电动车充电器电路KA3842 LM358分析.
- 格式:doc
- 大小:35.50 KB
- 文档页数:2
基于KA3842的电动车充电器原理电动车充电器是电动车运行必需的设备,它能够将外部的电能转化为可用于电动车电池充电的直流电能。
KA3842是一款常用于开关电源控制的控制芯片,可以用于设计和实现电动车充电器。
本文将详细介绍基于KA3842的电动车充电器的工作原理。
一、KA3842控制芯片概述KA3842是一款具有当前模型测量、过压保护和自动启动等功能的PWM控制芯片。
它采用双极性差分输入,能够生成高效的对称性PWM波形,并且具有高达90%的效率。
KA3842还具有短路保护、过载保护和过温保护等特性,可以实现电动车充电器的稳定工作。
二、电动车充电器的工作原理电动车充电器的工作原理是将输入的交流电压变换为恒定的直流电压,用于充电电动车的电池。
下面将分为输入、变换和输出三个部分详细介绍电动车充电器的工作原理。
1.输入部分电动车充电器的输入部分主要包括输入电源、整流电路和滤波电路。
输入电源可以选择市电,常用的标准是220V,50Hz或110V,60Hz的交流电源。
整流电路将交流电转换为直流电,常用的是整流桥负载供电模式。
滤波电路主要用于削弱输入电源的波动和噪声。
2.变换部分电动车充电器的变换部分主要包括变压器、开机电路和充电控制电路。
变压器用于变换输入电压的大小和形式,常用的是有中点的反激式变压器。
开机电路用于启动充电器,并对其进行保护,常用的是KA3842芯片。
充电控制电路用于控制充电电压和电流,以保证电动车电池的安全充电。
3.输出部分电动车充电器的输出部分主要包括输出电路和充电电流、电压的调节电路。
输出电路将变压器输出的电压变为适合电动车电池充电的直流电压。
充电电流、电压的调节电路用于调节充电电流和电压,并根据电动车电池的需求进行调整。
三、基于KA3842的电动车充电器设计1.绘制电路图:根据电动车电池的需求和KA3842的管脚定义,绘制电动车充电器的电路图。
2.选择元器件:根据电动车电池的额定电压和电流,选择合适的变压器、光耦、二极管等元器件。
通用电动自行车充电器电路分析及其维修(3842芯片)作者:MAX232 QQ:44473047时间:2012年7月30日一、电路分析首先AC220电压经由保险丝,NTC和EMI滤波整流滤波变换的300V左右的直流电压,经启动电阻提供给3842(7脚)初始工作电压,驱动MOS管开关动作,开关变压器在MOS管的开关作用下,会不断的储存->释放,而使输出绕组感应到的电能经过整流滤波输出的直流电压,通过采样到431或运放控制光耦把信号反馈至3842的1脚或2脚,控制3842的输出(6脚)的占空比,以达到稳定的输出电压值。
(1)3842稳定工作的条件:1. 起始的工作电压,由启动电阻从300V降压得到;2. 8脚有输出稳定的5v基准电压,内部振荡电路才会工作。
3. 6脚输出驱动MOS管打开后,3脚检测到的电流反馈电压没有超过1V。
4. 原边供电是否在下一个周期工作开始前提供到3842的7脚,否则由启动电阻提供过来的电能已经不能维持3842工作了。
(2)输出电压保持稳定的条件:1. 副边绕组是否感应到电能。
2. 副边整理和滤波器件是不是都完好。
3. 采样电阻以及431,是否完好。
4. 光耦是否完好工作。
5. 3842是否接收到光耦的信号,确定信号没有在进入3842芯片前被阻断或过滤了。
充电器高压部分故障的修理流程1、元件检测:高压直流二极管(4007,5399,5408)或者全桥。
高压大电容,简称“一大电容”,450v68uf。
3842的7脚供电电容,简称“高压小电容”。
35v100uf场效应管(mos管,比如6N60,7N80,10N90,K1358,,,,,,,,)低压部分的主整流管1660,uf5408,FR307,,,,,,,,,,,,,,,,,,,低压部分的主滤波电容,(63v470uf)简称“二大电容”。
低压部分的辅助电源滤波电容,(63v470uf)输出电流取样电阻(3w0.1欧姆)光耦(pc817,4n35,,)用ws-3可以快速准确检测。
常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842具驱动场效应管的单管子开关电源,配合LM358双运放来实现三阶段充电方式。
常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1 为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V),C10为低压滤波电容,D5为12V稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。
充电器常见的故障有三大类。
1:高压故障 2;低压故障 3:高压,低压均有故障。
高压故障的主要现象是指示灯不亮,其特征有保险丝熔断,整流二极管D1击穿,电容C11鼓包或炸裂。
Q1击穿,R25开路。
U1的7脚对地短路。
R5开路,U1无启动电压。
更换以上元件即可修复。
若U1的7脚有11V以上电压,8脚有5V电压,说明U1基本正常。
应重点检测Q1和T1的引脚是否有虚焊。
若连续击穿Q1,且Q1不发烫,一般是D2,C4失效,若是Q1击穿且发烫,一般是低压部分有漏电或短路,过大或UC3842的6脚输出脉冲波形不正常,Q1的开关损耗和发热量大增,导致Q1过热烧毁。
3842开关电源常见故障的分析及维修3842开关电源是以美国Unitorde公司生产的一种性能优良的电流控制型脉宽调制芯片UC3842(KA3842)为主控芯片,IGBT(绝缘栅双极场效应晶体管)为“开”“关”器件,配合LM324(四运放)或LM358(双运放)及光电耦合器(PC817)作为输出负载反馈器件,以及TL431(高精密并联稳压器),高频变压器为主要元件所组成的脉冲宽度调制(PulseWidthModulation,缩写为PWM)式开关电源。
3842各脚功能:1. 误差放大输出(输出补偿)3.4伏2. 误差放大器反相输入端 (电压反馈)2.4伏3. 电流感应放大器同相输入端 (电流检测)0.1伏4. 内接振荡器外接rc(定时)元件 1.9伏5. 接地0伏6. 驱动信号输出端 2伏7. 电源供电端、欠压保护端 17伏8. 5伏基准电压输出 5伏1.2开关电源的工作原理220V的交流电经交流滤波电路滤除外来的杂波信号,同时也防止电源本身产生的高频杂波对电网的干扰。
再经二极管桥式整流电路和滤波电路,整流滤波后得到约300V的直流电,送给功率变换电路进行功率转换。
功率变换电路中的开关功率管(IGBT)就在脉冲宽度调制(PWM)控制器(UC3842)输出的脉冲控制信号和驱动下,工作在“开”“关”状态,从而将300V直流电切换成宽度可变的高频脉冲电压。
把高频脉冲电压送给高频变压器,高频变压器的次级(二次侧)就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波。
经高频整流滤波后便可得到我们所需的各种直流电压。
输出电压下降或上升时,由取样电路将取样信号通过光电耦合器(PC817),送入控制电路,经过其内部调制,由控制电路的输出端将变宽的或变窄的驱动脉冲送到开关功率管的栅极(G极),使变换电路产生的高频脉冲方波也随之变宽或变窄,由此改变输出电压平均值的大小,从而使直流电压基本稳定在所须的电压值上。
常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见(图表1)220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1 为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管, U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。
通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C8,C3, 达到U1的第7脚。
强迫U1启动。
U1的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。
常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见图表1)图表 1220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1 为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V 稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。
通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C8,C3, 达到U1的第7脚。
强迫U1启动。
U1的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。
工作原理220V交流电经LF1双向滤波.VD1-VD4整流为脉动直流电压, 再经C3滤波后形成约300V的直流电压,300V 直流电压经过启动电阻R4为脉宽调制集成电路IC1 的7 脚提供启动电压,IC1 的7 脚得到启动电压后,(7 脚电压高于14V 时,集成电路开始工作),6 脚输出PWM 脉冲,驱动电源开关管(场效应)VT7工作在开关状态, 电流通过VT1的S极-D 极-R7- 接地端. 此时开关变压器T1的8-9 绕组产生感应电压, 经VD6,R2为IC1 的7 脚提供稳定的工作电压, 4 脚外接振荡电阻R10 和振荡电容C7 决定IC1 的振荡频率,IC2(TL431) 为精密基准电压源,IC4( 光耦合器4N35)配合用来稳定充电电压, 调整RP1(510 欧半可调电位器) 可以细调充电器的电压,LED1是电源指示灯.接通电源后该指示灯就会发出红色的光。
VT1开始工作后,变压器的次级6-5绕组输出的电压经快速恢复二极VD60整流,C18滤波得到稳定的电压(约53V).此电压一路经二极管VD70(该二极管起防止电池的电流倒灌给充电器的作用)给电池充电,另一路经限流电阻R38,稳压二极管VZD1,滤波电容C60,为比较器IC3(LM358)提供12V工作电源,VD12为IC3提供基准电压,经R25,R26,R27分压后送到IC3的2脚和5脚。
正常充电时,R33上端有0.18-0.2V的电压,此电压经R10加到IC3的3脚,从1脚输出高电平。
1脚输出的高电平信号分三路输出,第一路驱动VT2导通,散热风扇得电开始工作,第二路经过电阻R34点亮双色二极管LED2中的红色发光二极管,第三路输入到IC3的6脚,此时7脚输出低电平,双色发光二极管LED2中的绿色发光二极管熄灭,充电器进入恒流充电阶段。
当电池电压升到44.2V左右时,充电器进入恒压充电阶段,电流逐渐减小。
当充电电流减小到200MA-300MA时,R33上端的电压下降,IC3的3脚电压低于2脚,1脚输出低电平,双色发光二极管LED2中的红色发光二极管熄灭,三极管VT2截止,风扇停止运转,同时IC3的7脚输出高电平,此高电平一路经过电阻R35点亮双色发光二极管LED2中的绿色发光二极管(指示电瓶已经充满,此时并没有真正充满,实际上还得一两小时才能真正充满),另一路经R52,VD18,R40,RP2到达IC2的1脚,使输出电压降低,充电器进入200MA-300MA的涓流充电阶段(浮充),改变RP2的电阻值可以调整充电器由恒流充电状态转到涓流充电状态的转折电流(200-300MA)。
常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见图表1)图表 1220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1 为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管, U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27是电流取样电阻(欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。
通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C8,C3, 达到U1的第7脚。
强迫U1启动。
U1的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。
正常充电时,R27上端有-左右电压,此电压经R17加到LM358第三脚,从1脚送出高电压。
工作原理220V交流电经LF1双向滤波.VD1-VD4整流为脉动直流电压,再经C3滤波后形成约300V的直流电压,300V直流电压经过启动电阻R4为脉宽调制集成电路IC1的7脚提供启动电压,IC1的7脚得到启动电压后,(7脚电压高于14V时,集成电路开始工作),6脚输出PWM 脉冲,驱动电源开关管(场效应)VT7工作在开关状态,电流通过VT1的S极-D极-R7-接地端.此时开关变压器T1的8-9绕组产生感应电压,经VD6,R2为IC1的7脚提供稳定的工作电压,4脚外接振荡电阻R10和振荡电容C7决定IC1的振荡频率,IC2(TL431)为精密基准电压源,IC4(光耦合器4N35)配合用来稳定充电电压,调整RP1(510欧半可调电位器)可以细调充电器的电压,LED1是电源指示灯.接通电源后该指示灯就会发出红色的光。
VT1开始工作后,变压器的次级6-5绕组输出的电压经快速恢复二极VD60整流,C18滤波得到稳定的电压(约53V).此电压一路经二极管VD70(该二极管起防止电池的电流倒灌给充电器的作用)给电池充电,另一路经限流电阻R38,稳压二极管VZD1,滤波电容C60,为比较器IC3(LM358)提供12V工作电源,VD12为IC3提供基准电压,经R25,R26,R27分压后送到IC3的2脚和5脚。
正常充电时,R33上端有0.18-0.2V的电压,此电压经R10加到IC3的3脚,从1脚输出高电平。
1脚输出的高电平信号分三路输出,第一路驱动VT2导通,散热风扇得电开始工作,第二路经过电阻R34点亮双色二极管LED2中的红色发光二极管,第三路输入到IC3的6脚,此时7脚输出低电平,双色发光二极管LED2中的绿色发光二极管熄灭,充电器进入恒流充电阶段。
当电池电压升到44.2V左右时,充电器进入恒压充电阶段,电流逐渐减小。
当充电电流减小到200MA-300MA时,R33上端的电压下降,IC3的3脚电压低于2脚,1脚输出低电平,双色发光二极管LED2中的红色发光二极管熄灭,三极管VT2截止,风扇停止运转,同时IC3的7脚输出高电平,此高电平一路经过电阻R35点亮双色发光二极管LED2中的绿色发光二极管(指示电瓶已经充满,此时并没有真正充满,实际上还得一两小时才能真正充满),另一路经R52,VD18,R40,RP2到达IC2的1脚,使输出电压降低,充电器进入200MA-300MA的涓流充电阶段(浮充),改变RP2的电阻值可以调整充电器由恒流充电状态转到涓流充电状态的转折电流(200-300MA)。
常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见图表1)图表 1220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1 为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V 稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯.D6为充电指示灯。
R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)。
通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C8,C3, 达到U1的第7脚。
强迫U1启动。
U1的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚.正常充电时,R27上端有0。
ka3842 开关电源电路图有一款是以KA3842 驱动场效应管的单管开关电源,配合LM358 双运放来实现三阶段充电方式。
原理如下:220v 交流电经T0 双向滤波抑制干扰,D1 整流为脉动直流,再经C11 滤波形成稳定的300V 左右的直流电。
U1 为KA3842 脉宽调制集成电路。
其5 脚为电源负极,7 脚为电源正极,6 脚为脉冲输出直接驱动场效应管Q1(K1358) 3 脚为最大电流限制,调整R25(2.5 欧姆)的阻值可以调整充电器的最大电流。
2 脚为电压反馈,可以调节充电器的输出电压。
4 脚外接振荡电阻R1,和振荡电容C1.T1 为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为KA3842 提供工作电源。
D4 为高频整流管(16A60V)C10 为低压滤波电容,D5 为12V 稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35)起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10 是电源指示灯。
D6 为充电指示灯。
R27 是电流取样电阻(0.1 欧姆,5w)改变W1 的阻值可以调整充电器的高恒压值。
KA3842A 开关电源芯片充电器原理图:KA3842 控制芯片的一种典型适配器为例该电源适配器完成将220V 交流电压转换为19V 直流电压输出的功能,输出电流约3A 。
电路基本工作过程如下:220v 交流输人电压经桥式整流电路D2 (KBP206G )整流、C1 滤波后得到约300v 的直流电压,该电压一路经开关变压器T1 的①一②绕组加至场效应开关管Ql (K2543 )D 极,另一路经R4 降压后得到约17V 启动电压给ICl (KA3842 )⑦脚供电,并从ICl 内部基准电压发生器产生5V 基准电压从第⑧脚输出,此时其内部振荡器起振,从第⑥脚输出调宽脉冲(PWM),驱动开关管Ql ,使其工作在开关状态,Q1 的 D 极输出电流在Tl 初级绕组上产生感应电压,经磁芯藕合到TI 次级,在次级⑤-⑥绕组上产生的感应电压经肖特基二极管Q2、电容C4 整流滤波后得到19v 直流电压输出。
3842开关电源常见故障的分析及维修3842开关电源是以美国Unitorde公司生产的一种性能优良的电流控制型脉宽调制芯片UC3842(KA3842)为主控芯片,IGBT(绝缘栅双极场效应晶体管)为“开”“关”器件,配合LM324(四运放)或LM358(双运放)及光电耦合器(PC817)作为输出负载反馈器件,以及TL431(高精密并联稳压器),高频变压器为主要元件所组成的脉冲宽度调制(PulseWidthModulation,缩写为PWM)式开关电源。
3842各脚功能:1. 误差放大输出(输出补偿)3.4伏2. 误差放大器反相输入端(电压反馈)2.4伏3. 电流感应放大器同相输入端(电流检测)0.1伏4. 内接振荡器外接rc(定时)元件1.9伏5. 接地0伏6. 驱动信号输出端 2伏7. 电源供电端、欠压保护端17伏8. 5伏基准电压输出5伏1.2开关电源的工作原理220V的交流电经交流滤波电路滤除外来的杂波信号,同时也防止电源本身产生的高频杂波对电网的干扰。
再经二极管桥式整流电路和滤波电路,整流滤波后得到约300V的直流电,送给功率变换电路进行功率转换。
功率变换电路中的开关功率管(IGBT)就在脉冲宽度调制(PWM)控制器(UC3842)输出的脉冲控制信号和驱动下,工作在“开”“关”状态,从而将300V直流电切换成宽度可变的高频脉冲电压。
把高频脉冲电压送给高频变压器,高频变压器的次级(二次侧)就会感应出一定的高频脉冲交流电,并送给高频整流滤波电路进行整流,滤波。
经高频整流滤波后便可得到我们所需的各种直流电压。
输出电压下降或上升时,由取样电路将取样信号通过光电耦合器(PC817),送入控制电路,经过其内部调制,由控制电路的输出端将变宽的或变窄的驱动脉冲送到开关功率管的栅极(G极),使变换电路产生的高频脉冲方波也随之变宽或变窄,由此改变输出电压平均值的大小,从而使直流电压基本稳定在所须的电压值上。
ka3842 开关电源电路图
有一款是以KA3842 驱动场效应管的单管开关电源,配合LM358 双运放来实现三阶段充电方式。
原理如下:
220v 交流电经T0 双向滤波抑制干扰,D1 整流为脉动直流,再经
C11 滤波形成稳定的300V 左右的直流电。
U1 为KA3842 脉宽调制集成电路。
其5 脚为电源负极,7 脚为电源正极,6 脚为脉冲输出直接驱动场效应管Q1(K1358) 3 脚为最大电流限制,调整R25(2.5 欧姆)的阻值可以调整充电器的最大电流。
2 脚为电压反馈,可以调节充电器的输出电压。
4 脚外接振荡电阻
R1,和振荡电容C1.T1 为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为
KA3842 提供工作电源。
D4 为高频整流管(16A60V)C10 为低压滤波电容,D5 为12V 稳压二极管,U3(TL431)为精密基准电压源,配合U2(光耦合器4N35)起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10 是电源指示灯。
D6 为充电指示灯。
R27 是电流取样电阻(0.1 欧姆,5w)改变W1 的阻值可以调整充电器的高恒压值。
常用电动车充电器根据电路结构可大致分为两种。
第一种是以uc3842驱动场效应管的单管开关电源,配合LM358双运放来实现三阶段充电方式。
其电原理图和元件参数见图表1工作原理:220v交流电经T0双向滤波抑制干扰,D1整流为脉动直流,再经C11滤波形成稳定的300V左右的直流电。
U1 为TL3842脉宽调制集成电路。
其5脚为电源负极,7脚为电源正极,6脚为脉冲输出直接驱动场效应管Q1(K1358) 3脚为最大电流限制,调整R25(2.5欧姆)的阻值可以调整充电器的最大电流。
2脚为电压反馈,可以调节充电器的输出电压。
4脚外接振荡电阻R1,和振荡电容C1。
T1为高频脉冲变压器,其作用有三个。
第一是把高压脉冲将压为低压脉冲。
第二是起到隔离高压的作用,以防触电。
第三是为uc3842提供工作电源。
D4为高频整流管(16A60V)C10为低压滤波电容,D5为12V稳压二极管, U3(TL431)为精密基准电压源,配合U2(光耦合器4N35) 起到自动调节充电器电压的作用。
调整w2(微调电阻)可以细调充电器的电压。
D10是电源指示灯。
D6为充电指示灯。
R27是电流取样电阻(0.1欧姆,5w)改变W1的阻值可以调整充电器转浮充的拐点电流(200-300 mA)通电开始时,C11上有300v左右电压。
此电压一路经T1加载到Q1。
第二路经R5,C8,C3, 达到U1的第7脚。
强迫U1启动。
U1的6脚输出方波脉冲,Q1工作,电流经R25到地。
同时T1副线圈产生感应电压,经D3,R12给U1提供可靠电源。
T1输出线圈的电压经D4,C10整流滤波得到稳定的电压。
此电压一路经D7(D7起到防止电池的电流倒灌给充电器的作用)给电池充电。
第二路经R14,D5,C9, 为LM358(双运算放大器,1脚为电源地,8脚为电源正)及其外围电路提供12V工作电源。
D9为LM358提供基准电压,经R26,R4分压达到LM358的第二脚和第5脚。
爱玛电动车充电电路工作原理该电路使用可直接驱动MOSFET开关管的单端驱动器KA3842和双运算放大器LM358P构成。
KA3842在稳定输出电压的同时,还具有负载电流控制功能,因而常称其为电流控制型开关电源驱动器,用于充电器此功能具有独特的优势,只用极少的外围元件即可实现恒压输出,同时还能控制充电电流。
尤其是KA3842可直接驱动MOSFET 管的特点,可以使充电器的可靠性大幅提高。
1,市电变换.市电输入经桥式整流后,形成约300V直流电压,300V电压一路通过开关变压器初级绕组加到开关管8N60的D极为它供电,另一路经150K1W电阻给KA3842供电端7脚外接47uF电容充电,当7脚电压达到16V时,KA3842开使工作,由KA3842的6脚输出激励脉冲信号来驱动开关管8N60,此时开关变压器次级产生相应的脉冲电压.2,稳压控制.该电路的稳压控制电路由KA3842,误差取样电路TL431和光电耦合器817构成,当电源电压输出过高导致TL431的控制极1脚电压高于2.5V时TL431将控制光电耦合器817导通,从而导致KA3842的1脚电位降低,KA3842输出激励脉冲占空比减小,开关电源输出电压降低,若电源电压输出过低时控制过程相反.3,充电显示控制.当负载充电时,双运算放大器LM358P的5脚电位通过取样电阻3W0.1的取样将高于6脚电位,这时7脚输出高电位,充电指示灯红灯亮,风扇开使运转,同时7脚的高电位导致8脚输出低电位,此时5V稳压管不起作用,充电饱和指示灯绿灯不亮.当负载充足电时,双运算放大器LM358P的5脚电位通过取样电阻3W0.1的取样将低于6脚电位,这时7脚输出低电位,充电指示灯红灯灭,风扇停止运转,同时7脚的低电位导致8脚输出高电位,此时5V稳压管通过24K电阻向TL431控制脚供电,导致开关电源整体输出有所下降,进入涓流充电状态,充电饱和指示灯绿灯亮.。
LM358工作原理分析LM358是一款双运算放大器,常用于模拟电路中的信号放大和滤波等应用。
本文将详细介绍LM358的工作原理,包括其内部电路结构、输入输出特性以及应用场景等。
一、LM358的内部电路结构LM358由两个独立的运算放大器组成,每个运算放大器都具有一个差动输入级、一个电压放大级和一个输出级。
这两个运算放大器共享一个电源引脚,但具有独立的输入和输出引脚。
差动输入级是LM358的核心部分,它由一个差动放大器和一个电流镜组成。
差动放大器采用差分放大的方式,通过比较输入信号与参考电压的差异来放大信号。
电流镜用于提供稳定的工作电流,使差动放大器能够正常工作。
电压放大级用于放大差动放大器输出的电压信号,以便能够驱动负载。
输出级则将放大后的信号转换为电流信号,并通过输出引脚输出。
二、LM358的输入输出特性1. 输入特性:LM358的输入电压范围为负电源电压减去1.5V至正电源电压减去1.5V。
这意味着输入信号的幅值不能超过电源电压的范围。
输入电阻较高,一般在100MΩ左右,输入偏置电流较小,一般在20nA左右。
2. 输出特性:LM358的输出电压范围为负电源电压加0.2V至正电源电压减0.2V。
输出电流能够驱动较大的负载,一般在20mA左右。
输出阻抗较低,一般在75Ω左右。
三、LM358的应用场景1. 信号放大:LM358可用于对微弱信号进行放大,如传感器信号放大。
通过调节反馈电阻和输入电阻的比例,可以实现不同的放大倍数。
2. 滤波器:LM358可用于构建低通滤波器、高通滤波器和带通滤波器等。
通过选择合适的电容和电阻值,可以实现不同的滤波效果。
3. 比较器:LM358可用作比较器,通过将一个输入接地,将另一个输入与参考电压相连,可以实现电压比较功能。
当输入电压大于参考电压时,输出为高电平;当输入电压小于参考电压时,输出为低电平。
4. 电压跟随器:LM358可用作电压跟随器,通过将输入信号连接到非反相输入端,输出信号连接到反相输入端,可以实现输入信号的跟随放大,并保持输入输出电压相同。
工作原理
220V交流电经LF1双向滤波.VD1-VD4整流为脉动直流电压,再经C3滤波后形成约300V的直流电压,300V直流电压经过启动电阻R4为脉宽调制集成电路IC1的7脚提供启动电压,IC1的7脚得到启动电压后,(7脚电压高于14V时,集成电路开始工作,6脚输出PWM脉冲,驱动电源开关管(场效应
VT7工作在开关状态,电流通过VT1的S极-D极-R7-接地端.此时开关变压器T1的8-9绕组产生感应电压,经VD6,R2为IC1的7脚提供稳定的工作电压,4脚外接振荡电阻R10和振荡电容C7决定IC1的振荡频率,
IC2(TL431为精密基准电压源,IC4(光耦合器4N35配合用来稳定充电电压,调整RP1(510欧半可调电位器可以细调充电器的电压,LED1是电源指示灯.接通电源后该指示灯就会发出红色的光。
VT1开始工作后,变压器的次级6-5绕组输出的电压经快速恢复二极VD60整流,C18滤波得到稳定的电压(约53V.此电压一路经二极管VD70(该二极管起防止电池的电流倒灌给充电器的作用给电池充电,另一路经限流电阻R38,稳压二极管VZD1,滤波电容C60,为比较器IC3(LM358提供12V工作电源,VD12为IC3提供基准电压,经R25,R26,R27分压后送到IC3的2脚和5脚。
正常充电时,R33上端有0.18-0.2V的电压,此电压经R10加到IC3的3脚,从1脚输出高电平。
1脚输出的高电平信号分三路输出,第一路驱动VT2导通,散热风扇得电开始工作,第二路经过电阻R34点亮双色二极管LED2中的红色发光二极管,第三路输入到IC3的6脚,此时7脚输出低电平,双色发光二极管LED2中的绿色发光二极管熄灭,充电器进入恒流充电阶段。
当电池电压升到44.2V左右时,充电器进入恒压充电阶段,电流逐渐减小。
当充电电流减小到200MA-300MA时,R33上端的电压下降,IC3的3脚电压低于2脚,1脚输出低电平,双色发光二极管LED2中的红色发光二极管熄灭,三极管VT2截止,风扇停止运转,同时IC3的7脚输出高电平,此高电平一路经过电阻R35点亮双色发光二极管LED2中的绿色发光二极管(指示电瓶已经充满,此时并没有真正充满,实际上还得一两小时才能真正充满),另一路经R52,VD18,R40,RP2到达IC2的1脚,使输出电压降低,充电器进入200MA-300MA的涓流充电阶段(浮充),改变RP2的电阻值可以调整充电器由恒流充电状态转到涓流充电状态的转折电流(200-300MA)。
常见故障
这种类型充电器的常见故障有下面几种情况:
1、高压电路故障:
该部分电路出现问题的主要现象是指示灯不亮。
通常还伴有保险丝烧断,此时应检查整流二极管VD1-VD4是否击穿,电容C3是否炸裂或者鼓包,VT2是否击穿,R7,R4是否开路,此时更换损坏的元件即可排除故障,若经常烧VT1,且VT1不烫手,则应重点检查R1,C4,VD5等元器件,若VT1烫手,则重点检查开关变压器次级电路中的元器件有无短路或者漏电。
若红色指示灯闪烁,则故障多数是由R2或者VD6开路,变压器T1线脚虚焊引起。
2、低压电路故障:
低压电路中最常见的故障就是电流检测电阻R33烧断,此时的故障现象是红灯一直亮,绿灯不亮,输出电压低,电瓶始终充不进电,另外,若RP2接触不良或者因振动导致阻值变化(充电器注明不可随车携带就是怕RP2因振动而改变阻值),就会导致输出电压漂移。
若输出电压偏高,电瓶会过充,严重时会失水-发烫,最终导致充爆,若输出电压偏低,会导致电瓶欠充,缩短其寿命。