地面变形地质灾害-地面沉降
- 格式:ppt
- 大小:1.24 MB
- 文档页数:7
知识点22:地面沉降地质灾害的特征、成因机制和防治措施[P1]同学们,今天,我们的微课题目为地面沉降地质灾害的分布特征、成因机制和防治措施。
[P2]地面沉降又称为地面下沉或地陷。
它是在人类工程经济活动影响下,由于地下松散地层固结压缩,导致地壳表面标高降低的一种局部的下降运动(或工程地质现象)。
[P3]据统计,目前世界上已有150多个国家和地区发生地面沉降,如美国、中国、日本、墨西哥、意大利、泰国、英国、俄罗斯、委内瑞拉、荷兰、越南、匈牙利、德国、印度尼西亚、新西兰、比利时、南非等。
[P4]下面我们从三个方面进行介绍,一是我国地面沉降地质灾害的分布特点,二是地面沉降地质灾害的形成机制,三是地面沉降地质灾害的防治措施。
[P5]先讲第一个问题:我国地面沉降地质灾害的分布特点[P6]据专门勘查和区域地形变测量结果分析,目前我国发生地面沉降的城市大约有70个。
累计沉降量达2米以上的有上海、天津、台北、宜兰、嘉义等5个城市,1米~2米的有西安、太原、沧州、苏州、无锡等5个城市,0.5米~1.0米的有北京、保定、嘉兴、常州、衡水、阜阳等6个城市,小于0.5米或沉降量不详的有54个城市[P7]从区域分布看,地面沉降活动主要发生在我国东部地区――尤其以沿海城市和华北平原等地区最严重。
在该区域内,发生地面沉降的城市或地区有的孤立存在,有的则密集成群或断续相连,形成大面积的地面沉降(带)。
主要有下列6个区(带)。
1、下辽河平原的沈阳-营口沉降区。
2、北部黄淮海平原的天津-沧州-衡水-德州-滨州-东营-潍坊沉降区。
属我国沉降范围最广,沉降幅度最大的地区。
地面沉降与区域地下水位在空间和时间上同步发展。
中心区主要在渤海湾西岸的天津市区及外围的宁河、安次、南堡、塘沽、静海、大港、黄骅、沧州一带;其次是冀中平原的衡水、冀县、枣强及外围地区;再次是鲁北平原的德州-滨州-东营-滩坊地区。
3、南部黄淮海平原的徐州-滨州-东营-潍坊地区。
【专业知识】地质灾害类型及特征【学员问题】地质灾害类型及特征?【解答】地质灾害类型多时,则可分节描述地质灾害类型及特征,列表反映,文字指出整体、共性特性;地质灾害的主要类型有:滑坡、泥石流、崩塌、地面塌陷、地裂缝、地面沉降、地压灾害等,根据地质灾害类型分类描述。
(1)滑坡查明滑坡构成要素及变形的空间组合特征,确定其规模、类型、主要诱发因素,预测发展趋势,评价其对矿山工程项目的危害,提出拟采取的防治措施。
①滑坡发育位置、地形地貌及规模(长、宽、厚,单位:m,估计方量,单位:m3);②滑坡的构成要素(滑坡周界、滑坡后壁、滑坡前缘、鼓丘、裂缝等)、变形的空间组合特征和变形迹象;③滑坡区地质条件(地层、岩性、地质构造及其组合关系等)、地下水、泉点及流量、地表水及湿地;④滑坡类型、诱发因素,结合地质条件和降雨特征分析滑坡形成机制及发展趋势;⑤灾害史:危害范围、对象及危害损失及处置情况;⑥当地整治滑坡经验;⑦附典型点剖面、照片,附表(滑坡特征表)。
(2)泥石流查明泥石流形成的地质条件、地形地貌条件、水流条件、植被发育状况、人类工程活动的影响,确定泥石流的形成条件、规模、活动特征、侵蚀方式、破坏方式及程度,预测泥石流的发展趋势及对矿山工程项目的危害,提出拟采取的防治措施。
①发育位置及规模(流域面积,单位:k㎡)②地质条件:地层、岩性、风化程度、地质构造;③地形地貌条件:沟谷长度(长、宽,单位:m),沟岸坡度,纵坡降(%),山坡坡度及植被发育状况,划分泥石流的形成区、流通区和堆积区,并描述三区特征;④泥石流物质组成,堆积扇分布范围、形态,堆积层次、厚度、粒径,堆积历史、速度,一次最大堆积量估算;⑤汇水条件,流量(l/s)及特征⑥固体物质补给来源及方式:沟床类、坡面侵蚀类、重力类及人工土堆积等,沟谷内滑坡、崩塌、岩堆发育情况;⑦泥石流活动历史、活动特征(时间、频数、规模、冲淤、变迁)、破坏方式及程度;⑧结合地质条件、降雨条件(暴雨强度、点降雨量)和水动力条件及人类活动情况(开矿弃渣、修路地切坡、砍伐森林、陡坡开荒、过度放牧等)分析泥石流形成机制及发展趋势;⑨灾害史:危害范围、对象及危害损失及处置情况;⑩附典型点剖面、照片,附表(泥石流特征表)。
我国10大类31种地质灾害的划分我国地质灾害可划分为10大类31种:1、地震:天然地震、诱发地震2、岩土位移:崩塌、滑坡、泥石流3、地面变形:地面塌陷、地面沉降、地裂缝4、土地退化:水土流失、沙漠化、盐碱(渍)化、冷浸田5、海洋(岸)动力灾害:海面上升、海水入侵、海岸侵蚀、港口淤积6、矿山与地下工程灾害:坑道突水、煤层自燃、瓦斯突出和爆炸、岩爆7、特殊岩土灾害:湿陷性黄土、膨胀土、淤泥质软土、冻土、红土8、水土环境异常:地方病9、地下水变异:地下水位升降、水质污染10、河湖(水库)灾害:淤积、塌岸、渗漏(一)地震1、分布发育概况进入20世纪以来,在我国境内(包括台湾及临近海域)发生大于或等于8级的巨大地震共9次;发生大于或等于7级的地震约80次,其中1949~1990年发生了52次。
我国的构造地震分布非常广泛,除浙江、贵州两省外,其余各省都有6级以上地震发生。
水库诱发地震自60年代以来,目前至少以在11个省的15座水库发生,其特点是与水库蓄水有明显关系。
地震在我国大陆地区具明显的西强东弱、西多东少的发育分布规律。
如本世纪以来发生的9次大于或等于8级大地震,除2次8级发生于台湾临近海域外,其余均发生于西部省份。
我国地震烈度Ⅶ度以上的地区主要分布于西部地区,东部地区除了台湾外,Ⅶ度以上地区的面积相时少得多。
地震在空间分布上表现了不均一性,往往呈带状分布。
近100年发生的地震表明,地震基本上是围绕这26条活动断裂系发生的。
我国地震活动的周期性和重复性呈现出成群分布,活跃高潮与低潮相互交替的活动格局。
东部一个周期长约300年左右,西部为100~200年左右,台湾为几十年。
2、危害状况地震灾害以突然、隐蔽为特点,一旦成灾,极易造成巨大的人员伤亡和重大的经济损失。
1901~1980年间,我国地震共死亡61万人,其中死亡人数在千人以上的地震即达31次。
1949年以来,地震就造成死亡27.4万人,伤残76.5万人,居群灾之首,同时地震还造成倒房600万间,直接经济损失数百亿元。
第四章地面沉降、滑坡、岩溶塌陷灾害与防治4.1 地面沉降灾害防治一、地面沉降的定义:指地层在各种因素的作用下,造成地层压密变形或下沉,从而引起区域性的地面标高下降。
二、地面沉降的原因:(1)自然因素:①新构造运动以及地震、火山活动引起的地面沉降;②海平面上升导致地面的相对下降(沿海);③土层的天然固结(次固结土在自重压密下的固结作用)。
自然因素所形成的地面沉降范围大,速率小。
自然因素主要是构造升降运动以及地震、火山活动等一般情况下,把自然因素引起的地而沉降归属于地壳形变或钩造运动的范畴,作为一种自然动力现象加以研究。
(2)人为因素:①抽汲地下气、液体引起的地面沉降。
抽取地下水而引起的地面沉降,是地面沉降现象中发育最普通、危害性最严重的一类;②大面积地面堆载引起的地面沉降;③大范围密集建筑群天然地基或桩基持力层大面积整体性沉降——工程性地面沉降。
人为因素引起的地面沉降一般范围较小,但速率和幅度比较大。
人为因素主要是开采地下水和油气资源以及局部性增加荷载。
将人为因素引起的地面沉降归属于地质灾害现象进行研究和防治。
三、地面沉降的成因机制和形成条件(一)地面沉降的成因机制由于地面沉降的影响巨大,因此早就引起了各国政府和研究人员的密切注意。
早期研究者曾提出一些不同的观点,如新构造运功说、地层收缩说和自然压缩说、地面动静荷载说、区域性海平面上升说等。
大量的研究证明,过量开采地下水是地面沉降的外部原因,中等、高压缩性粘土层和承压含水层的存在则是地面沉降的内因。
因而多数人认为沉降是由于过量开采地下水、石油和天然气、卤水以及高大建筑物的超量荷载等引起的。
在孔隙水承压含水层中,抽取地下水所引起的承压水位的降低,必然要使含水层本身及其上、下相对隔水层中的孔隙水压力随之而减小。
根据有效应力原理可知,土中由覆盖层荷载引起的总应力是山孔隙中的水和土颗粒骨架共同承担的。
由水承担的部分称为孔隙水压力(p w),它不能引起土层的压密,故义称为中性压力;而由土颗粒骨架承担的部分能够直接造成上层的压密,故称为有效应力(p s);二者之和等干总应力。
如何进行地面沉降监测与地质灾害预警地面沉降监测与地质灾害预警是一项重要的工作,它对保障社会安全和经济发展有着至关重要的作用。
在如今城市化进程不断加快的背景下,准确监测地面沉降和实时预警地质灾害,对于防止灾害事故的发生至关重要。
本文将从监测技术、数据分析及预警体系等方面来探讨如何进行地面沉降监测与地质灾害预警。
首先,地面沉降监测是通过利用先进的测量仪器和技术手段,对地表的沉降情况进行实时监测和分析,以获取准确的沉降数据。
目前,常用的地面沉降监测技术包括全站仪测量、GPS测量、卫星遥感及激光雷达等。
全站仪测量是一种常见的测量方法,它能够通过测量地面控制点的坐标变化来判断地面是否发生了沉降。
GPS测量技术则通过接收来自卫星的信号,计算出地面控制点的坐标变化情况,得出地面沉降情况。
卫星遥感技术则通过卫星传感器对地面变形进行观测,利用图片和图像来分析并判断地面是否沉降。
激光雷达技术则通过激光束扫描地表,得出地面沉降的数据。
这些监测技术各有优缺点,应根据具体情况选用合适的技术手段。
其次,地质灾害预警是指在地质灾害即将发生或正在发生前,通过预测和预警系统来提前采取措施,以保障人民生命财产安全。
目前,地质灾害预警主要采用了传感器网络、数据分析、人工智能等技术手段。
传感器网络是构建预警系统的核心,它通过部署在地质灾害易发区域的传感器,实时监测地下水位、地表位移、地壳运动等指标,及时发现异常情况。
数据分析则是对传感器获取的大量数据进行处理和分析,通过建立数据模型和算法,对地质灾害的发生进行预测。
人工智能技术则是通过机器学习、深度学习等算法,从大数据中寻找规律和趋势,进一步提高预警系统的准确性和灵敏度。
在实际操作中,地面沉降监测与地质灾害预警需要建立完善的监测网络和预警体系。
监测网络的建立需要充分考虑地质环境和灾害风险等因素,合理选择监测点的位置和布局。
预警体系的建立需要进行数据共享和信息传递,各个部门之间要加强联动合作,形成统一的预警指挥中心。
岩溶塌陷是在有覆盖土的岩溶发育区,在特定的水文地质条件下,岩面以上的土体遭到流失迁移而形成土中的洞穴和洞内塌落堆积物以及引发地面变形破坏的总称。
土洞是岩溶的一种特殊形态,不良地质现象,由于发育速度快、分布密,对工程的影响有时甚至大于岩洞。
岩溶塌陷虽有突发性,但其前身的土洞,是在某些因素作用下,多数是长期发育而形成的。
因而,对土洞的调查、勘探、治理和预报是岩溶塌陷区重要的岩土工程工作之一。
覆盖型岩溶地区的岩溶塌陷是由覆盖层中的土洞发展而发生的,其演化过程如见图5.2-1所示。
自然的因素是长期地和经常地通过影响地下水的水质、水量、水力来溶蚀可溶岩、潜蚀土层而孕育、发展土洞的;人为的因素则通过这些作用加速土洞的发展,加强塌陷的规模,加剧塌陷的危害。
岩溶塌陷的基本条件有以下三方面:(1) 基岩的岩溶发育程度岩溶塌陷处下伏基岩的岩溶发育程度是强烈的,而岩溶发育程度弱的地段则塌陷少见。
岩溶塌陷主要是与浅部岩溶发育程度密切相关。
浅部岩溶是指基岩表面的溶芽和溶沟槽部分,和低基岩面以下约10m范围内的洞穴或溶隙发育段。
可用钻探、物探等方法测量。
基岩面的起伏程度,可用单位面积的溶沟槽数量、基岩面埋深的均方差来表征。
图5.2-1 岩溶塌陷框图(2) 土层的性质土层是土洞形成和塌陷发生的物质基础。
土层的成因类型、矿物成分、岩性、颗粒成分、结构构造、物理力学性质、水理性质、状态、厚度等,影响着土洞的形成和发展的快慢,土层的厚度,还控制或影响塌陷的形态与规模。
(3) 地下水的活动特征地下水的活动是土洞的形成、发展,以致破坏的最活跃的因素。
特别是水位在基岩上下波动的幅度和频度,对崩解和搬运土粒和流土。
的速度有重要作用。
地下水的活动还改变土的含水量、塑性状态或因湿胀干缩而出现裂隙等。
地裂缝的分类及其特征类别性质和特征典型实例地震构造地裂缝简称地震地裂缝,是强烈地震时深部震源断裂在地表的破裂形迹,其性质和分布特征受震源断裂的控制,其产状与发震断裂基本一致,有明显的瞬时水平位移和垂直位移;一般以张性或张扭性为主,也有压性和压扭性的;裂缝呈雁行多组排列,断续延伸;在剖面上裂口上大下小,至地表下一定深度处尖灭;其断距是上大下小,它与随深度而积累断距的地震断层有区别,是震源波动场的产物。
吉林大学精品课>>专门水文地质学>>教材>>专门水文地质学§13.3地面沉降的灾情评估及防治措施一、地面沉降的概念及产生原因地面沉降(Land Subsidence)是指在自然因素或人为因素影响下发生的幅度较大、速率较大的地表高程垂直下降的现象。
地面沉降,又称地面下沉或地陷,是指某一区域内由于开采地下水或其它地下流体所导致的地表浅部松散沉积物压实或压密引起的地面标高下降的现象。
意大利威尼斯城最早发现地面沉降。
之后随着经济发展,人口增加和地下水(油气)开采量增大,世界上许多国家如美国、日本、墨西哥、欧洲和东南亚一些国家均发生了严重的地面沉降。
地面沉降的特征是主要发生于大型沉积盆地和沿海平原地区的工业发达城市及油气田开采区。
其特点是涉及范围广,下沉速率缓慢,往往不易被察觉;在城市内过量开采地下水引起的地面沉降,其波及的面积大;地面沉降具有不可逆特性,就是用人工回灌办法,也难使地面沉降的地面回复到原来的标高。
因此地面沉降对于建筑物、城市建设和农田水利设施危害极大。
经过对地面沉降的长期观测和研究,对地面沉降的主要原因已取得比较一致的看法。
地面沉降的原因颇多,有地质构造、气候等自然因素,也有人为原因。
人类工程活动是主要原因之一,人类工程活动既可导致地面沉降,又可加剧地面沉降,其主要表现在以下几方面:1. 大量抽取液体资源(地下水、石油等)、地下气体(天然气、沼气等)活动是造成大幅度、急剧地面沉降的最主要原因;2. 采掘地下团体矿藏(如沉积型煤矿、铁矿等)形成的大范围采空区,及地下工程(隧道、防空洞、地下铁道等)是导致地面下沉变形的原因之一。
3. 地面上的人为振动作用(大型机械、机动车辆等及爆破等引起的地面振动)在一定条件下也可引起土体的压密变形。
4. 重大建筑物、蓄水工程(如水库)对地基施加的静荷载,使地基土体发生压密下沉变形。
5. 由于在建筑工程中对地基处理不当,即地基勘探不周。