第12课单管正激变换器原理与设计
- 格式:ppt
- 大小:573.50 KB
- 文档页数:18
第二章 方案的确定2.1 变换器的设计指标2.1.1 正激变换器的设计指标输入电压:DC41V ~DC51V输出电压:DC12V输出电流:5A效率: η≥80%电压调整率:Su ≤1.5%负载调整率:S I ≤1.5%2.1.2 辅助电源(反激)的设计指标输入电压:DC41V ~DC51V输出电压:DC17V输出电流:0.5A效率: η≥87%第三章 正激电路设计这里UC3844的振荡器选择R T =R 8=12k Ω,C T =C 19=1000PF ,则KHZ C R f T T osc 15010100010128.18.1123=⨯⨯⨯==- (3-1) 所以6脚的输出频率(驱动频率)为:KHZ f f osc 7521== (3-2) 3.3 主电路设计主电路的设计主要包括变压器、电感和MOS 管的设计。
3.3.1 主电路中变压器的设计变压器是利用互感应实现能量或信号传输的器件。
在开关电源主电路中,变压器用于输入输出之间隔离及电压变换。
开关电源中使用磁性元件比较多,这其中包括作为开关电源核心的高频功率变压器、驱动变压器、电流互感器、低压辅助电源变压器以及各种滤波电感等,通常把这些统称为电子变压器,他们是电力电子电路中储能、转换以及隔离所必备的元件。
磁性元器件在整个的开关电源中所占的比重很大,对于开关电源的质量、体积、成本以及效率都有很显著的影响,特别是高频功率变压器,它对于整个开关电源的性能更是有着举足轻重的影响[16]。
高频变压器具有电压变化、电气隔离和能量传输三项主要功能,是开关电源的核心部件,它的设计和计算也是最复杂的。
在能量传输方面,高频变压器有两种方式:一是变压器传输方式,即加在一次绕组上的电压,在磁心中产生了磁通变化,使二次绕组产生感应电压,从而达到使能量从变压器的一次侧传输到二次侧的目的;另一种是电感器传输方式,即在一次绕组上施加电压,会产生励磁电流并且使磁心磁化,并将电能转变成磁能存储起来,而后通过去磁可以使二次绕组产生感应电压,从而达到将磁能变换为电能释放给负载的效果,下面就是变压器设计的过程[17]。
正激变换器实际应用中,由于电压等级变换、安全、系统串并联等原因,开DC-变关电源的输入输出往往需要电气隔离。
在基本的非隔离DCDC-变换换器中加入变压器,就可以派生出带隔离变压器的DC 器。
例如,单端正激变换器就是有BUCK变换器派生出来的。
一工作原理1 单管正激变换器单端正激变换器是由BUCK变换器派生而来的。
图(a1)为BUCK 变换器的原理图,将开关管右边插入一个隔离变压器,就可以得到图(a2)的单端正激变换器图(a1)BUCK变换器图(a2)单端正激变换器BUCK变换器工作原理:电路进入平恒以后,由电感单个周期内充放电量相等,由电感周期内充放电平恒可以得到:即:可得:单端正激变换器的工作原理和和BUCK 相似。
其工作状态如图如图(a3)所示:⎰⎰=--O N O N t T t o o i dt U dt U U 00)(i i ON o o o i OFFo ON o i DU U Tt U TD U DT U U t U t U U ==-=-=-)1()()(⎰==T dt Lu T L U 001图(a3)单端正激变换器工作状态开关管Q 闭合。
如图所示,当开关管Q 闭合时的工作状态如图a4所示,图(a4)根据图中同名端所示,可以知道变压器副边也流过电流,D1导通,D2截止,电感电压为正,变压器副边的电流线性上升。
在此期间,电感电压为:O I L U U N N u -=12 开关管Q 截止。
开关管截止时,变压器副边没有电流流过,副边电流经反并联二极管D2续流,在此期间,电感电压为负,电流线性下降:O L U U -=在稳定时,和BUCK 电路一样,电感电压在一个周期内积分为零,因此:()S O S I T D U DT U U N N ⨯-⨯=⨯⎪⎭⎫ ⎝⎛-1120 得:I O DU N N U 12= 由此可见,单端正激变换器电压增益与开关导通占空比成正比,比BUCK 电路只多了一个变压器的变化。
正激变换器磁性元件的设计第一部分:磁性元件的类型和基本原理变压器的基本原理是利用电磁感应的原理,在一个绕组中通过交流电产生的磁场感应到另一个绕组中,并将电能从输入端传递到输出端。
变压器的主要参数有变比、额定功率和损耗。
电感器也利用电磁感应的原理,但与变压器不同的是,电感器主要是利用自感效应而产生电能储存,并在需要时释放。
电感器的主要参数有电感值、电流能力和频率响应。
第二部分:正激变换器磁性元件的设计要求1.功率密度:功率密度指单位体积或单位重量的磁性元件所能承受的功率。
提高功率密度可以减小变压器和电感器的体积,同时保持其高效率和稳定性。
2.体积:正激变换器通常需要较小的体积,尤其在一些应用中,如手机充电器、电动汽车充电器等。
因此,设计磁性元件时需要追求尽可能小的体积。
3.效率:正激变换器的效率对于节能和降低损耗至关重要。
磁性元件的设计应该追求高效率,减小能量损耗,提高能量利用率。
4.成本:磁性元件的设计还要考虑成本因素。
在设计过程中,要找到平衡点,以确保磁性元件的性能符合要求,但同时又不引起过高的成本。
第三部分:磁性元件的具体设计步骤1.确定输入和输出电压/电流:根据具体应用需求,确定输入和输出的电压/电流。
2.计算变比或电感值:根据输入和输出的电压/电流,计算变比或电感值。
变比的计算可以根据功率守恒定律,通过功率关系计算得到;电感值的计算可以通过所需的电流和频率计算得到。
3.选择磁性材料:根据变比或电感值,选择合适的磁性材料。
常用的磁性材料有铁氧体、铁氧体软磁材料、铁氧体硬磁材料等。
选择合适的磁性材料可以提高变压器或电感器的性能。
4.计算磁路参数:根据选择的磁性材料,计算磁路参数。
磁路参数包括磁路长度、磁导率和横截面积等。
5.计算绕组匝数和线径:根据输入和输出的电压/电流、变比或电感值,计算变压器或电感器绕组的匝数和线径。
绕组的匝数和线径的选择直接影响磁性元件的性能和效率。
6.验算和优化:根据设计结果,进行验算和优化。
单端正激变换器1、电路拓扑图2、电路原理其变压器T1起隔离和变压的作用,在输出端要加一个电感器Lo(续流电感)起能量的储存及传递作用,变压器初级需有复位绕组Nr(此点上我对一些参考书籍存疑,当然有是最好,实际应用中考虑到变压器脚位的问题)。
在实际使用中,我也发现此绕组也用RCD吸收电路取代亦可,如果芯片的辅助电源用反激供给则也可削去调整管的部分峰值电压(相当一部份复位绕组)。
输出回路需有一个整流二极管D1和一个续流二极管D2。
由于其变压器使用无气隙的磁芯,故其铜损较小,变压器温升较低。
并且其输出的纹波电压较小。
3、变压器计算一般来说高频变压器的设计可划分为以下六个步骤:a、选择磁芯材料和磁芯结构形式。
b、确定工作频率,工作最大磁感应强度Bm。
c、计算并初选磁芯型号。
d、计算并调整原、副边匝数。
e、计算并确定导线线径。
f、校核窗口面积和最大磁感应强度Bm。
现就这六个步骤来讨论单端正激式变压器的设计:★选择磁芯材料和磁芯结构形式高频变压器磁性材料选择的标准为高初始磁导率μi、低矫顽力Hc、高饱和磁感应强度Bs、低剩磁Br、高电阻率ρ和高居里温度点。
磁导率高,变压器工作时励磁电流就小;矫顽力低则磁滞损耗比较小;高饱和磁感应,低剩磁,变压器工作时磁通变化范围DB可以较大,相应减小了变压器体积;高电阻率,高频工作时涡流损耗比较小;高居里温度点,变压器工作温度可以相应提高,但以上各项要求不可能同时得到满足,不同的磁性材料存在其长处也必然存在不足,需视具体应用条件加以选择。
一次电源工作频率一般选择在60KHz~150KHz之间,二次电源产品工作频率一般选择在100KHz~400KHz之间,在这个频率范围,宜选用Mn-Zn铁氧体材料,目前二次电源常用的铁氧体材料包括TDK的PC30-PC40,Magnetics的P材料,PHILIP的3F3及899厂的R2KB2等。
磁芯结构形式的选择一是考虑能量传递,二是考虑几何尺寸的限制,三是考虑磁芯截面积和窗口面积的比例,多路输出变压器一般要求有较大的窗口面积,选择EE型、EI型或PQ型磁芯,可具有较大的窗口和良好的散热性,DC/DC模块电源可选用FEY型、FEE型、EUI型等,铃流变压器要求磁芯截面积比较大,可选用GU形磁芯;此外还应考虑变压器的安装,加工方便性,成本等,目前中、大功率通常选用GU 形磁芯,这种磁芯特点是有较大的截面积,漏磁很小,采用国产材料,成本低,但出线需手焊。
单管正激电路工作原理单管正激电路是一种基本的电源电路,在不同的电子设备和电路中都得到广泛的应用。
它的工作原理是将正弦波输入信号经过整流、滤波等处理后,再经过管子放大,最终输出直流电压。
下面将对单管正激电路的工作原理进行详细介绍。
一、单管正激电路概述单管正激电路是一种利用单个晶体管进行电源变换的电路,在电源电路方面有很广泛的应用。
单管正激电路的核心是单个晶体管,在单管正激电路中,晶体管发挥了基本的功效,可直接在直流负载中完成放大和调节控制的功能。
单管正激电路具有一定的优点,如可靠性高、成本低、输出电流连续可调、仅需较少组件等。
但在负载变化大时,电路就需要更好的保护措施,以免损坏晶体管和负载。
1. 变压器单管正激电路的输入电源使用变压器供电。
变压器是将交流电压转化为需要的电压形式的设备。
变压器的输出电压一般为低压、高压或混合形式,变压器输出的电压负载变化较小,能保证稳定的输出信号。
2. 整流电路在单管正激电路中,需要对变压器输出的正弦波信号进行整流,以获得单向的电压信号。
整流电路一般采用整流器二极管进行单向加以整流。
在整流之后,电路输出的信号为带有直流偏置的单向脉冲波形。
3. 滤波电路在单管正激电路中,需要使用滤波电路进行滤波,以消除整流输出的脉冲波形,使电路得到更为平滑的直流电压信号。
常用的滤波电路为电容滤波器,其工作原理是利用电容器的充放电特性,过半个周期时间内,电容器电荷储存电能,以维持输出电流,从而实现平滑电路输出。
4. 晶体管放大电路在单管正激电路的最后一级,需要使用晶体管放大电路进行放大,从而实现输出直流电压的需求。
在放大电路中,晶体管通过调整其基极电流,从而改变负载中电压和电流的大小,达到调节输出电压的目的。
单管正激电路虽能够发挥出相对较好的信号调制效应,但由于其只有单个晶体管,故其性能相对较弱,需要经过一定的优化才能更好的发挥出其性能。
下面总结其主要优缺点:1. 优点(1)具有较小的体积和重量,结构简单,成本低廉。
正激变换器实际应用中,由于电压等级变换、安全、系统串并联等原因,开DC-变关电源的输入输出往往需要电气隔离。
在基本的非隔离DCDC-变换换器中加入变压器,就可以派生出带隔离变压器的DC 器。
例如,单端正激变换器就是有BUCK变换器派生出来的。
一工作原理1 单管正激变换器单端正激变换器是由BUCK变换器派生而来的。
图(a1)为BUCK 变换器的原理图,将开关管右边插入一个隔离变压器,就可以得到图(a2)的单端正激变换器图(a1)BUCK变换器图(a2)单端正激变换器BUCK 变换器工作原理:电路进入平恒以后,由电感单个周期内充放电量相等,由电感周期内充放电平恒可以得到:⎰==Tdt Lu T L U 001即:可得:单端正激变换器的工作原理和和BUCK 相似。
其工作状态如图如图(a3)所示:图(a3)单端正激变换器工作状态开关管Q 闭合。
如图所示,当开关管Q 闭合时的工作状态如图⎰⎰=--O NO Nt Tt o o i dt U dt U U 0)(ii ONo o o i OFFo ON o i DU U Tt U T D U DT U U t U t U U ==-=-=-)1()()(a4所示,图(a4)根据图中同名端所示,可以知道变压器副边也流过电流,D1导通,D2截止,电感电压为正,变压器副边的电流线性上升。
在此期间,电感电压为:O I L U U N N u -=12开关管Q 截止。
开关管截止时,变压器副边没有电流流过,副边电流经反并联二极管D2续流,在此期间,电感电压为负,电流线性下降:O L U U -=在稳定时,和BUCK 电路一样,电感电压在一个周期内积分为零,因此:()S O S I T D U DT U U N N ⨯-⨯=⨯⎪⎭⎫⎝⎛-1120 得:I O DU N N U 12=由此可见,单端正激变换器电压增益与开关导通占空比成正比,比BUCK电路只多了一个变压器的变化。