直流输电控制保护-保护概述
- 格式:pdf
- 大小:640.29 KB
- 文档页数:52
直流输电系统保护(HVDC protection)直流输电系统保护(HVDC protection)指检测发生于直流输电系统中交、直流开关场,或整流逆变两端交流系统的故障,并发出相应的处理指令,以保护直流系统免受过电流、过电压、过热和过大电动力的危害,避免系统事故的进一步扩大。
直流输电保护的特性要求直流输电系统保护除了与交流继电保护一样,应能满足快速性、灵敏性、选择性和可靠性的要求,还应特别注意其抗电磁干扰和抗暂态谐波干扰的性能、双极系统中两个单极的保护必须完全独立等特性;直流保护应为多重化配置,并应具有很强的软、硬件自检功能。
因此,新建的直流工程多采用微机型数字式直流系统保护。
直流输电系统保护通常分为如下保护分区:À换流站交流开关场保护区,包括换流变压器及其阀侧连线、交流滤波器和并联电容器及其连线、换流母线;Á换流阀保护区;Â直流开关场保护区,包括平波电抗器和直流滤波器,及其相关的设备和连线;Ã中性母线保护区,包括单极中性母线和双极中性母线;Ä接地极引线和接地极保护区;Å直流线路保护区。
各保护区的保护范围应是重叠的,不允许存在死区。
直流输电系统保护的特点是与直流控制系统的联系十分紧密,对于直流系统的异常或故障工况,通常首先通过控制的快速性来抑制故障的发展,例如,直流控制可在10mS左右将直流故障电流抑制到额定值左右;又如,当换相电压急剧下降时,直流控制将自动降低直流电流整定值以避免低压大电流的不稳定工况或故障的发展。
而且,根据不同的故障工况,直流保护启动不同的直流自动顺序控制程序,某些保护首先是告警,如果故障进一步发展,则启动保护停运程序。
直流系统保护停运的动作,首先是通过换流器触发脉冲的紧急移相或投旁通对后紧急移相,使直流线路迅速去能,然后闭锁触发脉冲并断开所联的交流滤波器和并联电容器,或进一步断开其它的交、直流场设备,如果需要与交流系统隔离,则进一步跳开交流断路器。
特高压直流输电控制与保护技术的探讨摘要:随着特高压大电网、交直流并网等领域的不断发展,直流输电技术在实际工程中得到了越来越多的应用。
本文主要基于对直流输电技术和换流技术的深入研究,并结合±800 kV特高压直流输电工程,对其分层冗余结构、控制和保护技术进行了较为系统的阐述,以期更好地确保特高压大电网及交直流并网安全稳定运行提供良好技术支撑。
关键词:特高压;直流输电工程;换流技术;控制和保护技术引言在我国电网发展中,特高压直流输电起着举足轻重的作用。
其中,控制与保护是其中的关键,其能保证传输电源的正常运行,并能有效地保证传输电源的安全。
±800 kV特高压直流每极均采用串联、母线区连接方式,各电极工作方式灵活、完整,这对保证其工作性能将能够发挥良好的辅助作用。
1 直流输电简介1.1 直流输电系统当前直流输电系统通常采用两端直流传输的方式,包括整流站、直流线路和逆变站。
1.2 换流技术换流站的关键部件为换流器,它包括一个或几个换流器,其电路都是三相换流桥,主要材料为晶闸阀。
其基本工作原理是:通过对桥式阀门的触发时间进行控制,从而实现对直流电压瞬时值、电阻上直流电流、直流传输功率的调整。
同时,对各个桥式阀门的晶闸管单元进行同一触发脉冲控制。
2 特高压直流输电的特点特高压直流输电的特点具体包括:①增加传送能力,增加传送距离。
②节约了线路走廊和变电所的空间。
③有利于联网,简化网络结构,降低故障率。
3 直流输电控制系统分层冗余结构UHVDC是指超过600 kV的直流输电系统,它的控制和保护系统是分层、分布式、全冗余的。
本文以±800 kV特高压直流工程为例,将其按控制等级划分为三个层次:运行人员控制层、过程控制层和现场控制层。
4 为满足特高压交直流系统动态性能要求的控制技术4.1 降低和避免直流对交流系统的不良影响由于换流技术的机制存在着两个主要的问题:谐波和无功。
传统的方法是,安装合适的容量和数量的直流滤波器/电容,并采用多脉动式变流器。
高压直流输电系统的电力电子保护高压直流输电(HVDC)系统作为一种有效的电力传输方式,已经得到广泛应用。
然而,由于输电系统中存在复杂的电力电子设备,存在着各种潜在的故障和故障原因,因此必须采取有效的电力电子保护措施,以确保系统的安全可靠运行。
本文将深入探讨高压直流输电系统的电力电子保护技术。
一、高压直流输电系统的概述高压直流输电系统是一种基于半导体器件的电力传输系统,在长距离电力传输中具有一些独特的优势。
与交流输电系统相比,HVDC系统可以实现更高的电压等级、更远的传输距离和更低的传输损耗。
同时,HVDC系统还可以实现交流系统无法做到的某些功能,如无功控制和电力质量调节。
然而,由于高压直流输电系统中存在着许多电力电子设备,如换流器、逆变器等,因此需要采取一系列的电力电子保护措施,以确保系统的正常运行。
二、高压直流输电系统的电力电子保护技术1. 过电压保护:过电压是高压直流输电系统中常见的故障之一,常常由于故障开关或刹车装置故障引起。
为了防止过电压引起的损坏,需要在系统中设置过电压保护装置,及时切断故障电路。
2. 过电流保护:过电流是高压直流输电系统中的一种常见问题,常见于系统发生短路或负载故障时。
过电流保护装置需要根据系统的负荷特性和电流传感器的特性进行合理设置,以确保在过电流事件发生时及时切断电路。
3. 温度保护:高压直流输电系统中的电力电子设备在长时间运行后容易产生过热现象,可能导致设备损坏甚至引发火灾。
为了保护设备的安全运行,需要通过温度传感器监测设备温度,并设置相应的温度保护装置,及时切断电路以防止设备过热。
4. 短路保护:短路是高压直流输电系统中潜在的故障之一,常见于电力电子设备内部电路短路或外部线路短路。
为了防止短路故障对系统造成损害,需要设置短路保护装置,及时切断短路电路。
5. 地故障保护:地故障是高压直流输电系统中的另一个常见问题,常发生在设备绝缘性能不良或外部绝缘损坏的情况下。
浅析直流输电控制保护系统摘要:直流传输的稳定性对电力非常重要。
从直流传输的组成结构和换向技术入手,分析了DC传输的控制和保护水平,并根据常见故障提出了直流传输的保护措施。
关键词:电力系统;直流产量;防护等级;控制保护1变速器概述1.1传输系统的概念直流输电系统由直流线、逆变站、整流站、交流侧电力滤波器、直流侧电力滤波器、换流变压器、无功补偿装置、直流电抗器、保护和控制装置等组成。
通常是双端直流输电系统,其中整流站和逆变站都属于换流站,交流电源和直流电源之间的转换可以通过整流站和逆变站实现,换流站是直流输电系统的重要组成部分。
交流电首先由交流系统的送电端通过换流变压器送至整流器,完成交流电向直流电能的转换,然后直流电能通过线路输送至逆变器,逆变器将DC电能转换为交流电,最后输送至交流电力系统的受电端。
1.2换流站的换流技术整流站和逆变站都属于换流站,其核心部件是换流器,通常由一个或多个基本换流单元组成,大多采用串联方式。
电路中一般采用三相换流桥,常用的材料是晶闸管阀,也就是常说的晶体闸阀。
变换器工作时,控制桥阀可以触发控制调节装置,改变触发相位,从而实现对DC传输功率、流经电阻的直流电流、直流电压瞬时值等的调节。
同时,同一个触发脉冲可以控制所有桥阀的每个晶闸管。
当三相电源的波形为对称正弦波时,线电压由负变正,经过零点时,脉冲会触发桥阀,使阀两端电压变为正,从而完成开阀动作。
六个脉冲发生器可以独立地触发位于单桥变换器中的六个桥阀,使得交流正弦波可以刚好通过第一个周期。
当线路电压达到下一个零点时,交流串电源开始触发第二个周期。
但是工程上使用的大多是12脉波双桥变换器,因为12脉波双桥变换器可以产生脉冲较小的DC传输电压。
2 DC传输控制保护层高压直流输电系统的控制根据层次的不同可以分为三个层次,即现场控制层、过程控制层和操作员控制层。
2.1现场控制层现场控制层使交流/DC主设备能够进行本地控制,并通过硬线将交流/DC主设备与近设备接口相连,通过现场总线将交流/DC主设备与远设备接口相连。
高压直流输电系统的稳定控制与保护引言高压直流输电系统是一种用于长距离电力传输的技术,具有传输能力强、输电损耗小、环境影响少等优势。
然而,高压直流输电系统在运行过程中也面临着一些挑战,例如稳定控制和保护问题。
本文将探讨高压直流输电系统的稳定控制与保护技术,旨在提供一种全面的了解。
一、高压直流输电系统的稳定控制高压直流输电系统的稳定控制是指对系统的电压、功率、频率等进行实时调节,以确保系统的稳定运行。
稳定控制可分为两个方面:电力稳定控制和频率稳定控制。
1. 电力稳定控制电力稳定控制是指根据负荷需求和传输能力,实时调整高压直流输电系统的电压和功率,以保证系统供电的稳定性。
为了实现电力稳定控制,可以采用频率反馈控制方法,通过自动控制装置调整换流变压器的触发角来控制电流。
同时,还可以使用能量储备装置来补偿瞬间负荷变化引起的电力不平衡。
能量储备装置可以是电容器或电感器,通过储存电能或释放电能来调整系统的电力平衡。
此外,还可采用先进的预测控制算法,根据系统的实时运行情况,预测未来的负荷变化,进一步优化电力调控策略。
2. 频率稳定控制频率稳定控制是指在高压直流输电系统中,通过调节直流电流的大小和相位,以及调节换流变压器和直流系统的参数,来控制系统的频率变化。
频率稳定控制可以通过反馈控制的方法实现,根据系统的实时运行情况,调整直流电流和换流变压器的参数,以使系统的频率保持在设定范围内。
此外,还可以使用先进的自适应控制算法,通过监测和分析系统的频率变化,自动调整控制策略,提高系统的频率稳定性。
二、高压直流输电系统的保护技术高压直流输电系统的保护技术是指在系统故障或异常情况下,及时采取措施,限制故障范围和保护设备的安全运行。
保护技术主要包括故障检测、故障定位和故障隔离。
1. 故障检测故障检测是指通过监测高压直流输电系统的各种参数,如电压、电流、功率等,来检测故障的发生。
常用的故障检测方法包括差动保护、过流保护和电压保护等。