固体材料的表面特点及表面清洗
- 格式:ppt
- 大小:1.59 MB
- 文档页数:36
常见的十种表面处理方法,你知道几种?表面处理是在基体材料表面上人工形成一层与基体的机械、物理和化学性能不同的表层的工艺方法。
表面处理的目的是满足产品的耐蚀性、耐磨性、装饰或其他特种功能要求。
下面介绍一些常见的表面处理方法一.抛光抛光是指利用机械、化学或电化学的作用,使工件表面粗糙度降低,以获得光亮、平整表面的加工方法。
是利用抛光工具和磨料颗粒或其他抛光介质对工件表面进行的修饰加工。
抛光不能提高工件的尺寸精度或几何形状精度,而是以得到光滑表面或镜面光泽为目的,有时也用以消除光泽(消光)。
通常以抛光轮作为抛光工具。
抛光轮一般用多层帆布、毛毡或皮革叠制而成,两侧用金属圆板夹紧,其轮缘涂敷由微粉磨料和油脂等均匀混合而成的抛光剂。
抛光时,高速旋转的抛光轮(圆周速度在20米/秒以上)压向工件,使磨料对工件表面产生滚压和微量切削,从而获得光亮的加工表面,表面粗糙度一般可达Ra0.63~0.01微米;当采用非油脂性的消光抛光剂时,可对光亮表面消光以改善外观。
针对不同的抛光过程:粗抛(基础抛光过程),中抛(精加工过程)和精抛(上光过程),选用合适的抛光轮可以达到最佳抛光效果,同时提高抛光效率。
二.喷砂利用高速砂流的冲击作用清理和粗化基体表面的过程。
采用压缩空气为动力,以形成高速喷射束将喷料(铜矿砂、石英砂、金刚砂、铁砂、海南砂)高速喷射到需要处理的工件表面,使工件表面的外表面的外表或形状发生变化,由于磨料对工件表面的冲击和切削作用,使工件的表面获得一定的清洁度和不同的粗糙度,使工件表面的机械性能得到改善,因此提高了工件的抗疲劳性,增加了它和涂层之间的附着力,延长了涂膜的耐久性,也有利于涂料的流平和装饰。
三. 拉丝是通过研磨产品在工件表面形成线纹,起到装饰效果的一种表面处理手段。
根据拉丝后纹路的不同可分为:直纹拉丝、乱纹拉丝、波纹、旋纹。
表面拉丝处理是通过研磨产品在工件表面形成线纹,起到装饰效果的一种表面处理手段。
usc干式清洗机工作原理干式清洗机是一种先进的清洗设备,它采用干式清洗技术,可以高效地清洗各种材料的表面。
干式清洗机的工作原理是通过喷射高速气流和微粒子,将污垢和灰尘从物体表面彻底清除,达到清洁效果。
干式清洗机利用高速气流产生的冲击力和摩擦力来清除表面的污垢。
高速气流经过喷嘴,喷射到待清洗的物体表面,产生的冲击力可以将污垢和灰尘从物体表面冲击下来。
同时,高速气流的摩擦力可以将污垢和灰尘与物体表面摩擦,使其脱落。
这种方法特别适用于清洗一些粘附在物体表面的污垢,如油渍、油漆、胶水等。
干式清洗机还利用微粒子的冲击和磨擦作用来清洗物体表面。
微粒子是一种非常小的固体颗粒,其直径通常在几微米到几十微米之间。
这些微粒子可以通过喷嘴喷射到物体表面,通过冲击和磨擦作用来清除污垢和灰尘。
微粒子的冲击力可以将污垢和灰尘从物体表面冲击下来,而微粒子的磨擦力可以将污垢和灰尘与物体表面摩擦,使其脱落。
与高速气流相比,微粒子的冲击和磨擦作用更加精细,可以清洗更加细致的物体表面。
干式清洗机还可以利用静电效应来清洗物体表面。
静电是一种电荷不平衡的现象,当物体表面带有静电时,会吸引附近的污垢和灰尘。
干式清洗机可以利用静电效应将污垢和灰尘吸附到物体表面,然后再通过高速气流或微粒子的冲击和磨擦作用将其清除。
这种方法特别适用于清洗一些细小的物体,如电子元件、光学器件等。
干式清洗机通过喷射高速气流和微粒子,以及利用静电效应,可以高效地清洗各种材料的表面。
它的工作原理是通过冲击力、摩擦力和吸附力来清除污垢和灰尘,达到清洁效果。
干式清洗机在工业生产中具有广泛的应用,可以提高清洗效率,减少清洗成本,提高产品质量。
常见固体表面活性剂性能及应用介绍阴离子表面活性剂在日化及工业领域应用量最大、应用场合最广泛。
目前,日化行业洗涤剂生产厂家一般直接采购烷基苯磺酸,在配料釜中先用氢氧化钠水溶液中和得到烷基苯磺酸钠(LAS)水溶液,再加入其他组分。
日化行业对α-烯基磺酸盐(AOS)、脂肪醇硫酸钠、脂肪酸甲酯磺酸钠(MES)液体产品的需求高于对固体产品的需求,这与日化行业洗涤剂生产能力的集约化程度较高是息息相关的。
随着精细化、功能化、个性化小品种的增多,尤其是小微生产企业的持续增加,化行业对表面活性剂固体产品的需求量急剧增加。
高分子材料是表面活性剂固体产品应用的工业领域之一,其他工业领域的大部分用户对表面活性剂固体产品的需求较日化行业更强烈。
目前可用于生产固体的表面活性剂有K12、MES、AOS、LAS。
1、脂肪醇硫酸钠(K12)K12具有良好的润湿、乳化、泡沫、渗透、去污等性能,生物降解性好,在牙膏、香波、沐浴液、电镀、医药等方面均有广泛的用途。
国内主要生产商有江苏优扬药业、东明俱进、四川亿丰油脂、湖南丽臣、中轻化工等公司。
K12属于易干燥造粒的物料,不需要添加任何助剂即可达到一定的颗粒强度。
直接干燥得到粉状或不规则颗粒状K12产品,筛分后包装。
以粉状K12为原料制成针状K12,粉状K12为原料采用挤出滚圆造粒工艺制得球形K12产品。
2、α-烯烃磺酸钠(AOS)AOS是以α -烯烃为原料,经S O 3磺化、中和、水解得到的一类阴离子表面活性剂。
该类表面活性剂具有良好的润湿性、发泡性、去污力,易生物降解,在民用及工业清洗、三次采油、高分子材料等方面均有广泛的用途。
目前国内市场上AOS 碳链长度一般为C14~16或C14~18,主要有两种产品形式:35%含量左右的液体和90%含量以上的粉状。
不同碳数AOS 固体产品的状态不同,C14 和C 12~14 AOS的水分含量3%~4%时为松脆的固体,C 14~18 AOS 在水分含量低于5%时较为松散。
材料表面润湿性对其性能的影响材料表面的润湿性对其性能有着重要的影响,这一点在许多领域都得到了广泛的关注和研究。
润湿性是指液体与固体表面接触时在表面展开的情况。
表面的润湿性会直接影响到材料的性能表现,比如抗腐蚀性能、机械性能、光学性能等。
因此,深入探讨材料表面润湿性对其性能的影响,对于材料科学领域具有重要意义。
首先,材料表面的润湿性对其的抗腐蚀性能有着重要的影响。
表面的润湿性不仅影响着溶质扩散的速率,还会影响氧化反应的进行。
具有良好润湿性的材料表面,溶质能够更容易地扩散到材料内部,使材料表面腐蚀物质的产生速率降低,从而有效地延长材料的使用寿命。
相反,如果材料表面的润湿性较差,不仅会增加材料表面的腐蚀速率,还可能导致溶质在表面残留,形成局部腐蚀点,从而加速材料的腐蚀破坏过程。
其次,材料表面的润湿性对其的机械性能也有着直接的影响。
在一些实际应用中,比如润滑油在机械设备的润滑作用中,润湿性会直接影响到机械件之间的摩擦系数和磨损程度。
对于润湿性能较好的材料表面,润滑油能够更好地附着在表面形成一层均匀的保护膜,从而减小摩擦系数,减少磨损程度,延长机械设备的使用寿命。
而如果材料表面润湿性较差,润滑油无法有效附着在表面,会导致机械件之间的摩擦增大,加速磨损,影响机械设备的性能表现。
此外,材料表面的润湿性还会影响光学性能。
在一些光学应用中,比如玻璃表面润湿性的研究,对于涂覆和清洁等工艺有着重要的影响。
具有良好润湿性的玻璃表面可使涂覆物更均匀地附着在表面,提高其光学透明度和光学性能。
相反,如果玻璃表面的润湿性较差,会导致涂覆物无法均匀附着在表面,影响光学性能。
此外,表面润湿性还会影响到玻璃的清洁难度,具有良好润湿性的玻璃表面容易清洁,而润湿性较差的玻璃表面则很难彻底清洗。
总的来说,材料表面的润湿性对其性能有着重要的影响,润湿性直接影响着材料的抗腐蚀性能、机械性能和光学性能。
因此,在材料设计和工程应用中,可以通过改变材料表面的化学结构,表面处理等方式,提高材料的润湿性,从而改善其性能表现。
材料表面润湿性及在材料工程中的意义润湿性是材料表面的重要特性之一,通过静态接触角来表征,影响润湿性的因素主要是材料表面的化学组成和微观结构,主要通过表面修饰和表面微造型来改变材料表面润湿性。
润湿性已经直接应用到了生产和生活中,构建超疏水表面和润湿性智能可控表面是现阶段的研究热点,对于建筑、涂饰、生物医学等领域都有重要的意义。
润湿是自然界中最常见的现象之一,如水滴在玻璃上的铺展,雨滴对泥土的浸润等等。
润湿性是材料表面的重要特性之一,并已经成功运用到人类生活的各个方面,例如润滑、粘接、泡沫、防水等。
近年来,随着微纳M技术的飞速发展以及仿生学研究的兴起,对于固体表面润湿性的研究越来越引起了人们的重视,具有超疏水表面的金属材料具有自清洁作用,从而提高其抗污染、防腐蚀的能力。
而在农药喷雾、机械润滑等方面却又要求液体具有良好的亲水性,所以对于材料表面润湿性的研究在材料工程中具有重要的意义。
为了调控材料表面的润湿性,人们通过接枝、涂层、腐蚀等众多方法从化学组成和微观结构两个方面对材料进行了改性,并取得了良好的结果。
1、润湿性润湿是指液体与固体接触,使固体表面能下降的现象,常见的润湿现象是固体表面上的气体被液体取代的过程。
例如在水干净的玻璃板上铺展,形成了新的固/液界面,取代原有的固/气界面,这个过程的完成与固体和液体的表面性质以及固液分子的相互作用密切相关[1]。
润湿作用实际上涉及气、液、固三相界面,在三相交界处自固-液界面经过液体内部到气-液界面的夹角叫接触角,以θ表示,通常通过Young方程计算得到,该方程是研究液-固润湿作用的基础。
一般来讲,接触角θ的大小是判定润湿性好坏的判据。
若θ=0,液体完全润湿固体表面,液体在固体表面铺展。
0<θ<90°,液体可润湿固体,且θ越小,润湿性越好。
90°<θ<180°,液体不能润湿固体。
θ=180°,完全不润湿,液体在固体表面凝聚成小球。