+),,(2121y y x x OB OA ++=+由a OB OA a 与+-=),1,3(共线,得.0)()(32121=+++x x y y.36,36.3,232.23,0)()2(3,,22222222121212211===-=∴==+=+∴=++-+∴-=-=a c e ab ac b a cba c a c x x x x c x x c x y c x y 故离心率所以即又 (II )证明:由(I )知223b a =,所以椭圆12222=+by a x 可化为22233b y x =+.),,(),(),(),,(2211y x y x y x y x OM μλ+==由已知得设 ⎩⎨⎧+=+=∴.,2121y y y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ即 .3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ ①由(I )知.21,23,23222221c b c a c x x ===+))((33.8321212121222222221c x c x x x y y x x c ba b a c a x x --++=+∴=+-=∴ .0329233)(3422222121=+-=++-=c c c c c x x x x又222222212133,33b y x b y x =+=+又,代入①得 .122=+μλ 故22μλ+为定值,定值为1.22.本小题主要考查数学归纳法及导数应用等知识,考查综合运用数学知识解决问题的能力.满分12分.(Ⅰ)解:对函数)(x f 求导数:])1(log )1[()log ()(22'--+'='x x x x x f.2ln 12ln 1)1(log log 22-+--=x x ).1(log log 22x x --=于是.0)21(='f当)(,0)1(log log )(,2122x f x x x f x <--='<时在区间)21,0(是减函数, 当)(,0)1(log log )(,2122x f x x x f x >--='>时在区间)1,21(是增函数.所以21)(=x x f 在时取得最小值,1)21(-=f ,(Ⅱ)证法一:用数学归纳法证明.(i )当n=1时,由(Ⅰ)知命题成立.(ii )假定当k n =时命题成立,即若正数1,,,221221=+++k k p p p p p p 满足, 则.log log log 222222121k p p p p p p k k -≥+++当1+=k n 时,若正数,1,,,11221221=+++++k k p p p p p p 满足 令.,,,,222211221xp q x pq x p q p p p x k k k ===+++= 则k q q q 221,,, 为正数,且.1221=+++k q q q由归纳假定知.log log log 222222121k q q p p p q k k -≥+++kk k k q q q q q q x p p p p p p 222222121222222121log log log (log log log +++=+++,log )()log 22x x k x x +-≥+ ①同理,由x p p p k k k -=++++++1122212 可得1122212212log log ++++++k k k k p p p p).1(log )1())(1(2x x k x --+--≥ ②综合①、②两式11222222121log log log +++++k k p p p p p p).1()1(log )1(log ))](1([22+-≥--++--+≥k x x x x k x x即当1+=k n 时命题也成立.根据(i )、(ii )可知对一切正整数n 命题成立. 证法二:令函数那么常数)),,0(,0)((log )(log )(22c x c x c x c x x x g ∈>--+=],log )1(log )1(log [)(222c cxc x c x c x c x g +--+=利用(Ⅰ)知,当.)(,)2(21取得最小值函数时即x g cx c x == 对任意都有,0,021>>x x2log 22log log 21221222121x x x x x x x x ++⋅≥+ ]1)()[log (21221-++=x x x x . ① 下面用数学归纳法证明结论.(i )当n=1时,由(I )知命题成立.(ii )设当n=k 时命题成立,即若正数有满足,1,,,221221=+++k k p p p p p p11111122212212222121221221222222121log log log log .1,,,,1.log log log ++++++++++==++++=-≥+++--k k k k k k k k p p p p p p p p H p p p p p p k n k p p p p p p 令满足时当由①得到,1)()(],1)()[log (]1)()[log (11111121221212221221221=++++-++++-++≥++++++---k k k k k k p p p p p p p p p p p p H 因为由归纳法假设得到,)(log )()(log )(1111212221221221k p p p p p p p p k k k k -≥++++++++++-- ).1()(1121221+-=++++--≥+++k p p p p k H k k 即当1+=k n 时命题也成立. 所以对一切正整数n 命题成立.。
2005全国数学1一、选择题: 1. 复数=--ii 2123 ( )A. iB. i -C. i -22D. i +-222. 设I 为全集,S 1、S 2、S 3是I 的三个非空子集且S 1∪S 2∪S 3=I ,则下面论断正确的是( )3. 一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 ( ) A. 8π2 B. 8π C. 4π2 D. 4π4. 已知直线l 过点(-2,0),当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是( )A. )22,22(-B. )2,2(-C. )42,42(- D. )81,81(-5. 如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF//AB ,EF=2,则该多面体的体积为( )A. 32B. 33C. 34D. 236. 已知双曲线)0(1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( )A. 23B. 23C. 26D. 3327. 当20π<<x 时,函数xxx x f 2sin sin 82cos 1)(2++=的最小值为( )A. 2B. 32C. 4D. 348. 设0>b ,二次函数122-++=a bx ax y 的图象为下列之一:则a 的值为( )A. 1B. -1C.251-- D. 251+- 9. 设10<<a ,函数)22(log )(2--=x x a a a x f ,则使x x f 的0)(<取值范围是( ) A. )0,(-∞ B. ),0(+∞ C. )3log ,(a -∞D. ),3(log +∞a10. 在坐标平面上,不等式组⎩⎨⎧+-≤-≥1||3,1x y x y 所表示的平面区域的面积为 ( )A. 2B. 23C. 223 D. 211. 在ABC ∆中,已知C BA sin 2tan =+,给出以下四个论断:其中正确的是( ) ①1cot tan =⋅B A ②2sin sin 0≤+<B A ③1cos sin 22=+B A ④C B A 222sin cos cos =+ A. ①③ B. ②④ C. ①④ D. ②③ 12. 过三棱柱任意两个顶点的直线共15条,其中异面直线有 ( ) A. 18对 B. 24对 C. 30对 D. 36对第Ⅱ卷注意事项:本卷共10小题,共90分。
2005年全国各地高考数学试题及解答分类汇编大全(06数列)一、选择题:1.(2005福建文、理)已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A .15B .30C .31D .64解:由7916a a +=,得a 8=8,∴817844d -==-,∴a 12=1+8×74=15,选(A)2. (2005广东)已知数列{}n x 满足212x x =,)(2121--+=n n n x x x , ,4,3=n . 若2lim =∞→n x x ,则=1x ( B ) A .23B .3C .4D .5解法一:特殊值法,当31=x 时,3263,1633,815,49,2365432=====x x x x x 由此可推测2lim =∞→n x x ,故选B .解法二:∵)(2121--+=n n n x x x ,∴)(21211-----=-n n n n x x x x ,21211-=-----n n n nx x x x 即, ∴{}n n x x -+1是以(12x x -)为首项,以21-为公比6的等比数列,令n n n x x b -=+1,则11111211)21()21(2)21)((x x x x q b b n n n n n -=-⋅-=--==---+-+-+=)()(23121x x x x x x n …)(1--+n n x x+-+-+-+=121211)21()21()2(x x x x …11)21(x n --+3)21(32)21(1)21(12111111x x x x n n ---+=--⎥⎦⎤⎢⎣⎡---+= ∴2323)21(321111lim lim ==⎥⎦⎤⎢⎣⎡-+=-∞→∞→xx x x n x n x ,∴31=x ,故选B . 解法三:∵)(2121--+=n n n x x x ,∴0221=----n n n x x x , ∴其特征方程为0122=--a a ,解得 211-=a ,12=a , nn n a c a c x 2211+=,∵11x x =,212x x =,∴3211x c -=,3212x c =,∴3)21(3232)21(3211111xx x x x n n n --+=+-⋅-=,以下同解法二.3.(2005湖南文)已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a = ( )A .0B .3-C .3D .23 [评述]:本题由数列递推关系式,推得数列{a n }是周期变化的,找出规律,再求a 20.【思路点拨】本题涉及数列的相关知识与三角间的周期关系., 【正确解答】[解法一]:由a 1=0,).(1331++∈+-=N n a a a n n n 得a 2=-⋅⋅⋅⋅⋅⋅==,0,3,343a a由此可知: 数列{a n }是周期变化的,且三个一循环,所以可得:a 20=a 2=-.3故选B.[解法二]:设tan n n a α=,则1tan tan3tan()31tan tan 3n n nn a y παπαπα+-===-+,则13n n παα=-+,由10a =可知,00α=,故数列{n α}是以零为首项,公差为3π-的等差数列,20019()3παα=+⨯-,202019tan tan()3a πα==-=选B【解后反思】这是一道综合利用数列内部之间递推关系进行求解的题目.当我们看到有递推式存在时,不要急于通过代入,达到一个个来求解的目的, 如此这般, 既显得过于复杂,同时破坏了数学的逻辑性,而要通过化简,找到最直接的途径.本题中巧妙的逆用了两角和与差的正切公式,得出此数列为等差数列的结论,顺利达到求解的目的.4.(2005湖南理)已知数列{log 2(a n -1)}(n ∈N *)为等差数列,且a 1=3,a 2=5,则l i m 21321111()n n n a a a a a a →∞++++---= ( )A .2B .23 C .1 D .21[评析]:本题考查了等差数列,等比数列的通项公式和求和公式及数列极限相关交汇知识。
2005年普通高等学校招生全国统一考试数学(江苏卷)第一卷(选择题共60分)参考公式:三角函数的和差化积公式sin sin 2sincossin sin 2cossin2222cos cos 2cos coscos cos 2sinsin2222αβαβαβαβαβαβαβαβαβαβαβαβ+-+-+=-=+-+-+=-=-若事件A 在一次试验中发生的概率是p ,则它在n 次独立重复试验中恰好发生k 次的概率()(1)k k n kn n P k C p p -=-一组数据12,,,n x x x 的方差2222121()()()n S x x x x x x n ⎡⎤=-+-++-⎣⎦其中x 为这组数据的平均数值一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题意要求的。
(1) 设集合A={1,2},B={1,2,3},C={2,3,4},则()A B C ⋂⋃=(A ){1,2,3} (B ){1,2,4} (C ){2,3,4} (D ){1,2,3,4}(2) 函数123()xy x R -=+∈的反函数的解析表达式为(A )22log 3y x =- (B )23log 2x y -= (C )23log 2x y -= (D )22log 3y x=-(3) 在各项都为正数的等比数列{a n }中,首项a 1=3,前三项和为21,则a 3+a 4+a 5=(A )33 (B )72 (C )84 (D )189(4) 在正三棱柱ABC-A 1B 1C 1中,若AB=2,则点A 到平面A 1BC 的距离为(A )4(B )2(C )4(D (5) △ABC 中,,3,3A BCπ==则△ABC 的周长为(A ))33B π++(B ))36B π++(C )6sin()33B π++ (D )6sin()36B π++(6) 抛物线y=4x 2上的一点M 到焦点的距离为1,则点M 的纵坐标是(A )1716 (B )1516 (C )78(D )0 (7) 在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4 8.4 9.4 9.9 9.6 9.4 9.7去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为(A )9.4, 0.484 (B )9.4, 0.016 (C )9.5, 0.04 (D )9.5, 0.016 (8) 设,,αβγ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题:①若,,αγβγ⊥⊥则α∥β;②若,,m n m αα⊂⊂∥,n β∥,β则α∥β; ③若α∥,,l βα⊂则l ∥β;④若,,,l m n l αββγγα⋂=⋂=⋂=∥,γ则m ∥n .其中真命题的个数是(A )1 (B )2 (C )3 (D )4(9) 设k=1,2,3,4,5,则(x +2)5的展开式中x k 的系数不可能是(A )10 (B )40 (C )50 (D )80 (10) 若1sin(),63πα-=则2cos(2)3πα+= (A )79- (B )13- (C )13 (D )79(11) 点P (-3,1)在椭圆22221(0)x y a b a b+=>>的左准线上.过点P 且方向为a =(2,-5)的光线,经直线y=-2反射后通过椭圆的左焦点,则这个椭圆的离心率为(A (B )13 (C)2 (D )12(12) 四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为(A )96 (B )48 (C )24 (D )0 参考答案:DACBD CDBCA AB第二卷(非选择题共90分)二、填空题:本大题共6小题,每小题4分,共24分。
2005年全国各地高考数学试题及解答分类汇编大全(11解析几何初步)一、选择题:1、(2005春招北京文)直线20x -=被圆22(1)1x y -+=所截得的线段的长为( C )A .1 BCD .22. (2005北京文)从原点向圆 x 2+y 2-12y +27=0作两条切线,则这两条切线的夹角的大小为 (A )6π (B )3π (C )2π(D )32π 【答案】B 【详解】 将圆的方程配方得:22(6)9x y +-=圆心在(0,6)半径为3,如图: 在图中Rt PAO ∆中,62OP PA ==,从而得到30oAOP ∠=,即60.oAOB ∠=所以两条切线的夹角的大小为3π. 【名师指津】 以数形结合的思想解决此类题,抓图中直角三角形中边角关系.3.(2005北京理)从原点向圆0271222=+-+y y x 作两条切线,则该圆夹在两条切线间的劣弧长为( ) A .π B .2π C .4π D .6π 【答案】B 【详解】 将圆的方程配方得:22(6)9x y +-=圆心在(0,6)半径为3,如图: 在图中Rt PAO ∆中,62OP PA ==,从而得到30oAOP ∠=,即60.oAOB ∠=可求120.oBPA ∠=P 的周长为236ππ⨯=劣弧长为周长的13,可求得劣弧长为2π. 【名师指津】 以数形结合的思想解决此类题,抓图中直角三角形中边角关系.4.(2005湖南理)设P 是△ABC 内任意一点,S △ABC 表示△ABC 的面积,λ1=ABc PBC S S ∆∆, λ2=ABCPCA S S∆∆, λ3=ABCPAB S S ∆∆,定义f (P)=(λ1, λ, λ3),若G 是△ABC 的重心,f (Q)=(21,31,61),则 ( )A .点Q 在△GAB 内 B .点Q 在△GBC 内C .点Q 在△GCA 内D .点Q 与点G 重合[评述]:本题是一道很好的信息题,本题考查学生理性思维问题。
2005年全国各地高考数学试题及解答分类汇编大全(06数列)一、选择题:1.(2005福建文、理)已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( )A .15B .30C .31D .64解:由7916a a +=,得a 8=8,∴817844d -==-,∴a 12=1+8×74=15,选(A)2. (2005广东)已知数列{}n x 满足212x x =,)(2121--+=n n n x x x , ,4,3=n . 若2lim =∞→n x x ,则=1x ( B ) A .23B .3C .4D .5解法一:特殊值法,当31=x 时,3263,1633,815,49,2365432=====x x x x x 由此可推测2lim =∞→n x x ,故选B .解法二:∵)(2121--+=n n n x x x ,∴)(21211-----=-n n n n x x x x ,21211-=-----n n n n x x x x 即, ∴{}n n x x -+1是以(12x x -)为首项,以21-为公比6的等比数列,令n n n x x b -=+1,则11111211)21()21(2)21)((x x x x q b b n n n n n -=-⋅-=--==---+-+-+=)()(23121x x x x x x n …)(1--+n n x x+-+-+-+=121211)21()21()2(x x x x …11)21(x n --+3)21(32)21(1)21(12111111x x x x n n ---+=--⎥⎦⎤⎢⎣⎡---+= ∴2323)21(321111lim lim ==⎥⎦⎤⎢⎣⎡-+=-∞→∞→xx x x n x n x ,∴31=x ,故选B . 解法三:∵)(2121--+=n n n x x x ,∴0221=----n n n x x x , ∴其特征方程为0122=--a a ,解得 211-=a ,12=a , nn n a c a c x 2211+=,∵11x x =,212x x =,∴3211x c -=,3212x c =,∴3)21(3232)21(3211111xx x x x n n n --+=+-⋅-=,以下同解法二.3.(2005湖南文)已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a = ( )A .0B .3-C .3D .23 [评述]:本题由数列递推关系式,推得数列{a n }是周期变化的,找出规律,再求a 20.【思路点拨】本题涉及数列的相关知识与三角间的周期关系., 【正确解答】[解法一]:由a 1=0,).(1331++∈+-=N n a a a n n n 得a 2=-⋅⋅⋅⋅⋅⋅==,0,3,343a a由此可知: 数列{a n }是周期变化的,且三个一循环,所以可得:a 20=a 2=-.3故选B.[解法二]:设tan n n a α=,则1tan tan3tan()31tan tan 3n n nn a y παπαπα+-===-+,则13n n παα=-+,由10a =可知,00α=,故数列{n α}是以零为首项,公差为3π-的等差数列,20019()3παα=+⨯-,202019tan tan()3a πα==-=选B【解后反思】这是一道综合利用数列内部之间递推关系进行求解的题目.当我们看到有递推式存在时,不要急于通过代入,达到一个个来求解的目的, 如此这般, 既显得过于复杂,同时破坏了数学的逻辑性,而要通过化简,找到最直接的途径.本题中巧妙的逆用了两角和与差的正切公式,得出此数列为等差数列的结论,顺利达到求解的目的.4.(2005湖南理)已知数列{log 2(a n -1)}(n ∈N *)为等差数列,且a 1=3,a 2=5,则l i m21321111()n n n a a a a a a →∞++++---=( )A .2B .23C .1D .21[评析]:本题考查了等差数列,等比数列的通项公式和求和公式及数列极限相关交汇知识。
2005年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第I 卷一、选择题:1.设I 为全集,S 1、S 2、S 3是I 的三个非空子集且S 1∪S 2∪S 3=I ,则下面论断正确的是( ) A . I S I ∩(S 2∪S 3)= B .S 1⊆( I S 2∩ I S 3)C . I S I ∩ I S 2 ∩ I S 3=D .S 1⊆( I S 2∪ I S 3)2.一个与球心距离为1的平面截球所得的圆面面积为π,则球的表面积为 ( )A .8π2B .8πC .4π2D .4π3.已知直线l 过点(-2,0),当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是( )A .)22,22(-B .)2,2(-C .)42,42( D .)81,81(-4.如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且△ADE 、△BCF 均为正三角形,EF//AB ,EF=2,则该多面体的体积为( )A .32 B .33C .34 D .23 5.已知双曲线)0(1222>=-a y ax 的一条准线与抛物线x y 62-=的准线重合,则该双曲线的离心率为( )A .23 B .23 C .26 D .332 6.当20π<<x 时,函数x xx x f 2sin sin 82cos 1)(2++=的最小值为( )A .2B .32C .4D .347.设0>b ,二次函数122-++=a bx ax y 的图象下列之一:则a 的值为( )A .1B .-1C .251-- D .251+- 8.设10<<a ,函数)22(log )(2--=xx a a a x f ,则使x x f 的0)(<取值范围是( )A .)0,(-∞B .),0(+∞C .)3log ,(a -∞D .),3(log +∞a9.在坐标平面上,不等式组⎩⎨⎧+-≤-≥1||3,1x y x y 所表示的平面区域的面积为( )A .2B .23 C .223 D .210.在ABC ∆中,已知C BA sin 2tan=+,给出以下四个论断:①1cot tan =⋅B A ②2sin sin 0≤+<B A ③1cos sin 22=+B A ④C B A 222sin cos cos =+其中正确的是( ) A .①③ B .②④ C .①④D .②③ 11.过三棱柱任意两个顶点的直线共15条,其中异面直线有( )A .18对B .24对C .30对D .36对 12.复数=--ii 2123( )A .iB .i -C .i -22D .i +-22第Ⅱ卷注意事项:1.用钢笔或圆珠笔直接答在试题卷中. 2.答卷前将密封线内的项目填写清楚. 3.本卷共10小题,共90分.二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.若正整数m 满足)3010.02.(lg ________,102105121≈=<<-m m m 则14.9)12(xx -的展开式中,常数项为 .(用数字作答)15.△ABC 的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m= .16.在正方体ABCD —A ′B ′C ′D ′中,过对角线BD ′的一个平面交AA ′于E ,交CC ′于F ,则①四边形BFD ′E 一定是平行四边形.②四边形BFD ′E 有可能是正方形.③四边形BFD ′E 在底面ABCD 内的投影一定是正方形. ④平面BFD ′E 有可能垂直于平面BB ′D.以上结论正确的为 .(写出所有正确结论的编号)三、解答题:本大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)设函数)(),0)(2sin()(x f y x f =<<-+=ϕπϕπ图象的一条对称轴是直线.8π=x(Ⅰ)求ϕ;(Ⅱ)求函数)(x f y =的单调增区间;(Ⅲ)证明直线025=+-c y x 与函数)(x f y =的图象不相切.18.(本小题满分12分) 已知四棱锥P —ABCD 的底面为直角梯形,AB//DC ,∠DAB=90°,PA ⊥底面 ABCD ,且PA=AD=DE=21AB=1,M 是PB 的中点. (1)证明:面PAD ⊥面PCD ; (2)求AC 与PB 所成的角;(3)求面AMC 与面BMC 所成二面角的大小. 19.(本小题满分12分)设等比数列}{n a 的公比为q ,前n 项和S n >0(n=1,2,…)(1)求q 的取值范围; (2)设,2312++-=n n n a a b 记}{n b 的前n 项和为T n ,试比较S n 和T n 的大小. 20.(本小题满分12分) 9粒种子分种在3个坑内,每坑3粒,每粒种子发芽的概率为0.5,若一个坑内至少有1粒种子发芽,则这个坑不需要补种,若一个坑里的种子都没发芽,则这个坑需要补种,假定每个坑至多补种一次,每补种1个坑需10元,用ξ表示补种费用,写出ξ的分布列并求ξ的数学期望.(精确到0.01) 21.(本小题满分14分) 已知椭圆的中心为坐标原点O ,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,OB OA +与)1,3(-=a 共线. (1)求椭圆的离心率;(2)设M 为椭圆上任意一点,且),(R OB OA OM ∈+=μλλλ,证明22μλ+为定值.22.(本小题满分12分)(1)设函数)10)(1(log )1(log )(22<<--+=x x x x x x f ,求)(x f 的最小值; (2)设正数n p p p p 2321,,,, 满足12321=++++n p p p p , 求证.log log log log 222323222121n p p p p p p p p n n -≥++++2005年普通高等学校招生全国统一考试理科数学(必修+选修I )参考答案一、选择题(本题考查基本知识和基本运算,每小题5分,满分60分)1.A 2.C 3.B 4.C 5.A 6.D 7.C 8.B 9.C 10.B 11.B 12.D 二、填空题:本题考查基本知识和基本运算.每小题4分,满分16分. 13.155 14.672 15.1 16.①③④ 三、解答题17.本小题主要考查三角函数性质及图像的基本知识,考查推理和运算能力,满分12分. 解:(Ⅰ))(8x f y x ==是函数π的图像的对称轴,,1)82sin(±=+⨯∴ϕπ.,24Z k k ∈+=+∴ππππ.43,0πϕϕπ-=<<- (Ⅱ)由(Ⅰ)知).432sin(,43ππϕ-=-=x y 因此 由题意得.,2243222Z k k x k ∈+≤-≤-πππππ所以函数.],85,8[)432sin(Z k k k x y ∈++-=πππππ的单调增区间为(Ⅲ)证明:,2|)432cos(2||))432(sin(|||≤-='-='ππx x y所以曲线)(x f y =的切线斜率取值范围为[-2,2],而直线025=+-c y x 的斜率为225>,所以直线025=+-c y x 与函数)432sin(π-=x y 的图像不相切. 18.本小题主要考查直线与平面垂直、直线与平面所成角的有关知识及思维能力和空间想象能力.考查应用向量知识解决数学问题的能力.满分12分. 方案一:(Ⅰ)证明:∵PA ⊥面ABCD ,CD ⊥AD , ∴由三垂线定理得:CD ⊥PD.因而,CD 与面PAD 内两条相交直线AD ,PD 都垂直, ∴CD ⊥面PAD.又CD ⊂面PCD ,∴面PAD ⊥面PCD.(Ⅱ)解:过点B 作BE//CA ,且BE=CA ,则∠PBE 是AC 与PB 所成的角.连结AE ,可知AC=CB=BE=AE=2,又AB=2,所以四边形ACBE 为正方形. 由PA ⊥面ABCD 得∠PEB=90° 在Rt △PEB 中BE=2,PB=5, .510cos ==∠∴PB BE PBE.510arccos所成的角为与PB AC ∴ (Ⅲ)解:作AN ⊥CM ,垂足为N ,连结BN. 在Rt △PAB 中,AM=MB ,又AC=CB , ∴△AMC ≌△BMC,∴BN ⊥CM ,故∠ANB 为所求二面角的平面角. ∵CB ⊥AC ,由三垂线定理,得CB ⊥PC , 在Rt △PCB 中,CM=MB ,所以CM=AM. 在等腰三角形AMC 中,AN ·MC=AC AC CM ⋅-22)2(, 5625223=⨯=∴AN . ∴AB=2,322cos 222-=⨯⨯-+=∠∴BN AN AB BN AN ANB 故所求的二面角为).32arccos(-方法二:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB ,以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为A (0,0,0)B (0,2,0),C (1,1,0),D (1,0,0),P (0,0,1),M (0,1,)21. (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=⋅==所以故由题设知AD ⊥DC ,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD. (Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC.510||||,cos ,2,5||,2||=⋅⋅>=<=⋅==PB AC PBAC PB AC PB AC PB AC 所以故(Ⅲ)解:在MC 上取一点N (x ,y ,z ),则存在,R ∈λ使,MC NC λ=..21,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC要使.54,0210,==-=⋅⊥λ解得即只需z x MC AN MC AN),52,1,51(),52,1,51(,.0),52,1,51(,54=⋅-===⋅=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λANB MC BN MC AN MC BN MC AN ∠⊥⊥=⋅=⋅所以得由.,0,0为所求二面角的平面角.).32arccos(.32||||),cos(.54,530||,530||--=⋅=∴-=⋅==故所求的二面角为BN AN BNAN BN AN BN AN BN AN19. 本小题主要考查等比数列的基本知识,考查分析问题能力和推理能力,满分12分. 解:(Ⅰ)因为}{n a 是等比数列,.0,0,011≠>=>q S a S n 可得 当;0,11>==na S q n 时),2,1(,011,01)1(,11 =>-->--=≠n qqq q a S q nn n 即时当上式等价于不等式组:),2,1(,01,01 =⎩⎨⎧<-<-n q q n① 或),2,1(,01,01 =⎩⎨⎧>->-n q q n②解①式得q>1;解②,由于n 可为奇数、可为偶数,得-1<q<1. 综上,q 的取值范围是).,0()0,1(+∞⋃-(Ⅱ)由得1223++-=n a n a a b .)23(),23(22n n n n S q q T q q a b -=-=于是)123(2--=-q q S S T n n n).2)(21(-+=q q S n.,0,2,21;,0,0221;,0,2211,,001,0n n n n n n n n n n n n n S T S T q q S T S T q q S T S T q q q q S ==-=-=<<-≠<<->>->-<<-><<->即时或当即时且当即时或当所以或且又因为 20.本小题主要考查相互独立事件和互斥事件有一个发生的概率的计算方法,考查运用概率知识解决实际问题的能力. 满分12分.(Ⅰ)解:因为甲坑内的3粒种子都不发芽的概率为81)5.01(3=-,所以甲坑不需要补种的概率为 .87811=-3个坑都不需要补种的概率,670.0)87()81(303=⨯⨯ C恰有1个坑需要补种的概率为,287.0)87(81213=⨯⨯C恰有2个坑需要补种的概率为,041.087)81(223=⨯⨯C3个坑都需要补种的概率为.002.0)87()81(0333=⨯⨯C补种费用ξ的分布为ξ的数学期望为75.3002.030041.020287.010670.00=⨯+⨯+⨯+⨯=ξE21.本小题主要考查直线方程、平面向量及椭圆的几何性质等基本知训,考查综合运用数学知识解决问题及推理的能力,满分14分.(I )解:设椭圆方程为),0,(),0(12222c F b a by a x >>=+则直线AB 的方程为1,2222=+-=by a x c x y 代入化简得02)(22222222=-+-+b a c a cx a x b a .令),,(),,(2211y x B y x A则 .,22222222122221ba b a c a x x b a c a x x +-=+=+),,(2121y y x x OB OA ++=+由a OB OA a 与+-=),1,3(共线,得.0)()(32121=+++x x y y.36,36.3,232.23,0)()2(3,,22222222121212211===-=∴==+=+∴=++-+∴-=-=a c e ab ac b a cba c a c x x x x c x x c x y c x y 故离心率所以即又 (II )证明:由(I )知223b a =,所以椭圆12222=+by a x 可化为22233b y x =+.),,(),(),(),,(2211y x y x y x y x OM μλ+==由已知得设 ⎩⎨⎧+=+=∴.,2121y y y x x x μλμλ ),(y x M 在椭圆上,.3)(3)(2221221b y y x x =+++∴μλμλ即 .3)3(2)3()3(221212222221212b y y x x y x y x =+++++λμμλ ①由(I )知.21,23,23222221c b c a c x x ===+))((33.8321212121222222221c x c x x x y y x x c ba b a c a x x --++=+∴=+-=∴ .0329233)(3422222121=+-=++-=c c c c c x x x x又222222212133,33b y x b y x =+=+又,代入①得 .122=+μλ 故22μλ+为定值,定值为1.22.本小题主要考查数学归纳法及导数应用等知识,考查综合运用数学知识解决问题的能力.满分12分.(Ⅰ)解:对函数)(x f 求导数:])1(log )1[()log ()(22'--+'='x x x x x f.2ln 12ln 1)1(log log 22-+--=x x ).1(log log 22x x --=于是.0)21(='f当)(,0)1(log log )(,2122x f x x x f x <--='<时在区间)21,0(是减函数, 当)(,0)1(log log )(,2122x f x x x f x >--='>时在区间)1,21(是增函数.所以21)(=x x f 在时取得最小值,1)21(-=f ,(Ⅱ)证法一:用数学归纳法证明.(i )当n=1时,由(Ⅰ)知命题成立.(ii )假定当k n =时命题成立,即若正数1,,,221221=+++k k p p p p p p 满足, 则.log log log 222222121k p p p p p p k k -≥+++当1+=k n 时,若正数,1,,,11221221=+++++k k p p p p p p 满足 令.,,,,222211221xp q x pq x p q p p p x k k k ===+++= 则k q q q 221,,, 为正数,且.1221=+++k q q q由归纳假定知.log log log 222222121k q q p p p q k k -≥+++kk k k q q q q q q x p p p p p p 222222121222222121log log log (log log log +++=+++,log )()log 22x x k x x +-≥+ ①同理,由x p p p k k k -=++++++1122212 可得1122212212log log ++++++k k k k p p p p).1(log )1())(1(2x x k x --+--≥ ②综合①、②两式11222222121log log log +++++k k p p p p p p).1()1(log )1(log ))](1([22+-≥--++--+≥k x x x x k x x即当1+=k n 时命题也成立.根据(i )、(ii )可知对一切正整数n 命题成立. 证法二:令函数那么常数)),,0(,0)((log )(log )(22c x c x c x c x x x g ∈>--+=],log )1(log )1(log [)(222c cxc x c x c x c x g +--+=利用(Ⅰ)知,当.)(,)2(21取得最小值函数时即x g cx c x == 对任意都有,0,021>>x x2log 22log log 21221222121x x x x x x x x ++⋅≥+ ]1)()[log (21221-++=x x x x . ① 下面用数学归纳法证明结论.(i )当n=1时,由(I )知命题成立.(ii )设当n=k 时命题成立,即若正数有满足,1,,,221221=+++k k p p p p p p11111122212212222121221221222222121log log log log .1,,,,1.log log log ++++++++++==++++=-≥+++--k k k k k k k k p p p p p p p p H p p p p p p k n k p p p p p p 令满足时当由①得到,1)()(],1)()[log (]1)()[log (11111121221212221221221=++++-++++-++≥++++++---k k k k k k p p p p p p p p p p p p H 因为由归纳法假设得到,)(log )()(log )(1111212221221221k p p p p p p p p k k k k -≥++++++++++-- ).1()(1121221+-=++++--≥+++k p p p p k H k k 即当1+=k n 时命题也成立. 所以对一切正整数n 命题成立.。
2005年全国各地高考数学试题及解答分类大全(集合)一、选择题:1.(2005北京文、理)设全集U =R ,集合M ={x |x >1},P ={x |x 2>1},则下列关系中正确的是A .M=PB .P MC .M P (D )M P R=【答案】C【详解】{|1P x x =>或1}x <-{|1}M x x =>易得M P【名师指津】集合与集合之间关系的题目经常借助图象来观察.2.(2005福建文)已知集合∈≤-=x x x P ,1|1|||R|,Q P N x x Q 则},|{∈=等于()A .PB .QC .{1,2}D .{0,1,2}解:∵P=[0,2],{|},Q x x N P Q =∈∴ ={0,1,2},选(D)3.(2005广东)若集合}03|{},2|||{2=-=≤=x x x N x x M ,则M ∩N =(B )A .{3}B .{0}C .{0,2}D .{0,3}解:∵由2||≤x ,得22≤≤-x ,由032=-x x ,得30==x x 或,∴M ∩N }0{=,故选B .4.(2005湖北文、理)设P 、Q 为两个非空实数集合,定义集合P+Q=},5,2,0{},,|{=∈∈+P Q b P a b a 若}6,2,1{=Q ,则P+Q 中元素的个数是()A .9B .8C .7D .6解:集合P 中和集合Q 中各选一个元素可组成的组合数为11339C C ⋅=其对应的和有一个重复:0+6=1+5,故P+Q 中的元素有8个,选(B)5.(2005湖南文)设全集U={-2,-1,0,1,2},A={-2,-1,0},B={0,1,2},则(C U A)∩B=()A.{0}B.{-2,-1}C.{1,2}D.{0,1,2}[评述]:本题考查集合有关概念,补集,交集等知识点。
【思路点拨】本题涉及集合的简单运算.【正确解答】由题意得:{}{}2,1)(,2,1=⋂=B CuA CuA 则,故选C.【解后反思】这是一道考查集合的简单题目,可用画出它的韦恩图,用数形结合的方法解答.6.(2005江苏)设集合A={1,2},B={1,2,3},C={2,3,4},则()A B C ⋂⋃=(A ){1,2,3}(B ){1,2,4}(C ){2,3,4}(D ){1,2,3,4}答案:D[评述]:本题考查交集、并集等相关知识。
2005年高考数学江苏卷试题及答案一选择题:本大题共12小题,每小题5分,共60分项是符合题意要求的1.设集合{}2,1=A ,{}3,2,1=B ,{}4,3,2=C ,则()C B A =( ) A .{}3,2,1 B .{}4,2,1 C .{}4,3,2 D .{}4,3,2,12.函数)(321R x y x ∈+=-的反函数的解析表达式为 ( ) A .32log 2-=x y B .23log 2-=x y C .23log 2x y -= D .xy -=32log 2 3.在各项都为正数的等比数列{}n a 中,首项31=a ,前三项和为21,则543a a a ++=( )A .33B .72C .84D .1894.在正三棱柱111C B A ABC -中,若AB=2,11AA =则点A 到平面BC A1的距离为( ) A .43 B .23 C .433 D .3 5.ABC ∆中,3π=A ,BC=3,则ABC ∆的周长为 ( )A .33sin 34+⎪⎭⎫⎝⎛+πB B .36sin 34+⎪⎭⎫ ⎝⎛+πB C .33sin 6+⎪⎭⎫⎝⎛+πB D .36sin 6+⎪⎭⎫ ⎝⎛+πB 6.抛物线24x y =上的一点M 到焦点的距离为1,则点M 的纵坐标是( ) A .1617 B .1615 C .87 D .07.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:7.9,4.9,6.9,9.9,4.9,4.8,4.9,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为 ( )A .484.0,4.9B .016.0,4.9C .04.0,5.9D .016.0,5.9 8.设γβα,,为两两不重合的平面,n m l ,,为两两不重合的直线,给出下列四个命题:①若γα⊥,γβ⊥,则βα||;②若α⊂m ,α⊂n ,β||m ,β||n ,则βα||;③若βα||,α⊂l ,则β||l ;④若l =βα ,m =γβ ,n =αγ ,γ||l ,则m ||其中真命题的个数是 ( )A .1B .2C .3D .4 9.设5,4,3,2,1=k ,则5)2(+x 的展开式中kx 的系数不可能是 ( ) A .10 B .40 C .50 D .80 10.若316sin =⎪⎭⎫ ⎝⎛-απ,则⎪⎭⎫ ⎝⎛+απ232cos = ( )A .97-B .31-C .31D .9711.点)1,3(-P 在椭圆)0(12222>>=+b a by a x 的左准线上,过点P 且方向为)5,2(-=的光线经直线2-=y 反射后通过椭圆的左焦点,则这个椭圆的离心率为( )A .33 B .31 C .22D .2112.四棱锥的8条棱代表8种不同的化工产品,有公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共顶点的两条棱所代表的化工产品放在同一仓库是安全的,现打算用编号为①.②.③.④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为( )A .96B .48C .24D .0 二.填写题:本大题共6小题,每小题4分,共24分把答案填在答题卡相应位置13.命题“若b a >,则122->ba ”的否命题为__________14.曲线13++=x x y 在点)3,1(处的切线方程是__________15.函数)34(log 25.0x x y -=的定义域为__________16.若[)1,,618.03+∈=k k a a ,()k Z ∈,则k =__________17.已知b a ,为常数,若34)(2++=x x x f ,2410)(2++=+x x b ax f ,则b a -5=__________18.在ABC ∆中,O 为中线AM 上一个动点,若AM=2,则)(+∙的最小值是__________三.解答题:本大题共5小题,共66分解答应写出文字说明.证明过程或演算步骤19.(本小题满分12分)如图,圆1O 与圆2O 的半径都是1,421=O O ,过动点P 分别作圆1O .圆2O 的切线PM 、PN (M.N 分别为切点),使得PN PM 2=试建立适当的坐标系,并求动点P 的轨迹方程20.(本小题满分12分,每小问满分4分)甲.乙两人各射击一次,击中目标的概率分别是324假设两人射击是否击中目标,相互之间没有影响;每人各次射击是否击中目标,相互之间也没有影响⑴求甲射击4次,至少1次未击中...目标的概率; ⑵求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率; ⑶假设某人连续2次未击中...目标,则停止射击问:乙恰好射击5次后,被中止射击的概率是多少?21.(本小题满分14分,第一小问满分6分,第二.第三小问满分各4分)如图,在五棱锥S —ABCDE 中,SA ⊥底面ABCDE ,SA=AB=AE=2,3==DE BC ,=∠=∠=∠120CDE BCD BAE⑴求异面直线CD 与SB 所成的角(用反三角函数值表示); ⑵证明:BC ⊥平面SAB ;⑶用反三角函数值表示二面角B —SC —D 的大小不必写出解答过程)22.(本小题满分14分,第一小问满分4分,第二小问满分10分)已知R a ∈,函数|)(2a x x x f -=⑴当2=a 时,求使x x f =)(成立的x 的集合; ⑵求函数)(x f y =在区间]2,1[上的最小值23.(本小题满分14分,第一小问满分2分,第二.第三小问满分各6分) 设数列{}n a 的前n 项和为n S ,已知11,6,1321===a a a ,且,3,2,1,)25()85(1=+=+--+n B An S n S n n n ,其中A.B 为常数⑴求A 与B 的值;⑵证明:数列{}n a 为等差数列;⑶证明:不等式15>-n m mn a a a 对任何正整数n m ,都成立005年高考数学江苏卷试题及答案参考答案(1)D (2)A (3)C (4)B (5)D (6)B (7)D (8)B (9)C (10)A (11)A (12)B(13)若b a >,则122->ba (14)014=--y x(15)]1,43()0,41[ -(16)-1 (17)2 (18)-2 (19)以1O 2O 的中点O 为原点,1O 2O 所在的直线为x 轴,建立平面直角坐标系,则1O (-2,0),2O (2,0),由已知PN 2PM =,得222PN PM =因为两圆的半径均为1,所以1(212221-=-PO PO设),(y x P ,则]1)2[(21)2(2222-+-=-++y x y x , 即33)6(22=+-y x ,所以所求轨迹方程为)6(22=+-y x (或031222=+-+x y x )(20)(Ⅰ)记“甲连续射击4次,至少1次未击中目标”为事件A 1,由题意,射击4次,相当于4次独立重复试验,故P (A 1)=1- P (1A )=1-4)32(81答:甲射击4次,至少1次未击中目标的概率为8165; (Ⅱ) 记“甲射击4次,恰好击中目标2次”为事件A 2,“乙射击4次,恰好击中目标3次”为事件B 2,则278)321()32()(242242=-=-C A P ,6427)431()43()(143342=-=-C B P ,由于甲、乙设计相互独立,故86427278)()()(2222=⋅==B P A P B A P 答:两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率为81; (Ⅲ)记“乙恰好射击5次后,被中止射击”为事件A 3,“乙第i 次射击为击中” 为事件D i ,(i=1,2,3,4,5),则A 3=D 5D 4)(123D D D ,且P (D i )=41,由于各事件相互独立,故P (A 3)= P (D 5)P (D 4)P ()(123D D D )=41×41×43×(1-41×41)=102445,答:乙恰好射击51024(21)(Ⅰ)连结BE ,延长BC 、ED 交于点F ,则∠DCF=∠CDF=600,∴△CDF 为正三角形,∴CF=DF又BC=DE ,∴BF=EF 因此,△BFE 为正三角形,∴∠FBE=∠FCD=600,∴BE//CD所以∠SBE (或其补角)就是异面直线CD 与SB 所成的角 ∵SA ⊥底面ABCDE ,SA=AB=AE=2,∴SB=22,同理SE=22,又∠BAE=1200,所以BE=32,从而,cos ∠SBE=46, ∴∠46 所以异面直线CD 与SB 所成的角是46 (Ⅱ) 由题意,△ABE 为等腰三角形,∠BAE=1200,∴∠ABE=300,又∠FBE =600,∴∠ABC=900,∴BC ⊥BA∵SA ⊥底面ABCDE ,BC ⊂底面ABCDE , ∴SA ⊥BC ,又SA BA=A ,∴BC ⊥平面SAB(Ⅲ)二面角B-SC-D 的大小8282arccos-π(22)(Ⅰ)由题意,|2|)(2-=x x x f当2<x 时,由x x x x f =-=)2()(2,解得0=x 或1=x ;当2≥x 时,由x x x x f =-=)2()(2,解得1+=x 综上,所求解集为}21,1,0{+ (Ⅱ)设此最小值为①当1≤a 时,在区间[1,2]上,23)(ax x x f -=,因为0)32(323)('2>-=-=a x x ax x x f ,)2,1(∈x , 则)(x f 是区间[1,2]上的增函数,所以f m -==1)1(②当21≤<a 时,在区间[1,2]上,0||)(2≥-=a x x x f ,由0)(=a f 知)(==a f m③当2>a 时,在区间[1,2]上,32)(x ax x f -=)32(332)('2x a x x ax x f -=-=若3≥a ,在区间(1,2)上,0)('>x f ,则)(x f 是区间[1,2]上的增函数, 所以1)1(-==a f m 若32<<a ,则2321<<a 当a x 321<<时,0)('>x f ,则)(x f 是区间[1,a 32]上的增函数, 当232<<x a 时,0)('<x f ,则)(x f 是区间[a 32,2]上的减函数, 因此当32<<a 时,1)1(-==a f m 或)2(4)2(-==a f m当372≤<a 时,1)2(4-≤-a a ,故)2(4)2(-==a f m , 当337<<a 时,1)2(4-<-a a ,故1)1(-==a f m 总上所述,所求函数的最小值⎪⎪⎪⎩⎪⎪⎪⎨⎧>-≤<-≤<≤-=37172)2(421011a a a a a a a m(23)(Ⅰ)由已知,得111==a S ,7212=+=a a S ,183213=++=a a a S 由B An S n S n n n +=+--+)25()85(1,知⎩⎨⎧+=-+=--BA S SB A S S 2122732312,即⎩⎨⎧-+-=+48228B A B A 解得8,20-=-=B A .(Ⅱ) 由(Ⅰ)得820)25()85(1--=+--+n S n S n n n ① 所以 2820)75()35(12--=+--++n S n S n n n ②②-①得 20)25()110()35(12-=++---++n n n S n S n S n ③ 所以 20)75()910()25(123-=+++-++++n n n S n S n S n ④ ④-③得 )25()615()615()25(123=+-+++-++++n n n n S n S n S n S n因为 n n n S S a -=++11所以 0)75()410()25(123=+++-++++n n n a n a n a n 因为 0)25(≠+n所以 02123=+-+++n n n a a a所以 1223++++-=-n n n n a a a a ,1≥n 又 51223=-=-a a a a 所以数列}{n a 为等差数列(Ⅲ)由(Ⅱ) 可知,45)1(51-=-+=n n a n , 要证15>-n m mn a a a只要证 n m n m mn a a a a a 215++>, 因为 45-=mn a mn ,16)(2025)45)(45(++-=--=n m mn n m a a n m ,故只要证 >-)45(5mn n m a a n m mn 216)(20251+++-+, 即只要证 n m a a n m 2372020>-+,因为 372020)291515(8558552-+=-++-+<-+=+≤n m n m n m n m a a a a n m n m 所以命题得证。