抽屉原理讲义
- 格式:docx
- 大小:45.83 KB
- 文档页数:5
第一抽屉原理原理1 把多于n个的物体放到n个抽屉里,则至少有一个抽屉里有2个或2个以上的物体。
[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能。
原理2 把多于mn个的物体放到n个抽屉里,则至少有一个抽屉里有m+1个或多于m+1个的物体。
[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn 个物体,与题设不符,故不可能。
第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
[证明](反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。
抽屉原理,又叫狄利克雷原则,它是一个重要而又基本的数学原理,应用它可以解决各种有趣的问题,并且常常能够得到令人惊奇的结果,许多看起来相当复杂,甚至无从下手的问题,利用它能很容易得到解决.那么,什么是抽屉原理呢?我们先从一个最简单的例子谈起.将三个苹果放到两只抽屉里,想一想,可能会有什么样的结果呢?要么在一只抽屉里放两个苹果,而另一只抽屉里放一个苹果;要么一只抽屉里放有三个苹果,而另一只抽屉里不放.这两种情况可用一句话概括:一定有一只抽屉里放入了两个或两个以上的苹果.虽然哪只抽屉里放入至少两个苹果我们无法断定,但这是无关紧要的,重要的是有这样一只抽屉放入了两个或两个以上的苹果.如果我们将上面问题做一下变动,例如不是将三个苹果放入两只抽屉里,而是将八个苹果放到七只抽屉里,我们不难发现,这八个苹果无论以怎样的方式放入抽屉,仍然一定会有一只抽屉里至少有两个苹果。
通过上面的分析,我们可以将上面问题中包含的基本原理写成下面的一般形式.抽屉原理(一):把多于几个的元素按任一确定的方式分成几个集合,那么一定至少有一个集合中,至少含有两个元素.应用抽屉原理来解题,首先要审题,即分清什么作为“元素”,什么作为“抽屉”;其次要根据题目的条件和结论,结合有关的数学知识,来设计抽屉,在应用抽屉原理解题时,正确地设计抽屉是解题的关键.例1 有红、黄、绿三种颜色的小球各四颗混放在一只盒子里,为了保证一次能取到两颗颜色相同的小球,一次至少要取几颗?A、3B、4C、5D、6分析:将三种不同的颜色看作三个抽屉,为了保证一次能取到两颗颜色相同的小球,即要求至少有两颗小球出自同一抽屉,因此一次至少要取4颗小球.例2 某班有30名学生,班里建立一个小书库,同学们可以任意借阅,问小书库中至少要有多少本书,才能保证至少有一个同学一次能至少借到两本书?A、28B、29C、30D、31分析:将30名同学看作30个“抽屉”,而将书看作“苹果”,根据抽屉原理,“苹果”数目要比“抽屉”数目大,才能保证至少有一个抽屉里有两个或两个以上的“苹果”,因此,小书库中至少要有31本书,才能保证至少有一位同学一次能借到两本或两本以上的图书。
第一抽屉原理原理1:把多于n+k个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n×1,而不是题设的n+k(k≥1),故不可能。
原理2 :把多于mn(m乘以n)+1(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。
原理1 、2 、3都是第一抽屉原理的表述。
第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体(例如,将3×5-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。
运用抽屉原理的核心是分析清楚问题中,哪个是物件,哪个是抽屉。
例如,属相是有12个,那么任意37个人中,有几个人属相相同呢?这时将属相看成12个抽屉,则一个抽屉中有37/12,即3余1,余数不考虑,而向上考虑取整数,所以这里是3+1=4个人,(但这里需要注意的是,前面的余数1和这里加上的1是不一样的。
)比如:由于一年最多有366天,因此在367人中至少有2人出生在同月同日。
这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。
例1一个布袋中有40块相同的木块,其中编上号码1,2,3,4的各有10块。
问:一次至少要取出多少木块,才能保证其中至少有3块号码相同的木块?分析与解:将1,2,3,4四种号码看成4个抽屉。
要保证有一个抽屉中至少有3件物品,根据抽屉原理2,至少要有4×2+1=9(件)物品。
所以一次至少要取出9块木块,才能保证其中有3块号码相同的木块。
例2在任意的四个自然数中,是否其中必有两个数,它们的差能被3整除?分析与解:因为任何整数除以3,其余数只可能是0,1,2三种情形。
抽屉原理把n+1(或更多)个苹果放到n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果;把(m×n+1)(或更多)个苹果放到n个抽屉里,必有一个抽屉里有(m+1)个(或更多个)苹果。
在抽屉原理的应用中,涉及三个数:苹果数、抽屉数、结论数。
在实际应用中,首先我们要去判断哪个量代表“抽屉”,哪个量代表“苹果”,哪个量代表“结论”,然后具体确定各自的数值。
〖经典例题〗例1、①一小队有13名同学,小明说:他们中必有两人是一个属相。
请你说明为什么?②要想保证至少有5个人的属相相同,但不能保证有6个人属相相同,那么人的总数应在什么范围内?【分析】①共有12个属相,将13个人放到12个抽屉里面,肯定有2人在同一个抽屉里,即同一个属相。
②要保证有5个人的属相相同,总人数最少为:4×12+1=49人,不能保证有6个人属相相同的最多人数为5×12=60人。
所以,总人数应在49人到60人的范围内。
例2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
【分析】首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果.把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉.由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
〖方法总结〗这两个是抽屉原理的一个基本应用,主要考察对抽屉原理概念的理解。
这时最重要的是要去判断哪个量代表“抽屉”,哪个量代表“苹果”,哪个量代表“结论”,然后具体确定各自的数值。
〖巩固练习〗练习1:某班有52名同学,他们分别来自10所小学,请你证明,至少有一所小学来的人数超过5人。
练习2:一副扑克牌(去掉两张王),每人随意摸两张牌,至少有多少人才能保证他们当中一定有两人所摸两张牌的花色情况是相同的?练习3:口袋里放有足够多的红、白、蓝三种颜色的球,现有31个人轮流从袋中取球,每人各取三个球。
第29讲抽屉原理(1)讲义专题简析如果给你5盒饼干,让你把它们放到4个抽屉里,那么肯定有一个抽屉里至少有2盒饼干。
如果把4封信投到3个邮箱中,那么背定有一个邮箱中至少有2封信。
如果把3本练习册分给两名同学,那么肯定其中有一名同学至少分到2本练习册。
这些事例中蕴含着数学中的“抽屉原理”。
基本的抽屉原理有两条:(1)如果把x+k(k≥1)个元素放到x个抽屉里,那么至少有一个抽屉里含有2个或2个以上的元素。
(2)如果把m×x+k(k≥1)个元素放到x个抽屜里,那么至少有一个抽屉里含有(m+1)个或(m+1)个以上的元素。
利用抽屉原理解题时要注意区分哪些是“抽屉”,哪些是“元素”。
然后按以下步骤解答:a.构造抽屉,指出元素;b.把元素放入(或取出)抽屉。
C.说明理由,得出结论。
本周我们先来学习第一条原理及其应用。
例1、某校六年级有367名学生,请问有没有2名学生的生日是在同一天?为什么?练习:1、某校有370名1992年出生的学生,其中至少有2名学生的生日是在同一天,为什么?2、某校有30名学生是2月份出生的。
能否至少有2名学生的生日是在同一天?3、15个小朋友中,至少有几个小朋友在同一个月出生?例2、某班学生去买语文书、数学书、英语书。
买书的情况是:有买一本的、两本的,也有买三本的,问至少要去几名学生才能保证一定有2名学生买到相同的书?(每种书最多买一本)练习:1、某班学生去买数学书、语文书、美术书、自然书。
买书的情况是:有买一本、两本、三本或四本的。
问至少去几名学生才能保证一定有2名学生买到相同的书?(每种书最多买一本)2、学校图书室有历史、文艺、科普三种图书。
每名学生从中任意借两本,那么至少要几名学生才能保证一定有2名学生所借的图书属于同一种?3、一个布袋中装有许多规格相同但颜色不同的玻璃珠子,颜色有绿、红、黄三种。
问最少要取出多少个珠子才能保证有2个是同色的?例3、一个布袋中装有大小相同但颜色不同的手套,颜色有黑、红、蓝、黄四种。
抽屉原理(高一数学讲座)抽屉原理(高一数学讲座主讲:江志杰)桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果.这一现象就是我们所说的抽屉原理.抽屉原理的一般含义为:〝如果每个抽屉代表一个集合,每一个苹果就可以代表一个元素,假如有n+1或多于n+1个元素放到n个集合中去,其中必定至少有一个集合里至少有两个元素.〞抽屉原理有时也被称为鸽巢原理(〝如果有五个鸽子笼,养鸽人养了6只鸽子,那么当鸽子飞回笼中后,至少有一个笼子中装有2只鸽子〞).它是德国数学家狄利克雷首先明确的提出来并用以证明一些数论中的问题,因此,也称为狄利克雷原理.它是组合数学中一个重要的原理.一.抽屉原理最常见的形式原理1 :如果把n+k(k≥1)个物体放进n只抽屉里,则至少有一只抽屉要放进两个或更多个物体.[证明](反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),这不可能.原理2 :如果把mn+k(k≥1)个物体放进n个抽屉,则至少有一个抽屉至多放进m+1个物体.[证明](反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能.二.应用抽屉原理解题抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用.许多有关存在性的证明都可用它来解决.例1:400人中至少有两个人的生日相同.解:将一年中的366天视为366个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有两人的生日相同.又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同.〝从任意5双手套中任取6只,其中至少有2只恰为一双手套.〞〝从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同.〞例2: 幼儿园买来了不少白兔.熊猫.长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理.解 :从三种玩具中挑选两件,搭配方式只能是下面六种:(兔.兔),(兔.熊猫),(兔.长颈鹿),(熊猫.熊猫),(熊猫.长颈鹿),(长颈鹿.长颈鹿).把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同.上面数例论证的似乎都是〝存在〞.〝总有〞.〝至少有〞的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了〝存在〞.〝总有〞.〝至少有〞,却不能确切地指出哪个抽屉里存在多少.)抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度.下面我们来研究有关的一些问题.(一)整除问题把所有整数按照除以某个自然数m的余数分为m类,叫做m的剩余类或同余类,用[0],[1],[2],…,[m-1]表示.每一个类含有无穷多个数,例如[1]中含有1,m+1,2m+1,3m+1,….在研究与整除有关的问题时,常用剩余类作为抽屉.根据抽屉原理,可以证明:任意n+1个自然数中,总有两个自然数的差是n的倍数.例1 证明:任取8个自然数,必有两个数的差是7的倍数.分析与解答在与整除有关的问题中有这样的性质,如果两个整数a.b,它们除以自然数m的余数相同,那么它们的差a-b是m的倍数.根据这个性质,本题只需证明这8个自然数中有2个自然数,它们除以7的余数相同.我们可以把所有自然数按被7除所得的7种不同的余数0.1.2.3.4.5.6分成七类.也就是7个抽屉.任取8个自然数,根据抽屉原理,必有两个数在同一个抽屉中,也就是它们除以7的余数相同,因此这两个数的差一定是7的倍数.例2:对于任意的五个自然数,证明其中必有3个数的和能被3整除.证明∵任何数除以3所得余数只能是0,1,2,不妨分别构造为3个抽屉:[0],[1],[2]①若这五个自然数除以3后所得余数分别分布在这3个抽屉中,我们从这三个抽屉中各取1个,其和必能被3整除.②若这5个余数分布在其中的两个抽屉中,则其中必有一个抽屉,包含有3个余数(抽屉原理),而这三个余数之和或为0,或为3,或为6,故所对应的3个自然数之和是3的倍数.③若这5个余数分布在其中的一个抽屉中,很显然,必有3个自然数之和能被3整除.例2′:对于任意的11个整数,证明其中一定有6个数,它们的和能被6整除.证明:设这11个整数为:a1,a2,a3……a11又6=2_3①先考虑被3整除的情形由例2知,在11个任意整数中,必存在:3a1+a2+a3,不妨设a1+a2+a3=b1;同理,剩下的8个任意整数中,由例2,必存在:3 a4+a5+a6.设a4+a5+a6=b2;同理,其余的5个任意整数中,有:3a7+a8+a9,设:a7+a8+a9=b3②再考虑b1.b2.b3被2整除.依据抽屉原理,b1.b2.b3这三个整数中,至少有两个是同奇或同偶,这两个同奇(或同偶)的整数之和必为偶数.不妨设2b1+b2则:6b1+b2,即:6a1+a2+a3+a4+a5+a6∴任意11个整数,其中必有6个数的和是6的倍数.例3: 任意给定7个不同的自然数,求证其中必有两个整数,其和或差是10的倍数.分析:注意到这些数队以10的余数即个位数字,以0,1,…,9为标准制造10个抽屉,标以[0],[1],…,[9].若有两数落入同一抽屉,其差是10的倍数,只是仅有7个自然数,似不便运用抽屉原则,再作调整:[6],[7],[8],[9]四个抽屉分别与[4],[3],[2],[1]合并,则可保证至少有一个抽屉里有两个数,它们的和或差是10的倍数.(二)面积问题例1 在边长为1的正方形内,任意给定13个点,试证:其中必有4个点,以此4点为顶点的四边开面积不超过(假定四点在一直线上构成面积为零的四边形)证明(如图)把正方形分成四个相同的小正方形.因13=3_4+1,根据原理2,总有4点落在同一个小正方形内(或边界上),以此4点为顶点的四边形的面积不超过小正方形的面积,也就不超过整个正方形面积的例1′:边长为1的正方形中,任意放入9个点,求证这9个点中任取3个点组成的三角形中,至少有一个的面积不超过.解:将边长为1的正方形等分成边长为的四个小正方形,视这四个正方形为抽屉,9个点任意放入这四个正方形中,据原理2,必有三点落入同一个正方形内.现把落在这个正方形中的三点记为D.E.F.通过这三点中的任意一点(如E)作平行线,如图可知:例2:九条直线中的每一条直线都将正方形分成面积比为2:3的梯形,证明:这九条直线中至少有三条经过同一点.证明:如图,设直线EF将正方形分成两个梯形,作中位线MN.由于这两个梯形的高相等, 故它们的面积之比等于中位线长的比,即MH:NH .于是点H有确定的位置(它在正方形一对对边中点的连线上,且MH:NH=2:3). 由几何上的对称性,这种点共有四个(即图中的H.J.I.K).已知的九条适合条件的分割直线中的每一条必须经过H.J.I.K这四点中的一点.把H.J.I.K看成四个抽屉,九条直线当成9个物体,即可得出必定有3条分割线经过同一点.(三)染色问题例1正方体各面上涂上红色或蓝色的油漆(每面只涂一种色),证明正方体一定有三个面颜色相同.证明:把两种颜色当作两个抽屉,把正方体六个面当作物体,那么6=2_2+2,根据原理二,至少有三个面涂上相同的颜色.例2 有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的.分析与解答首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉.根据抽屉原理,至少有两个小朋友摸出的棋子的颜色在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的.例3:假设在一个平面上有任意六个点,无三点共线,每两点用红色或蓝色的线段连起来,都连好后,问你能不能找到一个由这些线构成的三角形,使三角形的三边同色?解:首先可以从这六个点中任意选择一点,然后把这一点到其他五点间连五条线段,如图,在这五条线段中,至少有三条线段是同一种颜色,假定是红色,现在我们再单独来研究这三条红色的线.这三条线段的另一端或许是不同颜色,假设这三条线段(虚线)中其中一条是红色的,那么这条红色的线段和其他两条红色的线段便组成了我们所需要的同色三角形,如果这三条线段都是蓝色的,那么这三条线段也组成我们所需要的同色三角形.因而无论怎样着色,在这六点之间的所有线段中至少能找到一个同色三角形.例3′(六人集会问题)证明在任意6个人的集会上,或者有3个人以前彼此相识,或者有三个人以前彼此不相识.〞例3〞:17个科学家中每个人与其余16个人通信,他们通信所讨论的仅有三个问题,而任两个科学家之间通信讨论的是同一个问题.证明:至少有三个科学家通信时讨论的是同一个问题.解:不妨设A是某科学家,他与其余16位讨论仅三个问题,由鸽笼原理知,他至少与其中的6位讨论同一问题.设这6位科学家为B,C,D,E,F,G,讨论的是甲问题.若这6位中有两位之间也讨论甲问题,则结论成立.否则他们6位只讨论乙.丙两问题.这样又由鸽笼原理知B至少与另三位讨论同一问题,不妨设这三位是C,D,E,且讨论的是乙问题.若C,D,E中有两人也讨论乙问题,则结论也就成立了.否则,他们间只讨论丙问题,这样结论也成立.三.制造抽屉是运用原则的一大关键例1 从2.4.6.….30这15个偶数中,任取9个数,证明其中一定有两个数之和是34.分析与解答我们用题目中的15个偶数制造8个抽屉:凡是抽屉中有两个数的,都具有一个共同的特点:这两个数的和是34.现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34.例2:从1.2.3.4.….19.20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12.分析与解答在这20个自然数中,差是12的有以下8对:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}.另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12).例3: 从1到20这20个数中,任取11个数,必有两个数,其中一个数是另一个数的倍数.分析与解答根据题目所要求证的问题,应考虑按照同一抽屉中,任意两数都具有倍数关系的原则制造抽屉.把这20个数按奇数及其倍数分成以下十组,看成10个抽屉(显然,它们具有上述性质):{1,2,4,8,16},{3,6,12},{5,10,20},{7,14},{9,18},{11},{13},{15},{17},{19}.从这10个数组的20个数中任取11个数,根据抽屉原理,至少有两个数取自同一个抽屉.由于凡在同一抽屉中的两个数都具有倍数关系,所以这两个数中,其中一个数一定是另一个数的倍数.例4:某校校庆,来了n位校友,彼此认识的握手问候.请你证明无论什么情况,在这n个校友中至少有两人握手的次数一样多.分析与解答共有n位校友,每个人握手的次数最少是0次,即这个人与其他校友都没有握过手;最多有n-1次,即这个人与每位到会校友都握了手.然而,如果有一个校友握手的次数是0次,那么握手次数最多的不能多于n-2次;如果有一个校友握手的次数是n-1次,那么握手次数最少的不能少于1次.不管是前一种状态0.1.2.….n-2,还是后一种状态1.2.3.….n-1,握手次数都只有n-1种情况.把这n-1种情况看成n-1个抽屉,到会的n个校友每人按照其握手的次数归入相应的〝抽屉〞,根据抽屉原理,至少有两个人属于同一抽屉,则这两个人握手的次数一样多.在有些问题中,〝抽屉〞和〝物体〞不是很明显的,需要精心制造〝抽屉〞和〝物体〞.如何制造〝抽屉〞和〝物体〞可能是很困难的,一方面需要认真地分析题目中的条件和问题,另一方面需要多做一些题积累经验.。
§23抽屉原理在数学问题中有一类与“存在性”有关的问题,例如:“13个人中至少有两个人出生在相同月份”;“某校400名学生中,一定存在两名学生,他们在同一天过生日”;“2003个人任意分成200个小组,一定存在一组,其成员数不少于11”;“把[0,1]内的全部有理数放到100个集合中,一定存在一个集合,它里面有无限多个有理数”。
这类存在性问题中,“存在”的含义是“至少有一个”。
在解决这类问题时,只要求指明存在,一般并不需要指出哪一个,也不需要确定通过什么方式把这个存在的东西找出来。
这类问题相对来说涉及到的运算较少,依据的理论也不复杂,我们把这些理论称之为“抽屉原理”。
“抽屉原理”最先是由19世纪的德国数学家迪里赫莱(Dirichlet)运用于解决数学问题的,所以又称“迪里赫莱原理”,也有称“鸽巢原理”的。
这个原理可以简单地叙述为“把10个苹果,任意分放在9个抽屉里,则至少有一个抽屉里含有两个或两个以上的苹果”。
这个道理是非常明显的,但应用它却可以解决许多有趣的问题,并且常常得到一些令人惊异的结果。
抽屉原理是国际国内各级各类数学竞赛中的重要内容,本讲就来学习它的有关知识及其应用。
(一)抽屉原理的基本形式定理1、如果把n+1个元素分成n个集合,那么不管怎么分,都存在一个集合,其中至少有两个元素。
证明:(用反证法)若不存在至少有两个元素的集合,则每个集合至多1个元素,从而n 个集合至多有n个元素,此与共有n+1个元素矛盾,故命题成立。
在定理1的叙述中,可以把“元素”改为“物件”,把“集合”改成“抽屉”,抽屉原理正是由此得名。
同样,可以把“元素”改成“鸽子”,把“分成n个集合”改成“飞进n个鸽笼中”。
“鸽笼原理”由此得名。
例题讲解1.已知在边长为1的等边三角形内(包括边界)有任意五个点(图1)。
证明:至少有两个点之间的距离不大于2.从1-100的自然数中,任意取出51个数,证明其中一定有两个数,它们中的一个是另一个的整数倍。
抽屉原理专项讲义一、基本概念1、第一抽屉原理:把(mn+1)个物体放入n个抽屉,其中必有一个抽屉中至少有(m+1)个物体。
2、第二抽屉原理:把(mn-1)个物体放入n个抽屉,其中必有一个抽屉中至多有(m-1)个物体。
3、抽屉原理的推广平均值原理:如果n个数的平均值为a,那么其中至少有一个数不大于a,也至少有一个数不小于a。
二、构造抽屉的一般依据:1、奇偶性2、剩余类(按余数分)3、合理分组,按题目要求,满足题意的分为一组。
4、染色5、线段与平面图形的划分三、例题:例1、对一块3行7列的长方形陈列的小方格的每一格任意染成黑色或白色,求证:在这个方形中,一定有一个由小方格组成的长方形,它的四个角上的小方格同色。
建议:对每一列的三个格用黑、白两种颜色染色。
讨论:按照上述建议,所有可能的染法只有如下八种:白白白黑黑黑白黑白白黑白黑白黑黑白黑白白白黑黑黑(1)(2)(3)(4)(5)(6)(7)(8)如果在所有染色的3行7列中某一列是第(1)种方式,即三格均为白色,则其中第6列中只有第(1)、(2)、(3)、(4)种方式之一(即该列中至少有两个白格)那么显然存在一个四角格都是白色的长方形。
如第(1)、(2)、(3)、(4)种方式均未出现,那么其余6列就只能是(5)、(6)、(7)、(8)这四种方式,根据抽屉原理,其中至少有两列染色方式完全一样。
又(5)、(6)、(7)、(8)中每一列至少有两列染黑格,所以一定存在一个长方形,它的四角格颜色都是黑色。
同理可知,如果有一列是(8)种方式,即三格均为黑色,那么也存在四角同色的长方形。
证明:第一行有7个小方格,用黑、白两种颜色去染,根据抽屉原理,至少有四个方格所染的颜色相同,设第一行有4个黑方格,再看第二行,如果在第一行的四个黑方格下面的四格中有两格是黑色,则结论显然是成立的。
再看第三行,根据抽屉原理,在第三行的位于第二列的3个白色下面的3个格中必定至少有两格同色。
第五章 抽屉原理和Ramsey 理论抽屉原理又称鸽巢原理或重叠原理,是组合数学中两大基本原理之一,是一个极其初等而又应用较广的数学原理。
其道理并无深奥之处,且正确性也很明显。
但若能灵活运用,便可能得到一些意料不到的结果。
抽屉原理要解决的是存在性问题,即在具体的组合问题中,要计算某些特定问题求解的方案数,其前提就是要知道这些方案的存在性。
1930年英国逻辑学家F. P. Ramsey 将这个简单原理作了深刻推广,即Ramsey 定理,也被称为广义抽屉原理。
它是一个重要的组合定理,有许多应用。
5.1 抽屉原理(一)基本形式定理5.1.1 (基本形式)将n +1个物品放入n 个抽屉,则至少有一个抽屉中的物品数不少于两个。
证 反证之。
将抽屉编号为:1,2, …,n ,设第i 个抽屉放有i q 个物品,则 121+=+++n q q q n但若定理结论不成立,即1≤iq ,即有n q q q +++ 21≤n ,从而有 n q q q n n ≤+++=+ 211矛盾。
例 5.1.1 一年365天,今有366人,那么,其中至少有两人在同一天过生日。
注:与概率的区别:抽屉原理讲的是所给出的结论是必然成立的,即100%成立。
而概率反映的是不确定性现象发生的可能性问题,不讨论100%成立的确定性概率问题。
生日悖论:随机选出n 个人,则其中至少有二人同一天出生的概率为()A P n =n n P 3651365-特例:()A P 23=50.73%,()A P 100=99.99997%例 5.1.2 箱子中放有10双手套,从中随意取出11只,则至少有两只是完整配对的。
(二)推广形式定理5.1.2 (推广形式)将121+-+++n q q q n 个物品放入n 个抽屉,则下列事件至少有一个成立:即第i 个抽屉的物品数不少于i q 个。
(证)反证。
不然,设第i 个抽屉的物品数小于i q (i =1,2, …,n )(即该抽屉最多有1-i q 个物品),则有11+-∑=n q n i i =物品总数≤()n q q ni i n i i -=-∑∑==111与假设矛盾。
第22讲抽屉原理(一)【培训提示】1.抽屉原理的基本概念、基本用法2.用抽屉原理解题的基本过程我们来做一个有趣的游戏:把3个苹果放入两个抽屉中,有几种放法?只有两种:①3=2+1;②3=3+0。
尽管放苹果的方法不一样,但有一个现象总是存在,即总有一个抽屉里放的苹果数不少于2个。
如果把4个苹果放入3个抽屉中,放的方法有三种,但刚才的现象仍然存在:至少有一个抽屉里放的苹果数不少于2个。
……把5个苹果放入4个抽屉中,也至少有一个抽屉里放的苹果数不少于2个。
现在我们发现了规律:把多于,2个苹果放进n个抽屉里,那么至少有一个抽屉里有两个或两个以上的苹果。
这就是抽屉原理。
可以看出:原理的特点是苹果数多而抽屉少,只要苹果数比抽屉数多1,就会出现至少有一个抽屉里的苹果数有2个。
其中的道理可以用反证法来证明:如果没有一个抽屉里的苹果数达到2个,那苹果总个数最多n个,就达不到n+1个,与已知条件不符。
抽屉原理一般有两种形式,通常称为原理Ⅰ和原理Ⅱ。
原理Ⅰ将n+1个苹果放入n个抽屉中,则必有一个抽屉中至少有2个苹果。
.原理Ⅱ将mn+1个苹果放入n个抽屉中,则必有一个抽屉中至少有m+1个苹果。
在第二种形式中,如果m=1,就是第一种形式,也就是说(Ⅰ)包括在(Ⅱ)中。
有时我们也要反向使用这两个基本形式:现有n个抽屉,如果要保证必有一个抽屉中至少有m +1个苹果,那么我们至少要放入mn+1个苹果。
同样的,如果苹果换成鸽子,把抽屉换成笼子,也有同样类似的结论,所以人们有时也把抽屉原理叫成鸽笼原理。
抽屉原理是一种特殊的思维方法,我们可以根据它来做出许多有趣的推理和判断。
在利用抽屉原理进行判断时,要注意把握“苹果"和“抽屉"的个数,往往要从“最不利的情况"来考虑,思考问题的角度较为独特,因此,常常可以利用它来解决一些较为复杂的问题。
这一讲着重介绍抽屉原理的基本用法。
【培训示例】例1五(1)班学雷锋小组有13人。
抽屉原理是一种特殊的思维方法,不但可以根据它来做出许多有趣的推理和判断,同时能够帮助同学证明很多看似复杂的问题。
本讲的主要教学目标是:1.理解抽屉原理的基本概念、基本用法;2.掌握用抽屉原理解题的基本过程;3. 能够构造抽屉进行解题;4. 利用最不利原则进行解题;5.利用抽屉原理与最不利原则解释并证明一些结论及生活中的一些问题。
一、知识点介绍 抽屉原理有时也被称为鸽笼原理,它由德国数学家狄利克雷首先明确提出来并用来证明一些数论中的问题,因此,也被称为狄利克雷原则.抽屉原理是组合数学中一个重要而又基本的数学原理,利用它可以解决很多有趣的问题,并且常常能够起到令人惊奇的作用.许多看起来相当复杂,甚至无从下手的问题,在利用抽屉原则后,能很快使问题得到解决.二、抽屉原理的定义(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉可以放一个,有的可以放两个,有的可以放五个,但最终我们会发现至少我们可以找到一个抽屉里面至少放两个苹果。
(2)定义一般情况下,把n +1或多于n +1个苹果放到n 个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。
我们称这种现象为抽屉原理。
三、抽屉原理的解题方案(一)、利用公式进行解题苹果÷抽屉=商……余数余数:(1)余数=1, 结论:至少有(商+1)个苹果在同一个抽屉里(2)余数=x ()()11x n -, 结论:至少有(商+1)个苹果在同一个抽屉里(3)余数=0, 结论:至少有“商”个苹果在同一个抽屉里(二)、利用最值原理解题将题目中没有阐明的量进行极限讨论,将复杂的题目变得非常简单,也就是常说的极限思想“任我意”方法、特殊值方法.知识点拨教学目标第八讲:抽屉原理(二)【例 1】 在一只口袋中有红色、黄色、蓝色球若干个,小聪明和其他六个小朋友一起做游戏,每人可以从口袋中随意取出2个球,那么不管怎样挑选,总有两个小朋友取出的两个球的颜色完全一样.你能说明这是为什么吗?【解析】 从三种颜色的球中挑选两个球,可能情况只有下面6种:红、红;黄、黄;蓝、蓝;红、黄;红、蓝;黄、蓝,我们把6种搭配方式当作6个“抽屉”,把7个小朋友当作7个“苹果”,根据抽屉原理,至少有两个“苹果”要放进一个“抽屉”中,也就是说,至少有两个人挑选的颜色完全一样.【巩固】 11名学生到老师家借书,老师的书房中有文学、科技、天文、历史四类书,每名学生最多可借两本不同类的书,最少借一本.试说明:必有两个学生所借的书的类型相同【解析】 设不同的类型书为A、B、C、D四种,若学生只借一本书,则不同的类型有A、B、C、D四种;若学生借两本不同类型的书,则不同的类型有AB 、AC 、AD 、BC 、BD 、CD 六种.共有10种类型,把这10种类型看作10个“抽屉”,把11个学生看作11个“苹果”.如果谁借哪种类型的书,就进入哪个抽屉,由抽屉原理,至少有两个学生,他们所借的书的类型相同.【巩固】 体育用品的仓库里有许多足球、排球和篮球,有66个同学来仓库拿球,要求每个人至少拿一个,最多拿两个球,问至少有多少名同学所拿的球的种类是完全一样的?【解析】 以拿球配组的方式为抽屉,每人拿一个或两个球,所以抽屉有:足、排、篮、足足、排排、篮篮、足排、足篮、排篮共9种情况,即有9个抽屉,则:66973÷=,718+=,即至少有8名同学所拿球的种类是一样的.【巩固】 幼儿园买来很多玩具小汽车、小火车、小飞机,每个小朋友任意选择两件不同的,那么至少要有几个小朋友才能保证有两人选的玩具是相同的?【解析】 根有个小朋友就有三种不同的选择方法,当第四个小朋友准备拿时,不管他怎么选择都可以跟前面三个同学其中的一个选法相同.所以至少要有4个小朋友才能保证有两人选的玩具是相同的.总结: 本题是抽屉原理应用的典型例题,作为重点讲解.学生们可能会这么认为:铺垫:2件⨯3种6=件,6件÷2个3=人,要保证有相同的所以至少要有314+=人;对于例题中的题目同样2件⨯4种8=件,8件÷2个4=人,要保证有相同的所以至少要有415+=人.因为铺垫是正好配上数了,而例题中的问题在于4种东西任选两种的选择有几种.可以简单跟学生讲一下简单乘法原理的思想,但建议还是运用枚举法列表进行分析,按顺序列表可以做到不遗漏,不重复.【例 2】 红、蓝两种颜色将一个25⨯方格图中的小方格随意涂色(见下图),每个小方格涂一种颜色.是否存在两列,它们的小方格中涂的颜色完全相同?第二行第一行第五列第四列第三列第二列第一列蓝蓝红蓝蓝红红红将上面的四种情形看成四个“抽屉”,把五列方格看成五个“苹果”,根据抽屉原理,将五个苹果放入四个抽屉,至少有一个抽屉中有不少于两个苹果,也就是至少有一种情形占据两列方格,即这两列的小方格中涂的颜色完全相同.【例 3】 从2、4、6、8、、50这25个偶数中至少任意取出多少个数,才能保证有2个数的和是52?【解析】 构造抽屉:{2,50},{4,48},{6,46},{8,44},,{24,28},{26},共13种搭配,即13个抽屉,所以任意取出14个数,无论怎样取,有两个数必同在一个抽屉里,这两数和为52,所以应取出14个数.或者从小数入手考虑,2、4、6、、26,当再取28时,与其中的一个去陪,总能找到一个数使这两个数之和为52.【巩固】 证明:在从1开始的前10个奇数中任取6个,一定有2个数的和是20.【解析】 将10个奇数分为五组(1、19),(3、17),(5、15),(7、13),(9、11),任取6个必有两个奇数在同一组中,这两个数的和为20.【巩固】 从1,4,7,10,…,37,40这14个数中任取8个数,试证:其中至少有2个数的和是41.【解析】 构造和为41的抽屉:(1,40),(4,37),(7,34),(10,31),(13,28),(16,25),(19,22),现在取8个数,一定有两个数取在同一个抽屉,所以至少有2个数的和是41.【巩固】 从2、4、6、…、30这15个偶数中,任取9个数,证明其中一定有两个数之和是34.【解析】 我们用题目中的15个偶数制造8个抽屉,(2),(4,30),(6,28),…,(16,18),凡是抽屉中的有两个数,都具有一个共同的特点:这两个数的和是34.现从题目中的15个偶数中任取9个数,由抽屉原理(因为抽屉只有8个),必有两个数在同一个抽屉中.由制造的抽屉的特点,这两个数的和是34.【例 4】 (北京市第十一届“迎春杯”刊赛)从1,2,3,4,…,1994这些自然数中,最多可以取 个数,能使这些数中任意两个数的差都不等于9.【解析】 方法一:把1994个数一次每18个分成一组,最后14个数也成一组,共分成111组.即1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18;19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36;…………………1963,1964,…,1979,1980;1981,1982, (1994)每一组中取前9个数,共取出9111999⨯=(个)数,这些数中任两个的差都不等于9.因此,最多可以取999个数.方法二:构造公差为9的9个数列(除以9的余数){}1,10,19,28,,1990,共计222个数{}2,11,20,29,,1991,共计222个数 {}3,12,21,30,,1992,共计222个数 {}4,13,22,31,,1993,共计222个数 {}5,14,23,32,,1994,共计222个数 {}6,15,24,33,,1986,共计221个数 {}7,16,25,34,,1987,共计221个数 {}8,17,26,35,,1988,共计221个数 9,18,27,36,,1989,共计221个数邻的项.因此,前五个数列只能取出一半,后四个数列最多能取出一半多一个数,所以最多取⨯=个数1119999【巩固】从1、2、3、4、…、19、20这20个自然数中,至少任选几个数,就可以保证其中一定包括两个数,它们的差是12.【解析】在这20个自然数中,差是12的有以下8对:{20,8},{19,7},{18,6},{17,5},{16,4},{15,3},{14,2},{13,1}.另外还有4个不能配对的数{9},{10},{11},{12},共制成12个抽屉(每个括号看成一个抽屉).只要有两个数取自同一个抽屉,那么它们的差就等于12,根据抽屉原理至少任选13个数,即可办到(取12个数:从12个抽屉中各取一个数(例如取1,2,3,…,12),那么这12个数中任意两个数的差必不等于12).【巩固】(小学数学奥林匹克决赛)从1,2,3,4,…,1988,1989这些自然数中,最多可以取____个数,其中每两个数的差不等于4.【解析】将1~1989排成四个数列:1,5,9,…,1985,19892,6,10,…,19863,7,11,…,19874,8,12,…,1988每个数列相邻两项的差是4,因此,要使取出的数中,每两个的差不等于4,每个数列中不能取相邻的项.因此,第一个数列只能取出一半,因为有(19891)41498-÷+=项,所以最多取出249项,例如1,9,17,…,1985.同样,后三个数列每个最多可取249项.因而最多取出2494996⨯=个数,其中每两个的差不等于4.【例 5】(2008年第八届“春蕾杯”小学数学邀请赛决赛)从1、2、3、4、5、6、7、8、9、10、11和12中至多选出个数,使得在选出的数中,每一个数都不是另一个数的2倍.【解析】把这12个数分成6个组:第1组:1,2,4,8第2组:3,6,12第3组:5,10第4组:7第5组:9第6组:11每组中相邻两数都是2倍关系,不同组中没有2倍关系.选没有2倍关系的数,第1组最多2个(1,4或2,8或1,8),第2组最多2个(3,12),第3组只有1个,第4,5,6组都可以取,一共2211118+++++=个.如果任意取9个数,因为第3,4,5,6组一共5个数中,最多能取4个数,剩下945-=个数在2个组中,根据抽屉原理,至少有3个数是同一组的,必有2个数是同组相邻的数,是2倍关系.【巩固】从1到20这20个数中,任取11个不同的数,必有两个数其中一个是另一个数的倍数.【解析】把这20个数分成以下10组,看成10个抽屉:(1,2,4,8,16),(3,6,12),(5,10,20),(7,14),(9,18),(11),(13),(15),(17),(19),前5个抽屉中,任意两个数都有倍数关系.从这10个抽屉中任选11个数,必有一个抽屉中要取2个数,它们只能从前5个抽屉中取出,这两个数就满足题目要求.【巩固】从1,3,5,7,…,97,99中最多可以选出多少个数,使得选出的数中,每一个数都不是另一个数的倍数?【解析】方法一:因为均是奇数,所以如果存在倍数关系,那么也一定是3、5、7等奇数倍.3×33:99,于是从35开始,1~99的奇数中没有一个是35~99的奇数倍(不包括1倍),所以选出35,37,39,…,99这些奇数即可.共可选出33个数,使得选出的数中,每一个数都不是另一个数的倍数.(7,21,63),(11,33),(13,39),(17,51),(19,57),(23,69),(25,75),(29,87),(31,93),(35),(37),(41),(43),…,(97)共33组.前11组,每组内任意两个数都存在倍数关系,所以每组内最多只能选择一个数.即最多可以选出33个数,使得选出的数中,每一个数都不是另一个数的倍数.评注:1~2n 个自然数中,任意取出n+1个数,则其中必定有两个数,它们一个是另一个的整数倍;从2,3.……,2n+1中任取n+2个数,必有两个数,它们一个是另一个的整数倍;从1,2,3.……3n 中任取2n+1个数,则其中必有两个数,它们中一个是另一个的整数倍,且至少是3倍;从1,2,3,……, mn 中任取(m-1)n+1个数,则其中必有两个数,它们中一个是另一个的整数倍,且至少是m 倍(m 、n 为正整数).【巩固】 从整数1、2、3、…、199、200中任选101个数,求证在选出的这些自然数中至少有两个数,其中的一个是另一个的倍数.【解析】 把这200个数分类如下:(1)1,12⨯,212⨯,312⨯,…,712⨯,(2)3,32⨯,232⨯,332⨯,…,632⨯,(3)5,52⨯,252⨯,352⨯,…,552⨯,…(50)99,992⨯,(51)101,(52)103,…(100)199,以上共分为100类,即100个抽屉,显然在同一类中的数若不少于两个,那么这类中的任意两个数都有倍数关系.从中任取101个数,根据抽屉原理,一定至少有两个数取自同一类,因此其中一个数是另一个数的倍数.【例 6】 从1,2,3,……49,50这50个数中取出若干个数,使其中任意两个数的和都不能被7整除,则最多能取出多少个数?【解析】 将1至50这50个数,按除以7的余数分为7类:[0],[1],[2],[3],[4],[5],[6],所含的数的个数分别为7,8,7,7,7,7,7.被7除余1与余6的两个数之和是7的倍数,所以取出的数只能是这两种之一;同样的,被7除余2与余5的两个数之和是7的倍数,所以取出的数只能是这两种之一;被7除余3与余4的两个数之和是7的倍数,所以取出的数只能是这两种之一;两个数都是7的倍数,它们的和也是7的倍数,所以7的倍数中只能取1个.所以最多可以取出877123+++=个【例 7】 从1,2,3,…,99,100这100个数中任意选出51个数.证明:(1)在这51个数中,一定有两个数互质;(2)在这51个数中,一定有两个数的差等于50;(3)在这51个数中,一定存在9个数,它们的最大公约数大于1.【解析】 (1)我们将1~100分成(1,2),(3,4),(5,6),(7,8),…,(99,100)这50组,每组内的数相邻.而相邻的两个自然数互质.将这50组数作为50个抽屉,同一个抽屉内的两个数互质.而现在51个数,放进50个抽屉,则必定有两个数在同一抽屉,于是这两个数互质.问题得证.(2)我们将1—100分成(1,51),(2,52),(3,53),…,(40,90),…(50,100)这50组,每组内的数相差50.将这50组数视为抽屉,则现在有51个数放进50个抽屉内,则必定有2个数在同一抽屉,那么这两个数的差为50.问题得证.(3)我们将1—100按2的倍数、3的奇数倍、既不是2又不是3的倍数的情况分组,有(2,4,6,8,...,98,100),(3,9,15,21,27,...,93,99),(5,7,11,13,17,19,23, (95)97)这三组.第一、二、三组分别有50、17、33个元素.最不利的情况下,51个数中有33个元素在第三组,那么剩下的18个数分到第一、二两组内,那么至少有9个数在同一组.所以这9个数的最大公约数为2或3或它们的倍数,显然大于1.【例 8】有49个小孩,每人胸前有一个号码,号码从1到49各不相同.现在请你挑选若干个小孩,排成一个圆圈,使任何相邻两个小孩的号码数的乘积小于100,那么你最多能挑选出多少个孩子? 【解析】将1至49中相乘小于100的两个数,按被乘数分成9组,如下:(1×2)、(1×3)、(1×4)、…、(1×49);(2×3)、(2×4)、(2×5)、…、(2×49);(8×9)、(8×10)、(8 ×11)、(8×12);(9×10)、(9×11).因为每个数只能与左右两个数相乘,也就是每个数作为被乘数或乘数最多两次,所以每一组中最多会有两对数出现在圆圈中,最多可以取出18个数对,共18 ×2=36次,但是每个数都出现两次,故出现了18个数.例如:(10×9)、(9×11)、(1×8)、(8×12)、(12×7)、(7×13)、(13×6)、(6×14)、(14×5)、(5×15)、(15×4)、(4 ×16)、(16 X 3)、(3×17)、(17×2)、(2×18)、(18 ×1)、(1×10).共出现l~18号,共18个孩子.若随意选取出19个孩子,那么共有19个号码,由于每个号码数要与旁边两数分别相乘,则会形成19个相乘的数对.那么在9组中取出19个数时,有19=9×2+1,由抽屉原则知,必有三个数对落入同一组中,这样某个数字会在数对中出现三次(或三次以上),由分析知,这是不允许的.故最多挑出18个孩子.【例 9】要把61个乒乓球分装在若干个乒乓球盒中,每个盒子最多可以装5个乒乓球,问:至少有多少个盒子中的乒乓球数目相同?【解析】每个盒子不超过5个球,最“坏”的情况是每个盒子的球数尽量不相同,为1、2、3、4、5这5种各不相同的个数,共有:1234 5 15÷=,最不利的分法是:装1、2、3、++++=,6115414、5个球的各4个,还剩1个球,要使每个盒子不超过5个球,无论放入哪个盒子,都会使至少有5个盒子的球数相同.【例 10】有苹果和桔子若干个,任意分成5堆,能否找到这样两堆,使苹果的总数与桔子的总数都是偶数?【解析】需先跟学生介绍奇偶性:奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数。
第30讲抽屉原理(2)讲义专题简析在抽屉原理的第二条原理中,抽屉中的元素个数随着元素总数的增加而增加,当元素总数达到抽屉数的若干倍后,可用抽屉数除元素总数,写成下面的等式:元素总数=商×抽屉数+余数如果余数不是0,则最小数=商+1;如果余数正好是0,则最小数=商。
例1、幼儿园里有120个小朋友,各种玩具有364件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?练习:1、一个幼儿园大班有40名小朋友,班里有各种玩具125件。
把这些玩具分给小朋友,是否有人会得到4件或4件以上的玩具?2、把16支铅笔放入三个笔盒内,至少有一个笔盒里的笔不少于6支。
这是为什么?3、把25个球最多放在几个盒子里,才能保证至少有一个盒子里有7个球?例2、布袋里有4种不同颜色的球,每种都有10个。
最少取出多少个球,才能保证其中一定有3个球的颜色一样?练习:1、布袋中有足够多的5种不同颜色的球。
最少取出多少个球才能保证其中一定有3个颜色一样的球?2、一个容器里放有10块红木块、10块白本块、10块蓝木块,它们的形状、大小都一样。
当你被蒙上眼去取出容器中的木块时,为确保取出的木块中至少有4块颜色相同,应至少取出多少块木块?3、一副扑克牌共54张,其中1~13点各有4张,还有两张王。
至少要取出几张牌,才能保证其中必有4张牌的点数相同?例3、某班共有46名学生,他们都参加了课外兴趣小组。
活动内容有数学、美术、书法和英语,每人可参加1个、2个、3个或4个兴趣小组。
问班级中至少有几名学生参加的项目完全相同?练习:1、某班有37名学生,他们都订阅了《小主人报》《少年文艺》《小学生优秀作文》三种报刊中的一、二、三种。
其中至少有几名学生订的报刊相同?2、学校开办了绘画、笛子、足球和电脑四个课外学习班,每名学生最多可以参加两个(也可以不参加)。
某班有52名学生。
问至少有几名学生参加课外学习班的情况完全相同?3、库房里有一批篮球、排球、足球和铅球,每人任意搬运两个。
抽屉原理(又名:鸽笼原理)编辑本段常见形式第一抽屉原理原理1:把多于n+1个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。
证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n,而不是题设的n+k(k≥1),故不可能。
原理2 :把多于mn(m乘以n)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于m+1的物体。
证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。
原理3 :把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。
原理1 、2 、3都是第一抽屉原理的表述。
第二抽屉原理把(mn-1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m—1)个物体。
证明(反证法):若每个抽屉都有不少于m个物体,则总共至少有mn个物体,与题设矛盾,故不可能。
编辑本段应用基本介绍应用抽屉原理解题抽屉原理的内容简明朴素,易于接受,它在数学问题中有重要的作用。
许多有关存在性的证明都可用它来解决。
例1:同年出生的400人中至少有2个人的生日相同。
解:将一年中的365天视为365个抽屉,400个人看作400个物体,由抽屉原理1可以得知:至少有2人的生日相同. 400/365=1…35,1+1=2又如:我们从街上随便找来13人,就可断定他们中至少有两个人属相相同。
“从任意5双手套中任取6只,其中至少有2只恰为一双手套。
” “从数1,2,...,10中任取6个数,其中至少有2个数为奇偶性不同。
” 例2:幼儿园买来了不少白兔、熊猫、长颈鹿塑料玩具,每个小朋友任意选择两件,那么不管怎样挑选,在任意七个小朋友中总有两个彼此选的玩具都相同,试说明道理. 解:从三种玩具中挑选两件,搭配方式只能是下面六种:(兔、兔),(兔、熊猫),(兔、长颈鹿),(熊猫、熊猫),(熊猫、长颈鹿),(长颈鹿、长颈鹿)。
把每种搭配方式看作一个抽屉,把7个小朋友看作物体,那么根据原理1,至少有两个物体要放进同一个抽屉里,也就是说,至少两人挑选玩具采用同一搭配方式,选的玩具相同. 上面数例论证的似乎都是“存在”、“总有”、“至少有”的问题,不错,这正是抽屉原则的主要作用.(需要说明的是,运用抽屉原则只是肯定了“存在”、“总有”、“至少有”,却不能确切地指出哪个抽屉里存在多少. 抽屉原理虽然简单,但应用却很广泛,它可以解答很多有趣的问题,其中有些问题还具有相当的难度。
鸽巢原理讲义教学重难点重点:掌握抽屉原理的两种基本形式。
难点:能够将实际问题转化成抽屉原理所反映的典型形式。
掌握抽屉的设计,苹果的设计以及苹果的放法。
教学内容知识纵横:“ 抽屉原理”又称“鸽笼原理”,最先是由19世纪的德国数学家狄利克雷提出来的,所以又称“狄里克雷原理”,这一原理在解决实际问题中有着广泛的应用。
“抽屉原理”的应用是千变万化的,用它可以解决许多有趣的问题,并且常常能得到一些令人惊异的结果。
下面我们应用这一原理解决问题。
三个苹果放进两个抽屉,总有某个抽屉的苹果数不止一个,这个结论是很明显的,但这当中蕴含着一个有趣的数学现象被称为抽屉原理。
抽屉原理一般有两种基本形式:一、将n+1个苹果放入n个抽屉中,则必有一个抽屉中至少有2个苹果;二、将m×n+1个苹果放入n个抽屉中,则必须有一个抽屉中至少有(m+1)个苹果应用抽屉原理解题的一般步骤是:1.分析题意,将实际问题转化成抽屉原理所反映的典型形式,即指出“抽屉”和“苹果”;2.设计“抽屉”的具体形式,构造“苹果”;3.运用原理,得出在某个抽屉中“苹果”的个数,最终回归到原理的结论上。
其中,抽屉的设计,苹果的设计及苹果的放法是应用抽屉原理解决问题的关键。
例题讲解例1:某班有42名同学,至少有多少名同学在同一个月出生?[分析]把42名同学的出生月份看做42个元素,把一年12个月看成12个抽屉,因为42=12×3+6。
所以依据抽屉原理二,至少在一个月里有3+1=4(名)同学出生。
【举一反三】五年级有128名同学,其中至少有多少个同学在同一周过生日?例2:一副扑克牌有4种花色,每种花色有13张,从中任意抽牌,问最少要抽多少张牌才能保证是同一花色的?【举一反三】一个口袋里分别有红、黄、黑球4,7,8个,为使取出的球中保证能有六个同色,则至少要去小球多少个?例3:学校组织2006名同学去春游,现有解放公园、野生动物园、水族公园三个景点,规定每人至少去一处,最多去两处游览,那么至少有多少个同学游览的地方相同?【分析】先分类求出每人去一处或两处的种数,再根据抽屉原理,把种数设为“抽屉”,把2006名学生作为“苹果”。
抽屉原理假如你有三个抽屉,妈妈给你4个苹果,让你吧苹果放进抽屉里,会有什么情况出现呢?把4分解为三个整数的和,共有以下四种情形:4=4+0+04=3+1+04=2+2+04=2+1+1观察上面四种放苹果的方式,我们发现一个共同性质:总有一个抽屉放2个或2个以上的苹果,也就是说,把4个苹果放在3个抽屉里总有一个抽屉至少放了2个苹果。
加以推广,把6个苹果放入5个抽屉中,无论怎么放(不允许切开苹果),都会有一个抽屉中至少放了2个苹果。
即有m件物品,放进n 个抽屉里去,如果物体比抽屉多(m大于n),那么,必有一个抽屉至少有2件物品。
这个简单的道理却可以解决奇妙的问题,这个原则概括一下,叫做抽屉原理。
例1、在3个小孩中,其中必定有2个小孩是同性别的。
分析:人只有男性和女性两种,在题中m=3,n=2,所以必定有2个小孩是同性别的。
例2、一个小组共有 13 名同学,其中至少有 2 名同学同一个月过生日。
为什么?分析:每年里共有 12 个月,任何一个人的生日,一定在其中的某一个月。
分析如果把这 12 个月看成 12 个“抽屉”,把 13 名同学的生日看成 13 只“苹果”,把 13 只苹果放进 12 个抽屉里,一定有一个抽屉里至少放 2 个苹果,也就是说,至少有 2 名同学在同一个月过生日。
例3、袋里有4种不同颜色的小球,每次摸出2个。
要保证有10次所摸出的结果一样,至少要摸几次?分析:摸出2个球颜色相同时,可以有4种不同的结果。
当摸出的2个球颜色不同时,最多可以有3+2+1=6种不同的结果。
把这4+6=10种结果作为10个抽屉。
解:因为要保证有10次所摸出的结果一样,所以至少要摸9×10+1=91(次)。
例4、旅行团一行50个人,随意游览甲、乙、丙三地。
至少有多少人游览的地方完全相同?分析:有8种游览方法,可以看成8个抽屉。
解:(50-1)/8 +1=7(人),即至少有7人游览的地方完全相同。
练习题:1、在1副扑克牌中,最少要拿出多少张牌,才能保证4种花色都有?2、参加竞赛的210名学生中,至少有多少名同学是同一个月出生的?3、小学有367个学生,试说明至少有一个学生在同一天过生日。