人教版初中数学九年级上册17.圆中的最值问题
- 格式:pdf
- 大小:653.19 KB
- 文档页数:4
与圆相关的最值问题
与圆相关的最值问题可以包括多个方面,例如圆的周长、面积、弧长等。
以下是一些常见的与圆相关的最值问题及其解决方法:
1. 圆的周长最值问题:
* 设圆的半径为r,则周长C=2πr。
当r取最小值时,C取最小值。
* 解决方法:当圆内接于一个固定多边形时,该多边形的所有边都与圆相切,此时r取最小值。
2. 圆的面积最值问题:
* 设圆的半径为r,则面积A=πr^2。
当r取最小值时,A取最小值。
* 解决方法:与周长最值问题类似,当圆内接于一个固定多边形时,该多边形的所有边都与圆相切,此时r取最小值。
3. 圆的弧长最值问题:
* 设圆的半径为r,圆心角为θ,则弧长L=rθ。
当θ取最大值时,L取最大值。
* 解决方法:当圆内接于一个固定多边形时,该多边形的所有边都与圆相切,此时θ取最大值。
4. 圆内接四边形面积最值问题:
* 设圆内接四边形的边长分别为a, b, c, d,则面积S=(a×b+c ×d)/2。
当a=b=c=d时,S取最大值。
* 解决方法:当四边形为正方形时,S取最大值。
5. 圆内接三角形面积最值问题:
* 设圆内接三角形的边长分别为a, b, c,则面积S=(a×b+b×c+c×a)/4。
当a=b=c时,S取最大值。
* 解决方法:当三角形为等边三角形时,S取最大值。
以上是与圆相关的常见最值问题及其解决方法,希望对您有所帮助。
圆中最值的十种求法在圆中求最值是中考的常见题型,也是中考中的热点、难点问题,有的学生对求最值问题感到束手无策,主要原因就是对求最值的方法了解不多,思路不够灵活.现对在圆中求最值的方法,归纳如下:一、利用对称求最值1.如图:⊙O的半径为2,点A、B、C在⊙O上,OA⊥OB,∠AOC=60°,P是OB上一动点,求PA+PC的最小值.[分析]:延长AO交⊙O于D,连接CD交⊙O于P,即此时PA+PC最小,且PA+PC的最小值就等于弦CD的长.解:延长AO交⊙O于D,连接CD交OB于P连接PA,过O作OE⊥CD,垂足为E在△OCD中,因为∠AOC=60°所以∠D=∠C=30°在Rt△ODE中 cos30°=即DE=2×cos30°= 所以CD=2DE=2即PA+PC的最小值为2.二、利用垂线段最短求最值2.如图:在直角坐标系中,点A的坐标为(-3,-2),⊙A的半径为1,P为x轴上一动点,PQ切⊙A于点Q,则PQ长度的最小值为 .[分析]:连接AQ、PA,可知AQ⊥PQ. 在Rt△PQA中,PQ=,求PQ的最小值转化为求PA的最小值,根据垂线段最短易求PA的最小值为2。
解:连接PA、QA因为PQ切⊙A于点Q 所以PQ⊥AQ在Rt△APQ中,PQ2=PA2-AQ2即PQ=又因为A(-3,-2) ,根据垂线段最短。
所以PA的最小值为2所以PQ的最小值=三、利用两点之间线段最短求最值3.如图:圆锥的底面半径为2,母线PB的长为6,D为PB的中点,一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为( )A.B.2 C.3 D.3[分析]:因为圆锥的侧面是曲面蚂蚁从A爬行到点D,不好求爬行的最小值,要把立体图形展开为平面图形,再利用两点之间线段最短来解决问题.解:圆锥的侧面展开图如图2,连接AB根据题意得:弧AC的长为2πr=2π·2=4π,PA=6因为4π= 所以n=120°即∠APB=60°又因为PA=PB所以△PAB是等边三角形因为D为PB中点所以AD⊥PB PD=DB=3在Rt△PAD中,AD=,故选C。
拔高专题 圆中的最值问题图(1)探究点一:点与圆上的点的距离的最值问题例1:如图,A 点是⊙O 上直径MN 所分的半圆的一个三等分点,B 点是弧AN 的中点,P 点是MN 上一动点,⊙O 的半径为3,求AP+BP 的最小值。
解:作点A 关于MN 的对称点A ′,连接A ′B ,交MN 于点P ,连接OA ′,AA ′. ∵点A 与A ′关于MN 对称,点A 是半圆上的一个三等分点, ∴∠A ′ON=∠AON=60°,PA=PA ′,∵点B 是弧AN 的中点,∴∠BON=30°,∴∠A ′OB=∠A ′ON+∠BON=90°,又∵OA=OA ′=3, ∴A ′.∵两点之间线段最短,∴PA+PB=PA ′+PB=A ′.【教师总结】解决此题的关键是确定点P 的位置.根据轴对称和两点之间线段最短的知识,把两条线段的和转化为一条线段,即可计算。
探究点二:直线与圆上点的距离的最值问题例2:如图,在Rt△AOB中,,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),求切线PQ的最小值解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2-OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,OA=OB=3 ,∴OA=6,∴OP=•OA OBAB=3,∴.【变式训练】如图,在平面直角坐标系中,以坐标原点O为圆心,2为半径画⊙O,P是⊙O是一动点且P在第一象限内,过P作⊙O切线与x轴相交于点A,与y轴相交于点B.求线段AB的最小值.解:(1)线段AB长度的最小值为4,理由如下:连接OP,∵AB切⊙O于P,∴OP⊥AB,取AB的中点C,∴AB=2OC;当OC=OP时,OC最短,即AB最短,此时AB=4.【教师总结】结合切线的性质以及辅助线的作法,利用“垂线段最短”是解决此类问题的关键。
探解圆中最值问题的三种基本思路圆中探求最值是近几年中考的一个凸显亮点,背景丰富有创意,解法灵活有创新,可谓八仙过海,各显其能,是一个值得深思和探究的好课题.下面就结合2019年的考题,向大家推荐这类最值的探解基本思路,供学习时借鉴.一、直径是圆中最长的弦为依据求最值1.探求三角形中位线的最大值例1 (2019年东营)如图1,AC 是⊙O 的弦,AC=5,点B 是⊙O 上的一个动点,且∠ABC=45°,若点M 、N 分别是AC 、BC 的中点,则MN 的最大值是 .解析:因为点M ,N 分别是BC ,AC 的中点,所以MN=21AB ,所以当弦AB 取得最大值时,MN 就取得最大值,因为直径是圆中最大的弦,所以当弦AB 是直径时,AB 最大,如图1,连接 AO 并延长交⊙O 于点B ′,连接CB ′,因为AB ′是⊙O 的直径,所以∠ACB ′=90°.因为∠ABC=45°,AC=5,所以∠AB ′C=45°,所以AB ′=2255 =52,所以MN 的最大 值为最大MN =225.所以应该填.点评:当线段是圆的某条弦时,熟记直径是圆中最大的弦是解题的关键.2.探求圆上动点到定弦的最大值例2(2019•广元)如图2,△ABC 是⊙O 的内接三角形,且AB 是⊙O 的直径,点P 为⊙O 上的动点,且∠BPC=60°,⊙O 的半径为6,则点P 到AC 距离的最大值是 .解析:如图2,过O 作OM ⊥AC 于M ,延长MO 交⊙O 于P ,则此时,点P 到AC 的距离最大,且点P 到AC 距离的最大值=PM ,因为OM ⊥AC ,∠A=∠BPC=60°,⊙O 的半径为6,所以OP=OA=6,所以OM=23OA =23×6=33,所以PM=OP+OM=6+33,所以点P 到AC 距离的最大值是6+33,所以答案为6+33.点评:圆上动点到定弦距离的最大值就是垂直平分线弦的直径的两个端点到弦的距离,这是垂径定理的应用,也是直径是圆中最大的弦的应用.此法也是用于在拱形中计算最值.2.探求圆上动点与线段上动点构成线段的最大值与最小值的和例3(2019•玉林)如图3,在Rt △ABC 中,∠C=90°,AC=4,BC=3,点O 是AB 的三等分点,半圆O 与AC 相切,M ,N 分别是BC 与半圆弧上的动点,则MN 的最小值和最大值之和是( )A .5B .6C .7D .8解析:如图3,设⊙O 与AC 相切于点D ,连接OD ,作OP ⊥BC 垂足为P 交⊙O 于F ,此时垂线段OP 最短,PF 最小值为OP ﹣OF ,因为AC=4,BC=3,所以AB=5.因为点O 是AB 的三等分点,所以OB=32×5=310,因为∠OPB=90°,所以OP ∥AC ,所以32==AB OB AC OP , 所以OP=38.因为⊙O 与AC 相切于点D ,所以OD ⊥AC ,所以OD ∥BC ,所以31==AB OA BC OD , 所以OD=1,所以MN 最小值为OP ﹣OF=38﹣1=35; 如图3,当N 在AB 边上时,M 与B 重合时,MN 经过圆心,经过圆心的弦最长,所以MN 最大值=310+1=313,所以MN 长的最大值与最小值的和是35+313=6.所以选B . 点评:单边切圆动点线段的最值问题,求解时,需要分开,一是动线段的最小值,依据圆心这个定点到定线段的垂线段最短,在此基础上,确定动点线段的最小值;二是动点线段的最大值,依据直径是圆中最大的弦确定求解.解答后,要熟记问题的背景特点,继而灵活准确计算最值的和.二、定弦的弦心距最短,探求线段的最大值例4 (2019•嘉兴)如图4,在⊙O 中,弦AB=1,点C 在AB 上移动,连结OC ,过点C 作CD ⊥OC 交⊙O 于点D ,则CD 的最大值为 .解析:如图4,连接OD ,在直角三角形OCD 中,222OC OD CD -=,因为圆的半径是定值,要想使得CD 长最大,只需满足OC 的长度最小,因为AB 是圆的弦,所以O 到弦AB 的最短距离是弦AB 的弦心距,所以当OC ⊥AB 时,OC 最短,此时点D 恰好与点B 重合,所以4142222==-=AB OC OD CD ,所以CD 的最大值为21. 点评:此类最值的特点有五:一是有圆的定弦;二是动点之一必须在定弦上;三是能构造出直角三角形;四是等式有特点:动线段的平方和时定值即222-动线段半径动线段=;五是运用点到直线的距离中以垂线段为最短,构造最长值.三、三角形的三点一线时第三边最大,探求最大值1.探求直角三角形斜边长的最大值例5(2019年湖北鄂州)如图5,在平面直角坐标系中,已知C (3,4),以点C 为圆心的圆 与y 轴相切.点A 、B 在x 轴上,且OA=OB .点P 为⊙C 上的动点,∠APB=90°,则AB 长 度的最大值为 .解析:如图5,连接OC,OP,PC ,当点O,P,C 三点不共线时,则OC+PC >OP ;当点O,P,C 三点共线时,OC+PC=OP ,综上所述OP ≤OC+PC ,且当点O,P,C 三点共线时,PO 取得最大值,所以连接OC 并延长,交⊙C 上一点P ,以O 为圆心,以OP 为半径作⊙O ,交x 轴于A 、B ,此时AB 的长度最大,过点C 作CD ⊥x 轴,垂足为D ,因为C (3,4),所以OC=5, 因为以点C 为圆心的圆与y 轴相切,所以⊙C 的半径为3,所以OP=OC+PC=5+3=8,因为∠APB=90°,AO=OB ,所以PO 是直角三角形PAB 斜边上的中线,所以AB 长度的最大值为16,所以应该填16.点评:准确构造含有动点,且有一条定线段的动态三角形是解题的关键,利用动态三角形的存在性和三点一线型,综合确定线段的最值是解题的核心,这种确定最值的思想非常重要,应用也非常广泛,务必熟练驾驭,做到准确找动态三角形,准确定共线线段,确实把最值准确定出.2.探求动态三角形中位线长的最大值例6(2019年乐山)如图6,抛物线4412-=x y 与x 轴交于A,B 两点,P 是以点C(0,3)为圆心,2为半径的圆上的动点,Q 是线段PA 的中点,连结OQ.则线段OQ 的最大值是( ) ()A 3 ()B 241 ()C 27 ()D 4解析:如图6,连接BC,PC,PB ,当点B,P,C 三点不共线时,则BC+PC >PB ;当点B,P,C 三点共线时,且点P 与点B 位于圆心点C 的两侧,此时BC+PC=PB ,综上所述PB ≤BC+PC ,所以当点B,P,C 三点共线时,PB 取得最大值,所以连接BC 并延长,交⊙C 上一点P ,此时PB 的值最大.因为抛物线4412-=x y 与x 轴交于A,B 两点,所以点A(-4,0),点B(4,0),所以OA=OB=4,因为点C (0,3),所以OC=3,PC=2,BC=5,所以PB 的最大值为:PB=PC+CB=2+5=7,因为点O 是AB 的中点,点Q 是PA 的中点,所以OQ 是三角形PAB 的中位线,所以OQ=21PB, OQ 的最大值为27,所以选C. 点评:构造动态三角形时,以PB 为核心是解题的关键,确定了PB 的最大值,问题就顺利得解.解答时,要注意,当动点位于两定点之间时,线段取最小值;当动点位于两定点之外时,线段取得最大值.一定要熟记!感兴趣的读者,不妨计算一下OQ 的最小值.。
圆中的最值问题,数学老师呕心总结,替孩子收藏起来周末学
习
最近初三的小朋友在学圆。
圆中的常规知识点是垂径定理、直线与圆的位置关系、扇形的计算等等。
中考解答题中常考的就是切线的证明、圆与相似三角形相结合的证明题,选择填空常考的是圆周角圆心角的计算、扇形圆锥的计算等。
除了上述所说的题型,还有一类题经常出现在选择或者填空的压轴部分,难度大,这就是圆中的最值问题。
下面是数学老师呕心沥血、熬夜总结出来的圆中的最值问题,比较全面,强烈建议收藏起来周末慢慢做,绝对受益匪浅。
通过上面的学习你会发现,其实最值问题关键有几点:
1.两点之间线段最短;
2.垂线段最短;
3.完全平方的非负性
4.动点的轨迹
稍微带点难度的就是隐形圆问题:
其实隐形圆主要是根据直径所对圆周角为九十度;到定点等于定长所有点的集合为圆。
目前初中阶段能用到的主要是这两个。
阿波罗尼斯园在平时的模拟卷中也会出现,初中阶段主要是构造相似三角形,然后再去用圆的定义去做,这里一定要注意线段前面的系数,同时也要与“胡不归问题”加以区别。
侵联删!。
中考热点│圆中的最值问题(3)
上期可查:圆中的最值问题(1)圆中的最值问题(2)最简单的道理:
圆中最长的弦是直径。
直径不可能不是最长的弦.
在上面的图中,如果AC≥AB,又AB=AO+CO,那么AC≥AO+CO.
这是与“三角形两边之和大于第三边”矛盾了.所以,圆中最长的弦是直径.
看一个动态的图
看了上面的动态图,想必你已经知道“不在一直线上的三点确定一个圆”了
再看一个你已经知道的定理
圆的内接四边形对角互补.
反之,如何让四个点同在一个圆上呢?
只要让以这四个点为顶点的四边形的对角互补就可以了.
引入正题
如图,C、D是在以AB为直径的⊙O上滑动的两点且与A、B两点不重合,E是CD的中点,过点C作CE⊥AB于点E,若CD=4,AB=10,则EM的最大值是______.
思考一下,再往下看。
略解
连结OM
∵M是CD的中点,
∴OM⊥CD,
∴∠CEM+∠CMO=180度,
∴C、E、O、M四点共圆.
∵∠CEM=90度,
∴CO是这个圆的直径,
∴EM≤CO=5,
即EM的最大值是5.
(CD=4这个条件是没有用的,你发现了吗?)动图解释
本题考查要点:
直径最长
垂径定理的推论
四点共圆的判定。
圆中常见最值问题解法探索最值问题成为中考的典型考题,也是各章创新考题之一.下面就把圆中常见的最值问题归纳一下,供学习时借鉴.一、直径最大弦型最大值模型1. 最值的源体是圆的弦例1 (2019年东营)如图1,AC 是⊙O 的弦,AC=5,点B 是⊙O 上的一个动点,且∠ABC=45°,若点M 、N 分别是AC 、BC 的中点,则MN 的最大值是 .解析:因为点M ,N 分别是BC ,AC 的中点,所以MN=21AB ,所以当弦AB 取得最大值时,MN 就取得最大值,因为直径是圆中最大的弦,所以当弦AB 是直径时,AB 最大,如图1,连接 AO 并延长交⊙O 于点B ′,连接CB ′,因为AB ′是⊙O 的直径,所以∠ACB ′=90°.因为∠ABC=45°,AC=5,所以∠AB ′C=45°,所以AB ′=2255 =52,所以MN 的最大值为最大MN =225.所以应该填.点评:当线段是圆的某条弦时,熟记直径是圆中最大的弦是解题的关键.2.动点到定弦的最大值例2(2019•广元)如图2,△ABC 是⊙O 的内接三角形,且AB 是⊙O 的直径,点P 为⊙O 上的动点,且∠BPC=60°,⊙O 的半径为6,则点P 到AC 距离的最大值是 .解析:如图2,过O 作OM ⊥AC 于M ,延长MO 交⊙O 于P ,则此时,点P 到AC 的距离最大,且点P 到AC 距离的最大值=PM ,因为OM ⊥AC ,∠A=∠BPC=60°,⊙O 的半径为6,所以OP=OA=6,所以OM=23OA =23×6=33,所以PM=OP+OM=6+33,所以点P 到AC 距离的最大值是6+33,所以答案为6+33.点评:圆上动点到定弦距离的最大值就是垂直平分线弦的直径的两个端点到弦的距离,这是垂径定理的应用,也是直径是圆中最大的弦的应用.此法也是用于在拱形中计算最值. 跟踪专练(2019年杭州)如图3,已知锐角三角形ABC 内接于⊙O ,OD ⊥BC 于点D ,连接OA 。
在初中数学中,圆的最值问题可以通过三种不同的解法来求解。
以下是三种常见的解法:
1. 几何解法:
首先,确定问题中圆的相关条件,例如圆的半径或圆心坐标等。
然后,利用几何性质和定理来分析问题。
对于圆的最值问题,常常使用切线和切线长度来解决。
通过找到与切线相关的角度和长度关系,可以求得圆的最大值或最小值。
2. 代数解法:
这种方法使用代数方程和函数来解决圆的最值问题。
首先,将圆的方程转化为合适的形式,例如标准方程或一般方程。
然后,利用代数的方法,对方程进行求导或化简,找到函数的最值点。
最后,将最值点带入原始问题中,求得圆的最大值或最小值。
3. 组合解法:
这种方法结合了几何和代数的思想。
首先,利用几何性质和定理来确定问题中的几何关系。
然后,将几何关系转化为代数方程或函数。
接下来,通过代数的方法求解方程或函数的最值点。
最后,将最值点代入几何关系中,求得圆的最大值或最小值。
圆中最值问题一、点到直线的最值问题原理:垂线段最短.1、如图,⊙O的半径为2,点O到直线l的距离为3,点P是直线l上的一个动点,PQ切⊙O于点Q,则PQ的最小值为().A. B. C. 3 D. 2答案:B解答:∵PQ切⊙O于点Q,∴∠OQP=90°,∴PQ2=OP2-OQ2,而OQ=2,∴PQ2=OP2-4,即,当OP最小时,PQ最小,∵点O到直线l的距离为3,∴OP的最小值为3,∴PQ选B.2、在平面直角坐标系中,以原点O为圆心的圆过点),直线y=kx-3k+4与⊙O交于B,C两点,则弦BC 的长的最小值为().A. 5B.C.D.答案:D解答:直线y=kx-3k+4必过点D(3,4),∴最短的弦CB是过点D且与该圆直径垂直的弦.∵点D的坐标是(3,4),∴OD=5.∵以原点O为圆心的圆过点,∴圆的半径为BC的长的最小值为3、如图,⊙O的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为______.答案:3解答:当OM⊥AB时,OM最小,此时.4、如图,在Rt△AOB中,O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ (点Q为切点),切线PQ的最小值为______.解答:连接OP,OQ,如图所示,∵PQ是O的切线,∴OQ⊥PQ,根据勾股定理知:PQ2=OP2-OQ2,∴当PO⊥AB时,线段PQ最短,∵在Rt△AOB中,,∴OA=8,∴S△AOB=12OA·OB=12AB·OP,即OP=OA OBAB⋅=4,∴5、如图,直线y=kx-3k+4与⊙O交于B、C两点,若⊙O的半径为13,求弦BC长度的最小值.答案:24.解答:y=kx-3k+4必过点D(3,4),∴最短的弦BC是过点D且与该圆直径垂直的弦,∴OD=5,OB=13,∴BD=12,∴BC的长的最小值为24.二、点到圆的最值问题原理:定点与圆上的动点之间的距离:当定点、动点和圆心三点共线时有最大或最小值.AP max=OA+r,AP min=|OA-r|.6、已知点P到圆上各点的最大距离为5,最小距离为1,则圆的的半径为().A. 2或3B. 3C. 4D. 2或4答案:A解答:当点P在圆内,则圆的直径=5+1=6,所以圆的半径=3;当点P在圆外,则圆的直径=5-1=4,所以圆的半径=2.通常构造辅助圆求点到圆的最值问题7、(2021·南平延平区模拟)如图,Rt△ABD中,∠D=90°,AB=8,BD=4,在BD延长线上取一点D,使得DC=BD,在直线AD左侧有一动点P满足∠P AD=∠PDB,连接PC,则线段CP长的最大值为______.答案:解答:如图,取AD的中点O,连接OP,OC.∵∠P AD=∠PDB,∠PDB+∠ADP=90°,∴∠P AD+∠ADP=90°,∴∠APD=90°.∵AO=OD,∴PO=OA=OD.∵AD==∴OP=∵BC=CD=4,OD=∴OC===∵PC≤OP+OC∴PC≤∴PC的最大值为8、(2021·佛山三水区校级二模)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D是△ABC内部的一个动点,且满足∠ACD=∠CBD,则AD的最小值为______.答案:2解答:∵∠ACB=90°,∴∠BCD+∠DCA=90°.∵∠DBC=∠DCA,∴∠CBD+∠BCD=90°,∴∠BDC=90°,∴点D在以BC为直径的☉O上,连接OA交☉O于点D,此时DA最小,在Rt△CAO中,∵∠OCA=90°,AC=4,OC=3,OA==∴5∴DA=OA-OD=5-3=2.故答案为29、如图,在△ABC中,∠BCA=90°,AC=BC=2,点P是同一平面内的一个动点,且满足∠BPC=90°,连接AP,求线段AP的最小值和最大值.答案:解答:解:如图,以BC为直径作圆O,连结AO交圆于两点P1,P2,则AP 1最小,AP 2最大.∵AP 1•AP 2=AC 2,AC =2,P 1P 2=2,∴AP 1(AP 1+2)=4,解得AP 1=51±-(负值舍去),∴AP 2=51251+=++-.故线段AP 的最小值和最大值分别是51+-和51+.10、如图,在矩形ABCD 中,AB =3,BC =2,M 是AD 边的中点,N 是AB 边上的动点,将△AMN 沿MN 所在直线折叠,得到△A ′MN ,连接A ′C ,求线段A ′C 的最小值.答案:解答:解:∵四边形ABCD 是矩形∴AB =CD =3,BC =AD =2,∵M 是AD 边的中点,∴AM =MD =1∵将△AMN 沿MN 所在直线折叠,∴AM =A 'M =1∴点A '在以点M 为圆心,AM 为半径的圆上,∴如图,当点A '在线段MC 上时,A 'C 有最小值, ∵1022=+=CD MD MC ,∴A ′C 的最小值=MC -MA '=110-.11、如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A ′MN ,连接A ′C ,请求出A ′B 长度的最小值.答案:解答:解:如图,由折叠知A ′M =AM ,又M 是AD 的中点,可得MA =MA ′=MD ,故点A ′在以AD 为直径的圆上,由模型可知,当点A ′在BM 上时,A ′B 长度取得最小值,∵边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,∴BM =3122=-,故A ′B 的最小值为13-12、如图,在矩形ABCD 中,AB =3,BC =4,点E 是AB 边上一点,且AE =2,点F 是边BC 上的任意一点,把△BEF 沿EF 翻折,点B 的对应点为G ,连接AG ,CG ,求四边形AGCD 的面积的最小值.答案:解答:∵四边形ABCD 是矩形,∴CD =AB =3,AD =BC =4,∠ABC =∠D =90°,根据勾股定理得,AC =5,∵AB =3,AE =2,∴点F 在BC 上的任何位置时,点G 始终在AC 的下方,设点G 到AC 的距离为,∵S 四边形AGCD =S △ACD +S △ACG =AD ×CD +AC ×=×4×3+21×5×h =25h +6, ∴要四边形AGCD 的面积最小,即h 最小,∵点G 是以点E 为圆心,BE =1为半径的圆上在矩形ABCD 内部的一部分点,h 2121h 21∴EG ⊥AC 时,h 最小,即点E ,点G ,点H 共线. 由折叠知∠EGF =∠ABC =90°,延长EG 交AC 于H ,则EH ⊥AC ,在Rt △ABC 中,sin ∠BAC =54=AC BC , 在Rt △AEH 中,AE =2,sin ∠BAC =54=AE EH , ∴EH =54AE =58, ∴h =EH -EG =58-1=53,∴S 四边形AGCD 最小=25h +6=5325⨯+6=215.。
人教版初中数学
重点知识精选
掌握知识点,多做练习题,基础知识很重要!人教版初中数学和你一起共同进步学业有成!
拔高专题 圆中的最值问题
一、基本模型构建
常见模型
图(1) 图(2)
思考
图(1)两点之间线段 最短 ; 图(2)垂线段 最短 。
.在直线L 上的同侧有两个点A 、B ,在直线L 上有到A 、B 的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L 的 对称 点,对称点与另一点的连线与直线L 的交点就是所要找的点.
二、拔高精讲精练
探究点一:点与圆上的点的距离的最值问题
例1:如图,A
点是⊙O 上直径MN 所分的半圆的一个三等分点,B
点是弧AN
的中点,P 点是MN 上一动点,⊙O 的半径为3,求AP+BP 的最小值。
解:作点A 关于MN 的对称点A ′,连接A ′B ,交MN 于点P ,连接OA ′,AA ′. ∵点A 与A ′关于MN 对称,点A 是半圆上的一个三等分点, ∴∠A ′ON=∠AON=60°,PA=PA ′,∵点B 是弧AN 的中点,
∴∠BON=30°,∴∠A ′OB=∠A ′ON+∠BON=90°,又∵OA=OA ′=3, ∴A ′.∵两点之间线段最短,∴PA+PB=PA ′+PB=A ′.
【教师总结】解决此题的关键是确定点P 的位置.根据轴对称和两点之间线段最短的知
识,把两条线段的和转化为一条线段,即可计算。
探究点二:直线与圆上点的距离的最值问题
例2:如图,在Rt △AOB 中,,⊙O 的半径为1,点P 是AB 边上的动点,过点P 作⊙O 的一条切线PQ (点Q 为切点),求切线PQ 的最小值
解:连接OP 、OQ .∵PQ 是⊙O 的切线,∴OQ ⊥PQ ;根据勾股定理知PQ 2=OP 2-OQ 2,
∴当PO ⊥AB 时,线段PQ 最短,∵在Rt △AOB 中,OA=OB=3 ,
∴OA=6,∴OP=
=3,∴. •OA OB AB
【变式训练】如图,在平面直角坐标系中,以坐标原点O 为圆心,2为半径画⊙O ,P 是⊙O 是一动点且P 在第一象限内,过P 作⊙O 切线与x 轴相交于点A ,与y 轴相交于点B .求线段AB 的最小值.
解:(1)线段AB 长度的最小值为4, 理由如下: 连接OP ,
∵AB 切⊙O 于P , ∴OP ⊥AB ,
取AB 的中点C , ∴AB=2OC ;
当OC=OP 时,OC 最短, 即AB 最短, 此时AB=4.
【教师总结】结合切线的性质以及辅助线的作法,利用“垂线段最短”是解决此类问题的关键。
相信自己,就能走向成功的第一步
教师不光要传授知识,还要告诉学生学会生活。
数学思维
可以让他们更理性地看待人生。