不等式期末复习资料
- 格式:ppt
- 大小:831.00 KB
- 文档页数:8
授课教案教学标题 期末复习(三) 教学目标 1 、不等式知识点归纳与总结 教学重难点重点:不等式基础知识点的熟练掌握难点:不等式在实际应用中的相互转换上次作业检查授课内容:一、数列章节知识点复习1 等差数列(1)性质:a n =an+b ,即a n 是n 的一次性函数,系数a 为等差数列的公差;(2) 等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=+=22122 即S n 是n 的不含常数项的二次函数;若{a n },{b n }均为等差数列,则{a n ±n n },{∑=k1i ka},{ka n +c}(k ,c 为常数)均为等差数列;当m+n=p+q 时,a m +a n =a p +a q ,特例:a 1+a n =a 2+a n-1=a 3+a n-2=…;当2n=p+q 时,2a n =a p +a q ; ① 等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --; ② 若等差数列的项数为2()+∈N n n ,则,奇偶nd S S =-1+=n na a S S 偶奇;等差数列等比数列 定义 d a a n n =-+1)0(1≠=+q q a a nn 递推公式 d a a n n +=-1;()n m a a n m d =+-q a a n n 1-=;m n m n q a a -= 通项公式 d n a a n )1(1-+=11-=n n q a a (0,1≠q a )中项2kn k n a a A +-+=(*,,0n k N n k ∈>>))0( k n k n k n k n a a a a G +-+-±=(*,,0n k N n k ∈>>)前n 项和)(21n n a a nS +=d n n na S n 2)1(1-+=()⎪⎩⎪⎨⎧≠--=--==)1(111)1(111q q qa a qq a q na S n n n 重要性质),,,,(*q p n m N q p n m a a a a qp n m +=+∈+=+),,,,(*q p n m N q p n m a a a a qp n m +=+∈⋅=⋅③ 若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇, 1-=n n S S 偶奇 (4)常用公式:①1+2+3 …+n =()21+n n ②()()61213212222++=+++n n n n③()2213213333⎥⎦⎤⎢⎣⎡+=++n n n[注]:熟悉常用通项:9,99,999,…110-=⇒n n a ; 5,55,555,…()11095-=⇒nna .2 等比数列 (1)性质当m+n=p+q 时,a m a n =a p a q ,特例:a 1a n =a 2a n-1=a 3a n-2=…,当2n=p+q 时,a n 2=a p a q ,数列{ka n },{∑=k1i ia}成等比数列。
一、实数的大小实数可分为三类:正实数,零,负实数,如果a,b是两个实数,则a-b还是实数,所以它还是属于而且只属于以上三种之一,如果a-b,是一个正实数,则说明a>b;如果a-b是一个负实数,则说是a<b;如果a-b是零,则说a=b.由上可知,要判定两个实数a,b的大小时,只用判定a-b的符号就可以了例:1、∵5-0=5>0;-4-0=-4<0;∴5>0;-4<02、∵5-(-3)=8,∴5>-3二、不等式及其性质一、不等式表示不相等的式子,叫做不等式,例如:5<8,a+1>a等,都是不等式。
二、不等式的性质1、如果a>b,则b<a。
这个性质叫做不等式的对称性,它表明如果不等式的两边对调,不等式符号改变方向。
2、如果a>b,b>c,则a>c。
这个性质叫做不等式的传递性。
3、如果a>b,则a+c>b+c。
这个性质叫做加法的单调性。
它表明不等式的两边可以同时加上一个数,或同一个式子,不等号方向不变。
4、如果a>b,c>0,则ac>bc;如果a>b,c<0,则ac<bc。
这个性质表明不等式两边同时乘以(或除以)一个正数,不等号的方向不变,不等式两边同时乘以(或除以)一个负数,不等号的方向改变。
5、如果a>b,c>d,则a+c>b+d。
这个性质表明同向不等式各边相加,还是得同向不等式。
6、如果a>b,c<d,则a-c>b-d。
这个性质表明异向不等式两边分别相减,得一与被减式的同向不等式。
三、区间1、由数轴上两点间的一切实数所组成的集合叫做区间,其中,这两个点叫做区间端点。
2、不含端点的区间叫做开区间;含有两个端点的区间叫做闭区间;只含有左端点的区间叫做右半开区间;只含有右端点的区间叫做左半开区间。
3、有两个端点的区间叫做有限区间,只有一个端点的区间叫做无限区间。
不等式期末复习例1、求实数m 的范围,使关于x 的方程x 2+2(m-1)x+2m+6=0(1)有两个实根,且一个比2大,一个比2小;(2)有两个实根,且都比1大;(3)有两个实根α、β,且满足0<α<1<β<4;(4)至少有一个正根。
例2、若关于m 的不等式2(21)10mx m x m -++-≥的解集为空集,求m 的取值范围.变式1、解集非空变式2、解集为一切实数例3、如果不等式)1(12->-x m x 对于[]2,2-∈x 成立,求m 的取值范围变1:如果不等式)1(12->-x m x 对于[]2,2-∈m 成立,求x 的取值范围变2:如果不等式)1(122->-x m x 对于R x ∈成立,求m 的取值范围变3:如果不等式)1(122->-x m x 对于[]2,2-∈m 成立,求x 的取值范围例4、(1)已知1x >-,求2311x x y x -+=+的最值及相应的x 的值。
(2)当x ≥0时,求函数11)(22+++=x x x x f 的值域例5、已知正数b a ,满足3++=b a ab ,求b a +的最小值变1:若,,A B C 为ABC △的三个内角,则41A B C++的最小值为 . 变2:若bb a a b a )2(4,022-+>>求的最小值 .变3:已知1422=++xy y x ,求y x 2+的最值课后作业1、不等式022≥+--x x 的解集为 ( ) A.{}12≥-≤x x x 或 B.{}12<<-x x C.{}12≤≤-x x D. Φ2、若0<a <1,则不等式1()()0x a x a--<的解是( ) A.1a x a << B.1x a a << C. 1x x a a ><或 D. 1x a x a ><或 3、知点()3,1--和()4,6-在直线320x y a --=的两侧,则a 的取值范围是( )A .()24,7-B .()7,24-C .()(),724,-∞-+∞D .()(),247,-∞-+∞4、有如下几个命题:①如果x 1, x 2是方程ax 2+bx +c =0的两个实根且x 1<x 2,那么不等式ax 2+bx +c <0的解集为{x ∣x 1<x <x 2};②当Δ=b 2-4ac <0时,二次不等式 ax 2+bx +c >0的解集为∅; ③0x a x b-≤-与不等式(x -a )(x -b )≤0的解集相同;④2231x x x -<-与x 2-2x <3(x -1)的解集相同. 其中正确命题的个数是( )A .3B .2C .1D .05、函数)0,(1)(≠∈+=x R x x x x f 的值域是( ) A.),2[+∞ B.),2(+∞ C.R D.),2[]2,(+∞--∞6、下列不等式中,与不等式x x --23≥0同解的是( )A.)2)(3(x x --≥0B.0)2)(3(>--x xC.32--x x ≥0D.)2lg(-x ≤0 7、已知不等式052>+-b x ax 的解集是}23|{-<<-x x ,则不等式052>+-a x bx 的解是( )A.3-<x 或2->xB.21-<x 或31->xC.3121-<<-xD.23-<<-x8、下列函数中,最小值是2的是( )A .1y x x =+B .1lg (110)lg y x x x=+<< C .33x x y -=+ D .1sin (0)sin 2y x x x π=+<< 9、不等式03221<-+-x x 的解集为( )A.)1,(--∞B.)0,1(-C.),1(+∞D.)1,0(10、α和β是关于x 的方程x 2-(k -2)x +k 2+3k +5=0的两个实根,则α2+β2的最大值为 .11、若实数0,0x y >>,且3412x y +=,则lg lg x y +的最大值是_______________.12、已知a 、b ∈R ,a+b+a 2+b 2=24,则a+b 的取值范围是_________________.13、设x>y>z ,n ∈N,且zx n z y y x -≥-+-11恒成立,则n 的最大值是 . 14、若x ,y 满足约束条件03003x y x y x +⎧⎪-+⎨⎪⎩≥≥≤≤,则2z x y =-的最大值为 .15、若关于x 的不等式22440x x m -+-≤在[-1,3]上恒成立,求实数m 的取值范围.16、(1)若14<<-x ,求22222-+-x x x 的最大值 (2)求函数11)(22+++=x x x x f 的值域17、已知集合{}2230,A x x x x R =--≤∈,{}22240,,B x x mx m x R m R =-+-≤∈∈. (Ⅰ)若[]0,3AB =,求实数m 的值;(Ⅱ)若BC A R ⊆,求实数m 的取值范围.18、在ABC ∆中,已知9=⋅,C A B sin cos sin ⋅=,6=∆ABC S ,P 为线段AB 上的一点,且x =||||CB y CA +y x 11+的最小值。
不等式专题(期末复习完整绝密版)1)【答案】C 【解析】试题分析:根据条件,作出可行域,如图所示,联立方程组,解得A(0,3),B(0,1),点到AB 的距离d=1,所以故选 D.考点:线性规划.2)A【答案】D 【解析】x,y 的取值范围如图所示.所以所求的概率为故选D. 考点:1.线性规划.2.几何概型.3取值范围是【答案】B 【解析】试题分析:分别把原点和点代入直线得到不等式组B考点:点位于直线两侧的充要条件4( )【答案】A【解析】考点:考查线性规划知识.5.已知点(-2,1)和点(1,1),则a 的取值范围是( ) A .),1()8,(+∞--∞B .(-1,8)C .(-8,1)D【答案】C【解析】试题分析:因为点(-2,1)和点(1,1),所以考点:本小题主要考查点与直线的位置关系.点评:点在直线上,则点的坐标适合直线方程,如果点不在直线上,则点的坐标代入方程可得大于或小于零.6.(理)AC【答案】C 【解析】所以考点:本小题考查了一元二次不等式表示的平面区域.点评:关键是利用特殊点定出可行域对应的不等式是解决此类问题的关键. 7.(文)点(3,1)和点(-4,6)ABC【答案】D 【解析】考点:考查二元一次不等式表示平面区域.点评:知识直线同侧的点不等式的符号相同,在直线两侧的点,不等式的符号异号.8)ABCD【答案】B 【解析】9.7ABC D 【答案】D【解析】10的取值范围是( )ABCD【答案】D-4 2,故选D11.如果实数x、y)A、【答案】B3,0)为圆心,1P的直线与圆相切时,斜率取最值;设直线方程为B12.已知x、y( )A. -15B. -20C. -25D. -30【答案】A-15,故选A13.C.16D.64【答案】BR3时,8,故选B14()A.3 B..9【答案】DD。
15.已知实数x,y 满足线性约束条件则的最大值为(A) -3(D)3【答案】D2zx=3,故选D16a的取值范围是().【答案】C【解析】考点:二元一次不等式(组)与平面区域.17)A【答案】C.【解析】考点:二元一次方程与平面区域.18.) A【答案】C(9-2+a)(-12-12+a)<0,解得为-7<a<24,选C.19( )BC D【答案】A【解析】略20.已知且,则的取值范围是…………………………… ( )A、【答案】C 【解析】略21( ) ACD【答案】D【解析】略22.设x 、yA.B.C. [1,5]【答案】C 【解析】略23.设x,y)A【答案】D【解析】略24)AB.3 CD.4【答案】B【解析】25)AD【答案】B【解析】的距离2,故选B。
不等式一元二次不等式及其解法含参不等式例1 解关于x 的不等式ax 2-(a +1)x +1<0(a >0).在本例中,把a >0改成a ∈R ,解不等式.跟踪训练1 (1)已知不等式ax 2-bx -1>0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪-12<x <-13,则不等式x 2-bx -a ≥0的解集是________.(2)解不等式12x 2-ax >a 2(a ∈R ).命题点1在R上的恒成立问题例2对于任意实数x,不等式(a-2)x2-2(a-2)x-4<0恒成立,则实数a的取值范围是()A.(-∞,2) B.(-∞,2]C.(-2,2) D.(-2,2]命题点2在给定区间上的恒成立问题例3已知函数f(x)=mx2-mx-1.若对于x∈[1,3],f(x)<5-m恒成立,则实数m的取值范围为________.命题点3给定参数范围的恒成立问题例4若mx2-mx-1<0对于m∈[1,2]恒成立,则实数x的取值范围为________.跟踪训练2函数f(x)=x2+ax+3.(1)若当x∈R时,f(x)≥a恒成立,求实数a的取值范围;(2)若当x∈[-2,2]时,f(x)≥a恒成立,求实数a的取值范围;(3)若当a∈[4,6]时,f(x)≥0恒成立,求实数x的取值范围.例5(1)已知二次方程(2m+1)x2-2mx+(m-1)=0有一正根和一负根,求实数m的取值范围.(2)已知方程2x2-(m+1)x+m=0有两个不等正实根,求实数m的取值范围.(3)已知二次函数f(x)=(m+2)x2-(2m+4)x+3m+3与x轴有两个交点,一个大于1,一个小于1,求实数m 的取值范围.基本不等式利用基本不等式求最值命题点1 配凑法例6 (1)已知0<x <1,则x (4-3x )取得最大值时x 的值为________.(2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(3)已知函数f (x )=-x 2x +1(x <-1),则( ) A .f (x )有最小值4 B .f (x )有最小值-4C .f (x )有最大值4D .f (x )有最大值-4命题点2 常数代换法例7 若正数m ,n 满足2m +n =1,则1m +1n的最小值为( ) A .3+2 2 B .3+2C .2+2 2D .3命题点3 消元法例8 已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.跟踪训练3 (1)(天津)设x >0,y >0,x +2y =5,则(x +1)(2y +1)xy的最小值为________.(2)(天津模拟)已知a >0,b >0,c >0,若点P (a ,b )在直线x +y +c =2上,则4a +b+a +b c 的最小值为________.基本不等式的实际应用例9 2020年受疫情影响,全球经济均受到不同程度的冲击.为稳妥有序地推进复工复产,2月11日晚,郑州市相关政府部门印发了《郑州市关于应对新型冠状病毒肺炎疫情促进经济平稳健康发展的若干举措》的通知,并出台多条举措促进全市经济平稳健康发展.某工厂为拓宽市场,计划生产某种热销产品,经调查,该产品一旦投入市场就能全部售出.若不举行促销活动,该产品的年销售量为28万件,若举行促销活动,年销售量y (单位;万件)与年促销费用()0x x ≥(单位;万元)满足3010(k y k x =-+为常数).已知生产该产品的固定成本为80万元,每生产1万件该产品需要再投入生产成本160万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定成本和生产成本,不包括促销成本).(1)求k 的值,并写出该产品的利润L (单位:万元)与促销费用x (单位:万元)的函数关系﹔(2)该工厂计划投入促销费用多少万元,才能获得最大利润?跟踪训练4 某工厂建造一个无盖的长方体贮水池,其容积为4 800 m 3,深度为3 m .如果池底每1 m 2的造价为150元,池壁每1 m 2的造价为120元,要使水池总造价最低,那么水池底部的周长为________ m.课时精练1.(2020·廊坊调研)已知函数f (x )=(ax -1)(x +b ),如果不等式f (x )>0的解集为(-1,3),那么不等式f (-2x )<0的解集为( )A.⎝⎛⎭⎫-∞,-32∪⎝⎛⎭⎫12,+∞ B.⎝⎛⎭⎫-32,12 C.⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫32,+∞ D.⎝⎛⎭⎫-12,322.若不等式ax 2+bx +c >0的解集为{x |-1<x <2},那么不等式a (x 2+1)+b (x -1)+c >2ax 的解集为( )A .{x |-2<x <1}B .{x |x <-2或x >1}C .{x |0<x <3}D .{x |x <0或x >3}3.若不等式x 2+ax -2>0在区间[1,5]上有解,则a 的取值范围是( )A.⎝⎛⎭⎫-235,+∞B.⎣⎡⎦⎤-235,1 C .(1,+∞) D.⎝⎛⎦⎤-∞,-2354.若对任意m ∈[-1,1],函数f (x )=x 2+(m -4)x +4-2m 的值恒大于零,则x 的取值范围是( )A .(1,3)B .(-∞,1)∪(3,+∞)C .(2,3)D .(3,+∞)5.(如皋期末)若实数x ,y 满足xy +6x =4⎝⎛⎭⎫0<x <23,则4x +1y的最小值为( ) A .4 B .8 C .16 D .326.设x ,y 均为正数,且xy +x -y -10=0,则x +y 的最小值是________.7一元二次方程x 2-(k -2)x +k +1=0有一正一负实数根,则k 的取值范围是________.8.(天津)若a,b∈R,ab>0,则a4+4b4+1ab的最小值为________.9.已知关于x的不等式-x2+ax+b>0.(1)若该不等式的解集为(-4,2),求a,b的值;(2)若b=a+1,求此不等式的解集.10.已知x>0,y>0,且2x+5y=20.(1)求u=lg x+lg y的最大值;(2)求1x+1y的最小值.11.网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2019年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x万件与投入实体店体验安装的费用t万元之间满足函数关系式x=3-2t+1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是________万元.12.已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5).(1)若不等式组⎩⎪⎨⎪⎧ f (x )>0,f (x +k )<0的正整数解只有一个,求实数k 的取值范围; (2)若对于任意x ∈[-1,1],不等式t ·f (x )≤2恒成立,求t 的取值范围.。
不等式知识点总结一、不等式的基本概念。
1. 不等式的定义。
- 用不等号(>、≥、<、≤、≠)表示不等关系的式子叫做不等式。
例如:3x + 2>5,x - 1≤slant2x等。
2. 不等式的解与解集。
- 不等式的解:使不等式成立的未知数的值叫做不等式的解。
例如对于不等式x+1 > 0,x = 1是它的一个解,因为1 + 1>0成立。
- 不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
例如不等式x - 2>0的解集是x>2,这表示所有大于2的数都是这个不等式的解。
3. 解不等式。
- 求不等式解集的过程叫做解不等式。
例如解不等式2x+3 < 7,通过移项可得2x<7 - 3,即2x<4,再两边同时除以2得到x < 2,这个过程就是解不等式。
二、不等式的基本性质。
1. 性质1(对称性)- 如果a>b,那么b < a;如果b < a,那么a>b。
例如5>3,那么3 < 5。
2. 性质2(传递性)- 如果a>b,b>c,那么a>c。
例如7>5,5>3,那么7>3。
3. 性质3(加法法则)- 如果a>b,那么a + c>b + c。
例如3>1,那么3+2>1 + 2,即5>3。
- 推论:如果a>b,c>d,那么a + c>b + d。
例如4>2,3>1,那么4 + 3>2+1,即7>3。
4. 性质4(乘法法则)- 如果a>b,c>0,那么ac>bc;如果a>b,c < 0,那么ac < bc。
例如2>1,当c = 3时,2×3>1×3,即6>3;当c=-1时,2×(-1)<1×(-1),即-2 < - 1。
1. 了解不等式的意义与掌握不等式的基本性质。
2. 会解一元一次不等式并在数轴上表示出解集。
3. 会解由两个一元一次不等式组成的不等式组,并用数轴确定解集。
【知识梳理】1. 不等式(组)的有关概念:1) 用符号<,≤,>,≥,≠连接而成的数学式子,叫做不等式.2) 不等号的两边都是 ,而且只含有 ,未知数的最高次数是 ,这样的不等式叫做一元一次不等式。
3)类似于方程组,把两个含有相同未知数的 合起来,就组成了一元一次不等式组。
2.不等式的解集:一个含有未知数的不等式的所有解,一元一次不等式的解集:只含有一个未知数的不等式的所有解一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分 具体四种情况:若a.>b ,请写出以下不等式组的解集1)⎩⎨⎧>>b x a x ,2)⎩⎨⎧<<b x a x ,3)⎩⎨⎧<>b x a x ,4)⎩⎨⎧><b x a x 3.不等式的基本性质:1)不等式的两边同加(或减)同一个数(式子),不等号的方向 。
2)不等式的两边同乘(或除)同一个 ,不等号的方向不变。
3)不等式的两边同乘(或除)同一个 ,不等号的方向 。
【课前复习】1.下列不等式中,是一元一次不等式的是( )A .x ≥5xB .2x >1-x 2C .x +2y <1D .2x +1≤3x 2.用不等号填空:若,5______5;4______4;_____33a b a b a b a b >----则 3. 不等式)1(395+≤-x x 的解集是 4. 把不等式组1020x x +≥⎧⎨->⎩的解集表示在数轴上,正确的是( )5.如图1,在数轴上表示某不等式组中的两个不等式的解集,则该不等式组的解集为( )A 、x <4B 、x <2C 、2<x <4D 、x >20 2 4-2 (图1)类型一:不等式的基本性质例1:1)如果b a <,那么下列不等式中成立的是( )A 、11-<-b aB 、b a -<-C 、33b a > D 、bc ac < 2)若不等式1)1(->-a x a 的解集为1<x ,则a 的取值范围是 类型二:求一元一次不等式的解例2:解不等式 :312-≥x x类型三:求一元一次不等式组的解例3:解不等式组()⎪⎩⎪⎨⎧-≥+>+3122423x x x x 的自然数解类型四:一元一次不等式(组)解的应用例4:1)不等式64-x ≥157-x 的正整数解是 .2)不等式-1≤x 23-<6的所有整数解的和是 。
不等式复习题及答案1. 若不等式 \( ax^2 + bx + c > 0 \) 的解集为 \( (-1, 2) \),求 \( a \)、\( b \) 和 \( c \) 的值。
答案:根据解集 \( (-1, 2) \) 可知,\( -1 \) 和 \( 2 \) 是方程\( ax^2 + bx + c = 0 \) 的两个实根,且 \( a < 0 \)。
根据根与系数的关系,我们有 \( -1 + 2 = -\frac{b}{a} \) 和 \( -1\times 2 = \frac{c}{a} \)。
解得 \( b = -a \) 和 \( c = -2a \)。
由于 \( a < 0 \),我们可以取 \( a = -1 \),则 \( b = 1 \),\( c = 2 \)。
2. 已知 \( x \) 和 \( y \) 满足 \( x + y \geq 3 \) 且 \( x -y \leq 1 \),求 \( x^2 + y^2 \) 的最小值。
答案:要使 \( x^2 + y^2 \) 最小,\( x \) 和 \( y \) 应尽可能接近。
由 \( x + y \geq 3 \) 和 \( x - y \leq 1 \) 可得 \( 2x\leq 4 \),即 \( x \leq 2 \)。
当 \( x = 2 \) 时,\( y = 1 \)。
因此,\( x^2 + y^2 \) 的最小值为 \( 2^2 + 1^2 = 5 \)。
3. 若 \( a \)、\( b \) 和 \( c \) 是正实数,且满足 \( a + b +c = 1 \),求 \( \frac{1}{a} + \frac{1}{b} + \frac{1}{c} \) 的最小值。
答案:根据柯西-施瓦茨不等式,我们有 \( (a + b +c)\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right) \geq(1 + 1 + 1)^2 = 9 \)。
自学资料一、不等式的基本性质【知识探索】1.不等式性质:(1)不等式性质1:不等式的两边加(或减)同一个数(或式子),不等号的方向不变.即:如果,那么.(2)不等式性质2:不等式的两边乘(或除以)同一个正数,不等号的方向不变.即:如果,,那么(或).(3)不等式性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变.即:如果,,那么(或).【说明】不等式两边同时乘以0,则原不等式变为等式.2.不等式性质:(1)不等式性质1:不等式的两边加(或减)同一个数(或式子),不等号的方向不变.即:如果,那么.(2)不等式性质2:不等式的两边乘(或除以)同一个正数,不等号的方向不变.即:如果,,那么(或).(3)不等式性质3:不等式的两边乘(或除以)同一个负数,不等号的方向改变.即:如果,,那么(或).【说明】不等式两边同时乘以0,则原不等式变为等式.【错题精练】例1.能不能找到这样的a值,使关于x的不等式(1﹣a)x>a﹣5的解集是x<2.第1页共22页自学七招之日计划护体神功:每日计划安排好,自学规划效率高非学科培训【解答】【答案】x<2例2.式子a2x>x(a2+1)成立,则x满足的条件是__________ .【解答】【答案】x<0例3.已知关于x的不等式(1﹣a)x>2,两边都除以(1﹣a),得x<,试化简:|a﹣1|+|a+2|.【解答】【答案】2a+1.例4.不等式x+1≤4的非负整数解为.第2页共22页自学七招之举一反三剑:总结归纳典型题,多种解法开脑洞非学科培训【答案】0,1,2,3.【举一反三】1.若关于x的不等式3m−2x<5的解集是x>3,则实数m的值为.【答案】113.2.解不等式组:.【解答】根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.3.若方程组的解为x,y,且2<k<4,则x-y的取值范围是__________.【解答】先观察两方程的特点,可用(1)-(2)得出2x-2y的取值范围,再根据不等式的基本性质求出x-y的取值范围即可.4.计算(1)解不等式:5(x−2)−2(x+1)>3.(2)解不等式x−22≤7−x3,并求出它的非负整数解。