08《运筹学》(第四版)非线性规划最优性条件
- 格式:pdf
- 大小:1.53 MB
- 文档页数:44
线性和非线性最优化理论、方法、软件及应用最优化在航空航天、生命科学、水利科学、地球科学、工程技术等自然科学领域和经济金融等社会科学领域有着广泛和重要的应用, 它的研究和发展一直得到广泛的关注. 最优化的研究包含理论、方法和应用.最优化理论主要研究问题解的最优性条件、灵敏度分析、解的存在性和一般复杂性等.而最优化方法研究包括构造新算法、证明解的收敛性、算法的比较和复杂性等.最优化的应用研究则包括算法的实现、算法的程序、软件包及商业化、在实际问题的应用. 这里简介一下线性和非线性最优化理论、方法及应用研究的发展状况.1. 线性最优化线性最优化, 又称线性规划, 是运筹学中应用最广泛的一个分支.这是因为自然科学和社会科学中许多问题都可以近似地化成线性规划问题. 线性规划理论和算法的研究及发展共经历了三个高潮, 每个高潮都引起了社会的极大关注. 线性规划研究的第一高潮是著名的单纯形法的研究. 这一方法是Dantzig在1947年提出的,它以成熟的算法理论和完善的算法及软件统治线性规划达三十多年. 随着60年代发展起来的计算复杂性理论的研究, 单纯形法在七十年代末受到了挑战. 1979年前苏联数学家Khachiyan提出了第一个理论上优于单纯形法的所谓多项式时间算法--椭球法, 曾成为轰动一时的新闻, 并掀起了研究线性规划的第二个高潮. 但遗憾的是广泛的数值试验表明, 椭球算法的计算比单纯形方法差.1984年Karmarkar提出了求解线性规划的另一个多项式时间算法. 这个算法从理论和数值上都优于椭球法,因而引起学术界的极大关注, 并由此掀起了研究线性规划的第三个高潮. 从那以后, 许多学者致力于改进和完善这一算法,得到了许多改进算法.这些算法运用不同的思想方法均获得通过可行区域内部的迭代点列,因此统称为解线性规划问题的内点算法. 目前内点算法正以不可抗拒的趋势将超越和替代单纯形法.线性规划的软件, 特别是由单纯形法所形成的软件比较成熟和完善.这些软件不仅可以解一般线性规划问题, 而且可以解整数线性规划问题、进行灵敏度分析, 同时可以解具有稀疏结构的大规模问题.CPLEX是Bi xby基于单纯形法研制的解线性和整数规划的软件, CPLEX的网址是/. 此外,这个软件也可以用来解凸二次规划问题, 且特别适合解大规模问题. PROC LP是SAS软件公司研制的SAS商业软件中OR模块的一个程序.这个程序是根据两阶段单纯形法研制的,可以用来解线性和整数规划问题并可进行灵敏度分析, 是一个比较完善的程序.用户可以根据需要选择不同的参数来满足不同的要求。
教案运筹学中的非线性规划问题-教案一、引言1.1非线性规划的基本概念1.1.1定义:非线性规划是运筹学的一个分支,研究在一组约束条件下,寻找某个非线性函数的最优解。
1.1.2应用领域:广泛应用于经济学、工程学、管理学等,如资源分配、生产计划、投资组合等。
1.1.3发展历程:从20世纪40年代开始发展,经历了从理论到应用的转变,现在已成为解决实际问题的有效工具。
1.1.4教学目标:使学生理解非线性规划的基本理论和方法,能够解决简单的非线性规划问题。
1.2非线性规划的重要性1.2.1解决实际问题:非线性规划能够处理现实中存在的非线性关系,更贴近实际问题的本质。
1.2.2提高决策效率:通过优化算法,非线性规划可以在较短的时间内找到最优解,提高决策效率。
1.2.3促进学科交叉:非线性规划涉及到数学、计算机科学、经济学等多个学科,促进了学科之间的交叉和融合。
1.2.4教学目标:使学生认识到非线性规划在实际应用中的重要性,激发学生的学习兴趣。
1.3教学方法和手段1.3.1理论教学:通过讲解非线性规划的基本理论和方法,使学生掌握非线性规划的基本概念和解题思路。
1.3.2实践教学:通过案例分析、上机实验等方式,让学生动手解决实际问题,提高学生的实践能力。
1.3.3讨论式教学:鼓励学生提问、发表观点,培养学生的批判性思维和创新能力。
1.3.4教学目标:通过多种教学方法和手段,使学生全面掌握非线性规划的理论和实践,提高学生的综合素质。
二、知识点讲解2.1非线性规划的基本理论2.1.1最优性条件:介绍非线性规划的最优性条件,如一阶必要条件、二阶必要条件等。
2.1.2凸函数和凸集:讲解凸函数和凸集的定义及其在非线性规划中的应用。
2.1.3拉格朗日乘子法:介绍拉格朗日乘子法的原理和步骤,以及其在解决约束非线性规划问题中的应用。
2.1.4教学目标:使学生掌握非线性规划的基本理论,为后续的学习打下坚实的基础。
2.2非线性规划的求解方法2.2.1梯度法:讲解梯度法的原理和步骤,以及其在求解无约束非线性规划问题中的应用。
非线性规划什么是非线性规划?非线性规划(Nonlinear Programming,简称NLP)是一种数学优化方法,用于求解包含非线性约束条件的优化问题。
与线性规划不同,非线性规划中的目标函数和约束条件都可以是非线性的。
非线性规划的数学表达式一般来说,非线性规划可以表示为以下数学模型:minimize f(x)subject to g_i(x) <= 0, i = 1, 2, ..., mh_j(x) = 0, j = 1, 2, ..., px ∈ R^n其中,f(x)是目标函数,g_i(x)和h_j(x)分别是m个不等式约束和p个等式约束,x是优化变量,属于n维实数空间。
非线性规划的解法由于非线性规划问题比线性规划问题更为复杂,因此解决非线性规划问题的方法也更多样。
以下列举了几种常用的非线性规划求解方法:1. 数值方法数值方法是最常用的非线性规划求解方法之一。
它基于迭代的思想,通过不断优化目标函数的近似解来逼近问题的最优解。
常见的数值方法有梯度下降法、牛顿法、拟牛顿法等。
2. 优化软件优化软件是一类针对非线性规划问题开发的专用软件,它集成了各种求解算法和优化工具,可以方便地求解各种类型的非线性规划问题。
常见的优化软件有MATLAB、GAMS、AMPL等。
3. 线性化方法线性化方法是一种将非线性规划问题转化为等价的线性规划问题的求解方法。
它通过线性化目标函数和约束条件,将非线性规划问题转化为线性规划问题,然后利用线性规划的求解方法求解得到最优解。
4. 分类方法分类方法是一种将非线性规划问题分解为若干个子问题求解的方法。
它将原始的非线性规划问题分解为多个子问题,然后将每个子问题分别求解,并逐步逼近原始问题的最优解。
以上仅是非线性规划求解方法的一小部分,实际上还有很多其他的方法和技巧可供选择。
在实际应用中,选择合适的方法和工具是非常重要的。
非线性规划的应用非线性规划在实际生活和工程中有着广泛的应用。
非线性规划在运筹学中的应用非线性规划是运筹学中的重要领域之一,广泛应用于各种实际问题的优化过程中。
本文将介绍非线性规划在运筹学中的应用,并探讨其在实际问题求解中所面临的挑战以及解决方案。
一、非线性规划的定义与特点非线性规划是指目标函数或约束条件中存在非线性项的优化问题。
与线性规划不同,非线性规划需要通过数值计算的方法来获取最优解。
非线性规划的特点在于问题的复杂性和多样性,涉及到的数学模型通常更加抽象和复杂,求解过程也更加困难。
二、非线性规划在生产调度中的应用生产调度是运筹学中的一个重要问题,旨在合理安排生产资源,提高生产效率。
非线性规划可以用于求解生产调度问题,通过优化生产资源的分配和利用,实现生产效益的最大化。
例如,在一家制造业企业中,存在多个订单需要完成。
每个订单的生产时间、生产成本、交货时间等因素都不同,而且相互之间存在约束条件。
通过建立一个非线性规划模型,可以考虑各种因素,如生产时间、物料需求、生产能力等,利用数学求解方法求得最佳生产调度方案。
三、非线性规划在物流配送中的应用物流配送是一个典型的优化问题,旨在合理安排货物的运输路线、运输方式,以降低物流成本,并保证货物按时到达目的地。
非线性规划可以用于解决物流配送中的路径规划、运输负荷、车辆调度等问题。
例如,在一家快递公司中,需要合理安排快递员的路线,使其能够尽可能地在规定时间内完成配送任务。
非线性规划可以考虑诸如快递员工作时间、路况、配送点的距离等因素,通过求解最优化问题,找到最佳的配送路线,提高配送效率,降低物流成本。
四、非线性规划在金融投资中的应用在金融投资领域,非线性规划也得到了广泛的应用。
通过构建非线性规划模型,可以考虑投资收益、风险、投资期限等多方面因素,以优化投资组合并降低风险。
例如,在一家投资公司中,需要选择一个最佳的投资组合,使得收益最大化的同时,风险最小化。
非线性规划可以考虑不同资产的收益率、投资额度限制等因素,通过求解最优化问题,找到最佳的投资配置方案。
非线性规划方案山大刁在筠运筹学讲义那天,阳光透过窗户洒在我的书桌上,我翻看着山大刁在筠教授的运筹学讲义,非线性规划这一章节引起了我的兴趣。
思绪如泉水般涌出,我决定以意识流的方式,写下这篇非线性规划方案。
一、问题的提出非线性规划是运筹学中的一个重要分支,它研究的是在一组约束条件下,如何找到使目标函数取得最优解的问题。
这类问题在实际应用中广泛存在,如生产计划、资源分配、投资决策等。
山大刁在筠教授的讲义中,以一个具体的生产问题为例,引导我们深入探讨非线性规划的方法。
二、方案的构建1.确定目标函数我们要明确目标函数。
在生产问题中,我们通常追求的是最大化利润或最小化成本。
以最大化利润为例,我们可以将目标函数表示为:maxf(x)=p1x1+p2x2++pnxn其中,x1,x2,,xn分别表示各种产品的产量,p1,p2,,pn表示相应产品的单位利润。
2.构建约束条件我们要构建约束条件。
约束条件通常包括资源约束、技术约束、市场约束等。
以资源约束为例,我们可以将其表示为:a11x1+a12x2++a1nxn≤b1a21x1+a22x2++a2nxn≤b2am1x1+am2x2++amnxn≤bm其中,a11,a12,,amn表示各种资源消耗系数,b1,b2,,bm表示各种资源的总量。
3.确定求解方法构建好目标函数和约束条件后,我们需要选择合适的求解方法。
非线性规划问题的求解方法有很多,如拉格朗日乘子法、KKT条件、序列二次规划法等。
在实际应用中,我们需要根据问题的特点选择合适的方法。
三、方案的实施1.确定初始解在实际操作中,我们通常需要先确定一个初始解。
这个初始解可以是任意一个满足约束条件的解。
我们可以通过观察目标函数和约束条件的图形,或者使用启发式算法来找到一个合适的初始解。
2.迭代求解3.分析结果求解完成后,我们需要对结果进行分析。
我们要检查最优解是否满足所有约束条件。
如果满足,那么我们可以将最优解应用于实际问题中。