太阳能光伏组件失效模式介绍
- 格式:pdf
- 大小:2.43 MB
- 文档页数:51
光伏组件衰减及系统效率下降原因分析光伏组件虽然使用寿命可达25-30年,但随着使用年限增长,组件功率会衰减,会影响发电量。
另外,系统效率对发电量的影响更为重要。
一、组件的衰减光致衰减也称S-W效应。
a-Si∶H薄膜经较长时间的强光照射或电流通过,在其内部将产生缺陷而使薄膜的性能下降,称为StaEbler-Wronski效应(D.L.Staebler和C.R.Wronski最早发现。
个人认为光伏组件的衰减实际就是硅片性能的衰减,首先硅片在长期有氧坏境中会发生缓慢化学反应被氧化,从而降低性能,这是组件长期衰减的主要原因;在真空成型过程中会以一定比例掺杂硼(空穴)和磷(给体),提高硅片的载流子迁移率,从而提高组件性能,但是硼作为缺电子原子会与氧原子(给体)发生复合反应,降低载流子迁移率,从而降低组件的性能,这是组件第一年衰减2%左右的主要原因。
组件的衰减分为:1、由于破坏性因素导致的组件功率骤然衰减,破坏性因素主要指组件在焊接过程中焊接不良、封装工艺存在缺胶现象,或者由于组件在搬运、安装过程中操作不当,甚至组件在使用过程中受到冰雹的猛烈撞击而导致组件内部隐裂、电池片严重破碎等现象;2、组件初始的光致衰减,即光伏组件的输出功率在刚开始使用的最初几天内发生较大幅度的下降,但随后趋于稳定,一般来说在2%以下;3、组件的老化衰减,即在长期使用中出现的极缓慢的功率下降现象,每年的衰减在0.8%,25年的衰减不超过20%;25年的效率质保已经在日本和德国两家光伏公司的组件上得到证实。
2012年以后国内光伏组件已经基本能够达到要求,生产光伏组件的设备及材料基本采用西德进口。
二、系统效率个人认为系统效率衰减可以不必考虑,系统效率的降低,我们可以通过设备的局部更新或者维护达到要求,就如火电站,水电站来说,不提衰减这一说法。
影响发电量的关键因素是系统效率,系统效率主要考虑的因素有:灰尘、雨水遮挡引起的效率降低、温度引起的效率降低、组件串联不匹配产生的效率降低、逆变器的功率损耗、直流交流部分线缆功率损耗、变压器功率损耗、跟踪系统的精度等等。
DOI:10.16660/ki.1674-098X.2019.03.114光伏组件用接线盒失效分析①王会晓 麻超 张向前 刘红伟(英利能源(中国)有限公司 河北保定 071000)摘 要:本文主要介绍光伏组件用接线盒(以下简称”接线盒”)在光伏电站使用中出现失效问题的原因分析,通过对失效接线盒进行测试,确定是由于二极管击穿造成接线盒失效。
从失效二极管芯片均出现多点烧伤痕迹,应该可以确定,二极管是受到了极大的电能量引起芯片多部位击穿烧伤。
而且该电能量是在极短时间内出现过多次的能量高峰。
关键词:失效 二极管 击穿中图分类号:TM62 文献标识码:A 文章编号:1674-098X(2019)01(c)-0114-02①作者简介:王会晓(1984.9—),女,汉族,河北保定人,硕士,工程师,研究方向:组件原材料。
1 接线盒失效问题概括随着近年来光伏电站的日益壮大,形形色色的组件充斥着整个光伏市场。
各类相关问题凸显验证,其中接线盒失效问题就是一项影响晶硅组件发电量重要问题。
自发现接线盒失效问题,各个组件厂以及相关材料厂商不断优化接线盒和二极管以解决此问题,但仍不能完全避免电站上接线盒失效问题的发生,接线盒失效问题涉及电压、二极管、雷电等多种原因。
本文主要阐述二极管击穿对接线盒失效的影响。
2 失效原因分析2.1 外观分析通过对失效二级管进行外观检测,未发现有损坏、零部件缺损等缺陷。
2.2 X-Ray测试取左穿1pc、右穿3pcs、双穿1pc进行以下分析,余留样,测试结果如图1所示。
编号正面内部结构侧面内部结构1#2#编号焊接件整体其他1#左穿1#右穿编号左边脚位右边脚位1#左穿1#右穿(下转116页)表1 二极管X-Ray测试结果表2 二极管解剖图表3 芯片击穿位置图外热成像仪在进行设备裂缝检查时,如果设备内部没有裂缝,则形成规则的热像图。
当检测到设备有裂缝时,在裂缝部位温度会有明显变化,热像图上也会呈现出相应的波动。
一.接线盒光伏组件接线盒的主要作用是连接和保护太阳能光伏组件,传导光伏组件所产生的电流。
光伏组件接线盒作为太阳能电池组件的一个重要部件,是集电气设计、机械设计和材料应用于一体的综合性产品,为用户提供了太阳能光伏组件的组合连接方案。
目前,中国组件制造商生产的组件很多都存在不少的质量问题和隐患,而其中很大一部分组件质量问题来自于接线盒自身的设计和品质。
作为光伏组件制造商的配套企业,接线盒制造商不仅需要对组件制造商负责,更需要对终端客户负责,特别是对使用过程中人身安全的保护。
所以,优化接线盒结构设计、提高质量是所有接线盒制造企业的首要任务。
常州天华新能源科技有限公司(简称“天华新能源”)下属常州华阳光伏检测技术有限公司(简称“华阳检测”,于 2009 年 12 月获得了 CNAS 实验室认可,认可范围包括光伏组)件、光伏材料共 119 项检测能力。
公司自 2008 年开始进行接线盒检测(依据标准:VDE0126-5:2008),讫今共完成 30 家接线盒供应商、50 多款接线盒的检测和质量分析,获得了大量的检测数据。
结合光伏组件户外使用的实际情况,我们总结出目前接线盒常见失败项目主要有:IP65防冲水测试、结构检查、拉扭力试验、湿漏电试验、二极管温升试验、环境试验、750℃灼热丝试验。
接线盒测试常见失败项目统计图:一、户外组件因接线盒问题引起的故障图片接线盒引线端子烧毁接线盒烧毁引起组件背板烧焦组件碎裂二、接线盒在认证测试中常见失败项目及原因分析1.接线盒 IP65 防冲水测试防水性能是接线盒性能的重要指标。
认证测试中,先进行老化预处理测试,然后进行防冲水测试,再通过外观结构检查和工频耐压测试进行评判。
测试能否顺利通过,取决于接线盒的密封保护程度,而接线盒的密封保护直接影响到成品组件的防触电保护和漏电防护的等级。
就目前常规构造的接线盒而言,其设计和材料的缺陷已在认证测试中显露无疑。
图 1 IP65 防冲水测试测试图片接线盒防冲水测试失败的主要现象大致分为以下几种:⑴、接线盒密封盒体内大量积水;⑵、接线盒盒体与背板材料不匹配;⑶、接线盒的密封螺母开裂失效;⑷、接线盒在老化预处理测试中盒体变形;⑸、接线盒密封圈老化预处理测试后失效,或其他原因。
光伏组件光衰减现象及影响因素有哪些光伏组件光衰减现象及影响因素有哪些1.0绪论太阳能组件制作完成之后,进行功率测试时,组件功率正常,但是客户接收到组件,安装并运营时发现功率衰减较大。
这种现象大多是由于电池片的光致衰减引起的。
本文将系统、简要的阐述光致衰减现象。
2.0光致衰减光伏组件光致衰减可分为两个阶段:初始光致衰减和老化衰减。
1.初始光致衰减初始的光致衰减,即光伏组件的输出功率在刚开始使用的最初几天内发生较大幅度的下降,但随后趋于稳定。
导致这一现象发生的主要原因是P型(掺硼)晶体硅片中的硼氧复合体降低了少子寿命。
通过改变P型掺杂剂,用稼代替硼能有效的减小光致衰减;或者对电池片进行预光照处理,是电池的初始光致衰减发生在组件制造之前,光伏组件的初始光致衰减就能控制在一个很小的范围之内,同时也提高组件的输出稳定性。
光致衰减更多的与电池片厂家有关,对于组件厂商的意义在于选择高质量的电池片来降低光致衰减带来的影响。
2.老化衰减老化衰减是指在长期使用中出现的极缓慢的功率下降,产生的主要原因与电池缓慢衰减有关,也与封装材料的性能退化有关。
其中紫外光的照射时导致组件主材性能退化的主要原因。
紫外线的长期照射,使得EV A及背板(TPE结构)发生老化黄变现象,导致组件透光率下降,进而引起功率下降。
这就要求组件厂商在选择EV A及背板时,必须严格把关,所选材料在耐老化性能方面必须非常优秀,以减小因辅材老化而引起组件功率衰减。
3.0光致衰减机理P型(掺硼)晶体硅太阳电池的早期光致衰减现象是在30多年前观察到的,随后人们对此进行了大量的科学研究。
特别是最近几年,科学研究发现它与硅片中的硼氧浓度有关,大家基本一致的看法是光照或电流注人导致硅片中的硼和氧形成硼氧复合体,从而使少子寿命降低,但经过退火处理,少子寿命又可被恢复,其可能的反应为:据文献报道,含有硼和氧的硅片经过光照后其少子寿命会出现不同程度的衰减,硅片中的硼、氧含量越大,在光照或电流注人条件下在其体内产生的硼氧复合体越多,其少子寿命降低的幅度就越大。