Kriging方法的公式推导
- 格式:pptx
- 大小:259.47 KB
- 文档页数:20
克里金(kriging)插值的原理与公式推导
克里金插值是一种空间插值方法,用于估计未知区域的数值,其
原理是基于空间数据的空间相关性来进行插值。
具体来说,克里金插
值假设空间数据在不同位置之间具有一定的相关性,即在空间上相邻
的点具有相似的数值。
克里金插值利用这种相关性来进行插值,从而
可以更准确地估计未知位置的数值。
克里金插值的公式推导涉及到半变异函数的定义,通常使用高斯
模型、指数模型或球形模型来描述数据的空间相关性。
在推导过程中,会利用已知数据点的数值和位置信息,以及半变异函数的参数来构建
插值模型,进而估计未知位置的数值。
克里金插值的公式可以表示为:
\[Z(u) = \sum_{i=1}^{n} \lambda_i \cdot Z(u_i)\]
其中,\(Z(u)\)为未知位置的数值,\(Z(u_i)\)为已知数据点的
数值,\(\lambda_i\)为插值权重,通过半变异函数及数据点之间的空
间距离计算得出。
除了基本的克里金插值方法外,还有一些相关的扩展方法,如普通克里金、泛克里金等,这些方法在建模和插值的过程中考虑了更多的因素,如均值趋势、空间方向等,使得插值结果更加准确和可靠。
总的来说,克里金插值是一种常用的空间插值方法,适用于各种地学环境下的数据分析与建模。
在实际应用中,需要根据具体数据的特点选择合适的插值方法和模型参数,以获得准确的插值结果。
克里金插值方法-Kriging 插值-空间统计-空间分析1.1 Kriging 插值克里金插值(Kriging 插值)又称为地统计学,是以空间自相关为前提,以区域化变量理论为基础,以变异函数为主要工具的一种空间插值方法。
克里金插值的实质是利用区域化变量的原始数据和变异函数的结构特点,对未采样点的区域化变量的取值进行线性无偏、最优估计。
克里金插值包括普通克里金插值、泛克里金插值、指示克里金插值、简单克里金插值、协同克里金插值等,其中普通克里金插值是最为常用的克里金插值方法。
以下介绍普通克里金插值的原理。
包括普通克里金方法在内的各种克里金插值方法的使用前提是空间数据存在着显著的空间相关性。
判断数据空间相关性是否显著的工具是半变异函数(semi-variogram ),该函数以任意两个样本点之间的距离h 为自变量,在h 给定的条件下,其函数值估计方法如下:2||||1()[()()]2()i j i j s s h h z s z s N h γ-==-∑其中()N h 是距离为h 的样本点对的个数。
()h γ最大值与最小值的差m a x m i n γγ-可以度量空间相关性的强度。
max min γγ-越大,空间相关性越强。
如果()h γ是常数,即max min 0γγ-=,则说明无论样本点之间的距离是多少,样本点之间的差异不变,也就是说样本点上的值与其周围样本点的值无关。
在实际操作中,会取一些离散的h 值,当||s s ||i j -接近某个h 时,即视为||||i j s s h -=。
然后会通过这些离散点拟合成连续的半变异函数。
拟合函数的形式有球状、指数、高斯等。
在数据存在显著的空间相关性的前提下,可以采用普通克里金方法估计未知点上的值。
普通克里金方法的基本公式如下:01ˆ()()()n i ii Z s w s Z s ==∑普通克里金方法的基本思想是:通过调整i s 的权重()i w s ,使未知点的估计值0ˆ()Z s 满足两个要求:1.0ˆ()Z s 是无偏估计,即估计误差的期望值为0,2.估计误差的方差达到最小。
克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。
1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。
其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。
因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。
假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。
其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式:11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (x i ,x j )是Z(x i )和Z(x j )的协方差函数。
python普通克⾥⾦(Kriging)法的实现克⾥⾦法时⼀种⽤于空间插值的地学统计⽅法。
克⾥⾦法⽤半变异测定空间要素,要素即⾃相关要素。
半变异公式为:其中γ(h) 是已知点 xi 和 xj 的半变异,***h***表⽰这两个点之间的距离,z是属性值。
假设不存在漂移,普通克⾥⾦法重点考虑空间相关因素,并⽤拟合的半变异直接进⾏插值。
估算某测量点z值的通⽤⽅程为:式中,z0是待估计值,zx是已知点x的值,Wx是每个已知点关联的权重,s是⽤于估计的已知点数⽬。
权重可以由⼀组矩阵⽅程得到。
此程序对半变异进⾏拟合时采⽤的时最简单的正⽐例函数拟合数据为csv格式保存格式如下:第⼀⾏为第⼀个点以此类推最后⼀⾏是待求点坐标,其中z为未知值,暂且假设为0代码如下:import numpy as npfrom math import*from numpy.linalg import *h_data=np.loadtxt(open('⾼程点数据.csv'),delimiter=",",skiprows=0) print('原始数据如下(x,y,z):\n未知点⾼程初值设为0\n',h_data)def dis(p1,p2):a=pow((pow((p1[0]-p2[0]),2)+pow((p1[1]-p2[1]),2)),0.5)return adef rh(z1,z2):r=1/2*pow((z1[2]-z2[2]),2)return rdef proportional(x,y):xx,xy=0,0for i in range(len(x)):xx+=pow(x[i],2)xy+=x[i]*y[i]k=xy/xxreturn kr=[];pp=[];p=[];for i in range(len(h_data)):pp.append(h_data[i])for i in range(len(pp)):for j in range(len(pp)):p.append(dis(pp[i],pp[j]))r.append(rh(pp[i],pp[j]))r=np.array(r).reshape(len(h_data),len(h_data))r=np.delete(r,len(h_data)-1,axis =0)r=np.delete(r,len(h_data)-1,axis =1)h=np.array(p).reshape(len(h_data),len(h_data))h=np.delete(h,len(h_data)-1,axis =0)oh=h[:,len(h_data)-1]h=np.delete(h,len(h_data)-1,axis =1)hh=np.triu(h,0)rr=np.triu(r,0)r0=[];h0=[];for i in range(len(h_data)-1):for j in range(len(h_data)-1):if hh[i][j] !=0:a=h[i][j]h0.append(a)if rr[i][j] !=0:a=rr[i][j]r0.append(a)k=proportional(h0,r0)hnew=h*ka2=np.ones((1,len(h_data)-1))a1=np.ones((len(h_data)-1,1))a1=np.r_[a1,[[0]]]hnew=np.r_[hnew,a2]hnew=np.c_[hnew,a1]print('半⽅差联⽴矩阵:\n',hnew)oh=np.array(k*oh)oh=np.r_[oh,[1]]w=np.dot(inv(hnew),oh)print('权阵运算结果:\n',w)z0,s2=0,0for i in range(len(h_data)-1):z0=w[i]*h_data[i][2]+z0s2=w[i]*oh[i]+s2s2=s2+w[len(h_data)-1]print('未知点⾼程值为:\n',z0)print('半变异值为:\n',pow(s2,0.5))input()运算结果python初学,为了完成作业写了个⼩程序来帮助计算,因为初学知识有限,有很多地⽅写的很复杂,可以优化的地⽅很多。
克里金插值法及其合用范围克里金插值法又称空间局部插值法,是以变异函数理论和构造剖析为基础,在有限地区内对地区化变量进行无偏最优预计的一种方法,是地统计学的主要内容之一,由南非矿产工程师 D.Matheron于1951年在找寻金矿时首次提出,法国着名统计学家G.Matheron随后将该方法理论化、系统化,并命名为Kriging,即克里金插值法。
克里金插值法原理克里金插值法的合用范围为地区化变量存在空间有关性,即假如变异函数和构造剖析的结果表示地区化变量存在空间有关性,则能够利用克里金插值法进行内插或外推。
其本质是利用地区化变量的原始数据和变异函数的构造特色,对未知样点进行线性无偏、最优预计,无偏是指偏差的数学希望为0,最优是指预计值与本质值之差的平方和最小[1]。
所以,克里金插值法是依据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方向,与未知样点的互相空间关系,以及变异函数供给的构造信息以后,对未知样点进行的一种线性无偏最优预计。
假定研究地区a上研究变量Z(x),在点xi A(i=1,2,,n)处属性值为Z(xi),则待插点x0 A处的属性值Z(x0)的克里金插值结果 Z*(x0)是已知采样点属性值Z(xi)(i=1,2,,n)的加权和,即:Z*(x0)ni Z(x i)(1)i1式中i是待定权重系数。
此中Z(xi)之间存在必定的有关关系,这类有关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“地区化变量”针对克里金方法无偏、最小方差条件可获取无偏条件可得待定权系数i (i=1,2,,n)知足关系式:ni1(2)i1以无偏为前提,kriging方差为最小可获取求解待定权系数i的方程组:ni C(x i,x j) C(x0,x j)(j 1,2, ,n)i 1ni 1i1(3)式中,C(xi,xj)是Z(xi)和Z(xj)的协方差函数。
2国内外研究进展从克里金方法被提出到此刻已有完美的理论,并在好多领域获取了本质的应用,在某些领域的应用又推进了克里金理论的发展[3]。
克里格法(Kriging)——有公式版二、克里格法(Kriging)克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。
克里格法的适用条件是区域化变量存在空间相关性。
克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。
随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。
如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。
应用克里格法首先要明确三个重要的概念。
一是区域化变量;二是协方差函数,三是变异函数一、区域化变量当一个变量呈空间分布时,就称之为区域化变量。
这种变量反映了空间某种属性的分布特征。
矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。
区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。
区域化变量具有两个重要的特征。
一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X 与偏离空间距离为h的点X+h处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。
在某种意义上说这就是区域化变量的结构性特征。
二、协方差函数协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。
在概率理论中,随机向量X与Y的协方差被定义为:区域化变量在空间点x 和x+h处的两个随机变量Z(x) 和Z(x+h) 的二阶混合中心矩定义为Z(x) 的自协方差函数,即区域化变量Z(x) 的自协方差函数也简称为协方差函数。
克里格法(Kriging)——有公式版二、克里格法(Kriging)克里格法(Kriging)是地统计学的主要内容之一,从统计意义上说,是从变量相关性和变异性出发,在有限区域内对区域化变量的取值进行无偏、最优估计的一种方法;从插值角度讲是对空间分布的数据求线性最优、无偏内插估计一种方法。
克里格法的适用条件是区域化变量存在空间相关性。
克里格法,基本包括普通克里格方法(对点估计的点克里格法和对块估计的块段克里格法)、泛克里格法、协同克里格法、对数正态克里格法、指示克里格法、折取克里格法等等。
随着克里格法与其它学科的渗透,形成了一些边缘学科,发展了一些新的克里金方法。
如与分形的结合,发展了分形克里金法;与三角函数的结合,发展了三角克里金法;与模糊理论的结合,发展了模糊克里金法等等。
应用克里格法首先要明确三个重要的概念。
一是区域化变量;二是协方差函数,三是变异函数一、区域化变量当一个变量呈空间分布时,就称之为区域化变量。
这种变量反映了空间某种属性的分布特征。
矿产、地质、海洋、土壤、气象、水文、生态、温度、浓度等领域都具有某种空间属性。
区域化变量具有双重性,在观测前区域化变量Z(X)是一个随机场,观测后是一个确定的空间点函数值。
区域化变量具有两个重要的特征。
一是区域化变量Z(X)是一个随机函数,它具有局部的、随机的、异常的特征;其次是区域化变量具有一般的或平均的结构性质,即变量在点X 与偏离空间距离为h的点X+h处的随机量Z(X)与Z(X+h)具有某种程度的自相关,而且这种自相关性依赖于两点间的距离h与变量特征。
在某种意义上说这就是区域化变量的结构性特征。
二、协方差函数协方差又称半方差,是用来描述区域化随机变量之间的差异的参数。
在概率理论中,随机向量X与Y的协方差被定义为:区域化变量在空间点x 和x+h处的两个随机变量Z(x) 和Z(x+h) 的二阶混合中心矩定义为Z(x) 的自协方差函数,即区域化变量Z(x) 的自协方差函数也简称为协方差函数。
克里金插值法克里金插值法又称空间局部插值法,是以变异函数理论和结构分析为基础,在有限区域内对区域化变量进行无偏最优估计的一种方法,是地统计学的主要内容之一,由南非矿产工程师D. Matheron 于1951年在寻找金矿时首次提出,法国著名统计学家G. Matheron 随后将该方法理论化、系统化,并命名为Kriging ,即克里金插值法。
1 克里金插值法原理克里金插值法的适用范围为区域化变量存在空间相关性,即如果变异函数和结构分析的结果表明区域化变量存在空间相关性,则可以利用克里金插值法进行内插或外推。
其实质是利用区域化变量的原始数据和变异函数的结构特点,对未知样点进行线性无偏、最优估计,无偏是指偏差的数学期望为0,最优是指估计值与实际值之差的平方和最小[1]。
因此,克里金插值法是根据未知样点有限领域内的若干已知样本点数据,在考虑了样本点的形状、大小和空间方位,与未知样点的相互空间关系,以及变异函数提供的结构信息之后,对未知样点进行的一种线性无偏最优估计。
假设研究区域a 上研究变量Z (x ),在点x i ∈A (i=1,2,……,n )处属性值为Z (x i ),则待插点x 0∈A 处的属性值Z (x 0)的克里金插值结果Z*(x 0)是已知采样点属性值Z (x i )(i=1,2,……,n )的加权和,即:)()(10*i ni i x Z x Z ∑==λ (1) 式中i λ是待定权重系数。
其中Z(x i )之间存在一定的相关关系,这种相关性除与距离有关外,还与其相对方向变化有关,克里金插值方法将研究的对象称“区域化变量”针对克里金方法无偏、最小方差条件可得到无偏条件可得待定权系数i λ (i=1,2,……,n)满足关系式: 11=∑=n i i λ(2)以无偏为前提,kriging 方差为最小可得到求解待定权系数i λ的方程组:⎪⎪⎩⎪⎪⎨⎧=⋯⋯==+∑∑==1)n ,2,1)(,(),(101n i i j j i n i i j x x C x x C λμλ, (3) 式中,C (x i ,x j )是Z(x i )和Z(x j )的协方差函数。
克里金模型详细推导## Kriging Model Derivation.Covariance Function:The kriging model is based on a statistical framework that incorporates spatial autocorrelation. This autocorrelation is captured through a covariance function, denoted by C(s, t), which specifies the correlation between the values at locations s and t. Common covariance functions include:Spherical:Exponential:Gaussian:\( C(s,t) = \sigma^2 \exp\left(-\frac{\|s-t\|^2}{2a^2}\right) \)。
where σ^2 is the process variance, and a is the range parameter that controls the distance at which values become uncorrelated.Kriging Equation:The kriging equation is used to predict the value of the underlying field at an unobserved location s0:\( Z_{s_0} = \sum_{i=1}^n \lambda_i Z(s_i) \)。
where:Z(s_i) are the observed values at locations s_i.λ_i are weights that sum to 1。
高斯过程回归模型 (kriging)高斯过程回归模型,也被称为kriging方法,是一种基于高斯过程的非参数回归技术。
它通过利用高斯过程对未知函数进行建模,并根据已观测到的数据点来估计未观测到的数据点的值。
在很多实际应用中,高斯过程回归模型被广泛应用于空间插值、地质建模、地理信息系统、环境工程、农业科学等领域。
高斯过程回归模型的基本假设是:给定任意输入x,对应的输出y满足一个联合高斯分布,即y ~ N(m(x), k(x, x')),其中m(x)是均值函数,k(x, x')是协方差函数。
均值函数描述了数据的全局趋势,协方差函数描述了不同点之间的相关性。
在高斯过程回归模型中,对未观测到的数据点进行预测时,首先需要估计均值函数和协方差函数的参数。
常用的估计方法包括最大似然估计和贝叶斯推断。
通过优化似然函数,可以得到均值函数和协方差函数的最优参数。
然后,根据已观测到的数据点和估计得到的参数,可以通过贝叶斯推断方法,计算未观测数据点的后验分布,并进行预测。
在具体的算法实现中,高斯过程回归模型通常分为两个步骤:训练和预测。
在训练阶段,首先根据已知的输入和输出数据点,利用最大似然估计或贝叶斯推断方法,估计均值函数和协方差函数的参数。
然后,根据估计得到的参数,计算数据点之间的协方差矩阵,并将其分解为一个低秩矩阵和一个对角矩阵,以减少计算复杂度。
在预测阶段,根据已知的输入和输出数据点,利用训练阶段得到的参数,计算未观测数据点的条件分布,并进行预测。
高斯过程回归模型的优点之一是它能够提供预测结果的不确定性估计。
由于高斯过程的后验分布是一个高斯分布,可以通过计算均值和方差来描述预测结果的中心和离散程度。
这对于决策制定者来说非常重要,因为他们可以据此评估预测结果的可信度。
另一个优点是高斯过程回归模型的灵活性。
通过选择不同的均值函数和协方差函数,可以适应不同的数据特征和模型假设。
常用的协方差函数包括常值函数、线性函数、指数函数、高斯函数等。
Homework#5 內插法黃琦聆M9505163(一)使用IDW,Spline,kriging三種模式,內插出三張GDP資料。
利用ARCGIS 可求出其內插值,其內插值與真實值之相關係數(Correation)與相關系數圖分別如下:1. IDW=0.9999852.Spline=0.999264(二) 內插法的model(計算方式)及寫出各個方法的設定係數。
1. IDW((Inverse Distance Weight ,距離反比權重法)針對每一個未知的數值推估,距離反比權重法是利用它鄰近的以經典之數值來進行加權運算,所給的權重依照距離遠近來計算,公式如下(數值等高線內插之比較研究,1996):()⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=∑∑==N i i N i i i d w z d w y x f 11)()(, 其中)(i d w 是權重方程,zi是第i個已知點的數值,di是i點到未知點之間的距離。
在此分別設定power=2、Search radius 為variable 、Number of point=12、Output cell size=500。
2. Spline 法Spline 法是一個應用在選擇樣點後,利用多項式方進行內插法,產生平滑曲面的內插法。
ArcGIS 系統中,在進行Spline 模擬時需進行三個參數設定,包括了權重(Weight)、點數(Number of point)及曲面之型態(Type);在此分別設定為Weight=0.1、Number of point=12、Type 為Regularized 、Output cell size=500,其中Regularized 的型式所模擬出的結果較使用另一type 為Tension 所模擬出的結果可產生較平滑的曲面(應用地理統計於土壤重金屬污染物之空間分佈探討,2004)。
Spline 內插法公式如下:(依據ARCGIS 公式說明))(),(),(1j Nj j r R y x T y x S ∑=+=λ其中j = 1, 2, ..., N (N is the number of points)λj are coefficients found by the solution of a system of linear equations--係線性方程式解的係數r j is the distance from the point (x,y) to the j th point--係點(x,y)到點 j th 的距離while T(x,y) and R(r) are defined differently, depending upon the selected option. For the REGULARIZED option:T(x,y) = a 1 + a 2x + a 3y⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+⎥⎦⎤⎢⎣⎡-+⎪⎭⎫ ⎝⎛=πτττπ2ln 12ln 421)(022r c r K c r r r R and for the TENSION option:T(x,y) = a 1()⎥⎦⎤⎢⎣⎡++⎪⎭⎫ ⎝⎛-=ϕϕπϕr K c r r R 022ln 21)( where,τ2and φ2are the parameters entered at the command line.r is the distance between the point ant the sample.K 0is the modified Bessel function.c is a constant equal to 0.577215.a i are coefficients found by the solution of a system of linear equations.3. Kriging 法Kriging 內插法是空間統計上的一項重要方法。
克里金插值公式推导克里金插值(Kriging Interpolation)是一种空间插值方法,它是由法国数学家达卡斯特罗(Georges Matheron)在1951年提出的。
克里金插值在地质学、环境科学、地理信息系统等领域有广泛的应用。
克里金插值的基本思想是通过已知离散点的观测值,推断和估计未知位置处的值。
它的特点是能够提供具有空间连续性的插值结果,并且能够提供对预测值的误差估计。
克里金插值的推导基于统计学中的协方差函数和高斯过程。
假设我们有 n 个观测点(x1, y1, z1)、(x2, y2, z2)、..、(xn, yn, zn),其中 (xi, yi) 为观测点的坐标,zi 为观测值。
我们需要推断和估计未知位置 (x0, y0) 处的值 z0。
首先,我们需要定义一个协方差函数 C(h),其中 h 为两个点之间的距离。
协方差函数用来描述两个点之间的相关性,通常采用指数型(Exponential)、高斯型(Gaussian)或球型(Spherical)等函数形式。
接下来,我们可以利用协方差函数构建协方差矩阵 K。
协方差矩阵是一个对称正定矩阵,其元素 kij 表示点 i 和点 j 之间的协方差。
然后,我们需要定义一个权重函数W(x0,y0),其中(x0,y0)是未知位置的坐标。
权重函数的作用是为未知位置处的值z0分配权重,权重与样本点之间的距离以及协方差函数的取值相关。
权重函数的形式可以根据具体问题的需求进行选择,常见的有逆距离权重法(Inverse Distance Weighting)和克里金权重法(Kriging Weighting)。
逆距离权重法主要考虑了样本点与未知位置之间的距离,而克里金权重法则同时考虑了距离和协方差。
最后,我们可以利用权重函数和观测值计算未知位置处的值z0。
根据克里金插值的思想,插值结果是观测值的加权平均,权重由权重函数给出。
具体的计算公式如下:z0=∑(Wi*Zi)其中,Wi表示未知位置与观测点i之间的权重,Zi表示观测点i的观测值。