2019年高考数学仿真押题试卷(二)逐题详解
- 格式:doc
- 大小:2.07 MB
- 文档页数:14
2024年高考数学临考押题卷02(新高考通用)数学(考试时间:120分钟试卷满分:150分)注意事项:1.答题前,先将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内。
写在试卷草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试卷和答题卡一并上交。
一、单选题(本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合{}2210A x x x =+-<,(){}2lg 1B y y x ==+,则A B = ()A .(]1,0-B .10,2⎡⎫⎪⎢⎣⎭C .1,02⎛⎤- ⎥⎝⎦D .[)0,1【答案】B【分析】由一元二次不等式的解法,对数函数的值域,集合的交集运算得到结果即可.【详解】集合{}21210|12A x x x x x ⎧⎫=+-<=-<<⎨⎬⎩⎭,因为211x +≥,所以()2lg 10x +≥,所以集合(){}{}2lg 1|0B y y x y y ==+=≥,所以10,2A B ⎡⎫=⎪⎢⎣⎭,故选:B.2.复数()i 1i 35i+-的共轭复数为()A .41i 1717--B .41i 1717-+C .41i 1717-D .41i 1717+【答案】B【分析】利用复数的四则运算与共轭复数的定义即可得解.【详解】因为()()()()()i 1i 1i 35i 1i 82i 41i 35i35i 35i 35i 341717+-++-+--====-----+,所以()i 1i 35i+-的共轭复数为41i 1717-+.故选:B.3.等比数列{}n a 的前n 项和为n S ,已知3215S a a =+,54a =,则1a =()A .14B .14-C .12D .12-【答案】A【分析】把等比数列{}n a 各项用基本量1a 和q 表示,根据已知条件列方程即可求解.【详解】设等比数列{}n a 的公比为q ,由3215S a a =+,得:123215a a a a a ++=+,即:23114a a a q ==,所以,24q =,又54a =,所以,4222111()44a q a q a ==⨯=,所以,114a =.故选:A.4.若23a=,35b =,54c =,则4log abc =()A .2-B .12C .2D .1【答案】B【分析】根据题意,结合指数幂与对数的互化公式,结合对数的换底公式,即可求解.【详解】由23a=,35b =,54c =,可得235log 3,log 5,log 4a b c ===,所以235lg 3lg 5lg 4log 3log 5log 42lg 2lg 3lg 5abc =⨯⨯=⨯⨯=,则441log log 22abc ==.故选:B.5.关于函数()()sin f x A x =+ωϕ(0A >,0ω>,π02ϕ<<),有下列四个说法:①()f x 的最大值为3②()f x 的图象可由3sin y x =的图象平移得到③()f x 的图象上相邻两个对称中心间的距离为π2④()f x 的图象关于直线π3x =对称若有且仅有一个说法是错误的,则π2f ⎛⎫= ⎪⎝⎭()A .B .32-C .32D .2【答案】D【分析】根据题意,由条件可得②和③相互矛盾,然后分别验证①②④成立时与①③④成立时的结论,即可得到结果.【详解】说法②可得1ω=,说法③可得π22T =,则2ππT ω==,则2ω=,②和③相互矛盾;当①②④成立时,由题意3A =,1ω=,ππ2π32k ϕ+=+,k ∈Z .因为π0,2ϕ⎛⎫∈ ⎪⎝⎭,故0k =,π6ϕ=,即()3sin 6f x x π⎛⎫=+ ⎪⎝⎭,22f π⎛⎫= ⎪⎝⎭;说法①③④成立时,由题意3A =,2ω=,2ππ2π32k ϕ+=+,k ∈Z ,则ππ20,62k ϕπ⎛⎫=-∉ ⎪⎝⎭,故不合题意.故选:D.6.设O 为坐标原点,圆()()22:124M x y -+-=与x轴切于点A ,直线0x +交圆M 于,B C 两点,其中B 在第二象限,则OA BC ⋅=()A B C D 【答案】D 【分析】先根据圆的弦长公式求出线段BC 的长度,再求出直线0x +的倾斜角,即可求得OA 与BC的的夹角,进而可得出答案.【详解】由题意()1,0A ,圆心()1,2M ,()1,2M 到直线0x +距离为12,所以BC =直线0x +π6,则OA 与BC 的的夹角为π6,所以cos ,1OA BC OA BC OA BC ⋅===故选:D .7.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A .3π24R B .3π24R C .3π12R D .3π12R 【答案】C【分析】分别求得面α截圆锥时所得小圆锥的体积和平面α与圆柱下底面之间的部分的体积,结合祖暅原理可求得结果.【详解】 平面α截圆柱所得截面圆半径r ,∴平面α截圆锥时所得小圆锥的体积2311ππ3212V r R =⋅=,又平面α与圆柱下底面之间的部分的体积为232ππ22V R R R =⋅根据祖暅原理可知:平面α与半球底面之间的几何体体积33321V V V R R R =-.故选:C.8.定义{}{},,max ,,min ,,,a a b b a ba b a b b a b a a b ≥≥⎧⎧==⎨⎨<<⎩⎩,对于任意实数0,0x y >>,则2211min max 2,3,49x y x y ⎧⎫⎧⎫+⎨⎨⎬⎬⎩⎭⎩⎭的值是()AB C D 【答案】A【分析】设2211max{2,3,}49x y M x y +=,则2211323(2)(3)M x y x y ≥+++,构造函数21()0)f x x x x=+>,利用导数求出函数()f x 的最小值进而得23632M ≥,化简即可求解.【详解】设2211max{2,3,}49x y M x y +=,则22112,3,49M x M y M x y ≥≥≥+,得222211113232349(2)(3)M x y x y x y x y ≥+++=+++,设21()(0)f x x x x =+>,则33322()1x f x x x -'=-=,令()00f x x '<⇒<<,()0f x x '>⇒>所以函数()f x 在上单调递减,在)+∞上单调递增,故min 233()2f x f ==,即233()2f x ≥,得223333(2)(3)22f x f y ≥≥,所以2222233311336323(2)(3)(2)(3)222M x y f x f y x y ≥+++=+≥+=,得2322M ≥2211min{max{2,3,}}49x y x y +=.故选:A【点睛】关键点点睛:本题考查导数在函数中的综合应用,本题解题的关键是由222211113232349(2)(3)M x y x y x y x y ≥+++=+++构造函数21()0)f x x x x =+>,利用导数求得M 即为题意所求.二、多选题(本题共3小题,每小题6分,共18分。
2024年新高考数学押题密卷(二)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共58分)一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}1,2,0,2A =-,{}2,B y y x x x A ==+∈,{}2Z 60C x x x =∈-≤.则B C ⋂=()A .{}0,2B .{}0,2,6C .{}1,2,0,2-D .{}0,2,6,22.用最小二乘法得到一组数据(),(1,2,3,4,5,6)i i x y i =的线性回归方程为ˆ23yx =+,若6130i i x ==∑,则61i i y ==∑()A .11B .13C .63D .783.在ABC 中,4AB =,3AC =,且AB AC AB AC +=- ,则AB BC ⋅=()A .16B .16-C .20D .20-4.已知函数22()sin cos (),()f x x x x f x =-∈'R 是()f x 的导数,则以下结论中正确的是()A .函数π2f x ⎛⎫+ ⎪⎝⎭是奇函数B .函数()f x 与()f x '的值域相同C .函数()f x 的图象关于直线4x π=对称D .函数()f x 在区间ππ,63⎛⎫⎪⎝⎭上单调递增5.将一个棱长为4的正四面体同一侧面上的各棱中点两两连接,得到一多面体,则这个多面体的外接球的体积为()A .8πB .8π3C D .36.已知集合1111,,,,2,32323A ⎧⎫=--⎨⎬⎩⎭,若,,a b c A ∈且互不相等,则使得指数函数x y a =,对数函数log b y x =,幂函数c y x =中至少有两个函数在(0,)+∞上单调递增的有序数对(,,)a b c 的个数是()A .16B .24C .32D .487.已知数列{}n a 的各项均为正数,记()12n A n a a a =+++ ,()231n B n a a a +=+++ ,()342n C n a a a +=+++ ,*n ∈N ,设甲:{}n a 是公比为q 的等比数列;乙:对任意*n ∈N ,()A n ,()B n ,()C n 三个数是公比为q 的等比数列,则()A .甲是乙的充分不必要条件B .甲是乙的必要不充分条件C .甲是乙的充要条件D .甲是乙的既不充分又不必要条件8.设O 为坐标原点,直线l 过抛物线2:2(0)C x py p =>的焦点10,4F ⎛⎫⎪⎝⎭,且与C 交于,M N 两点,其中M 在第一象限,则下列正确的是()A .C 的准线为14x =-B .1344MF NF MF NF ++⋅的最小值为38C .以MN 为直径的圆与x 轴相切D .若(0,)Q p 且MQ MF =,则180ONQ OMQ ∠+∠>二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知复数12,z z ,则下列命题正确的是()A .若12=z z ,则12=±z z B .若21z z =,则2121z z z =C .若1z 是非零复数,且2112z z z =,则12z z =D .若1z 是非零复数,则1110z z +≠10.已知函数()()2e xf x x ax b =++,下列结论正确的是()A .若函数()f x 无极值点,则()f x 没有零点B .若函数()f x 无零点,则()f x 没有极值点C .若函数()f x 恰有一个零点,则()f x 可能恰有一个极值点D .若函数()f x 有两个零点,则()f x 一定有两个极值点11.正三棱柱111ABC A B C -中,11AB AA ==,点P 满足1BP BC BB λμ=+,其中[]0,1λ∈,[]0,1μ∈,则()A .当0λ=,1μ=时,AP 与平面ABC 所成角为π4B .当12λ=时,有且仅有一个点P ,使得1A P BP ⊥C .当1λ=,12μ=时,平面1AB P ⊥平面1A ABD .若1AP =,则点P 的轨迹长度为π2第二部分(非选择题共92分)三、填空题:本题共3小题,每小题5分,共15分。
专题21 高考数学终极仿真预测试卷注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知复数z 满足,则复数z 在复平面内表示的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限【解析】解:由,得,∴复数z 在复平面内表示的点的坐标为71(,)22,所在的象限为第一象限.【答案】A .2.已知,则sin x 的值为( )A .BCD .【解析】解:(0,)2x π∈,得(44x ππ+∈,3)4π,∴由,得..【答案】B .3.已知0sin a xdx π=⎰,则5()ax x-展开式中1x -项的系数为( )A .10B .10-C .80D .80-【解析】解:已知,则展开式的通项公式为,令521r -=-,求得3r =,故展开式中1x -项的系数为,【答案】D .4.已知双曲线221169x y -=的左焦点为1F ,过1F 的直线l 交双曲线左支于A 、B 两点,则l 斜率的范围为( ) A .4(3-,4)3B .(-∞,33)(44-⋃,)+∞C .33(,)44-D .(-∞,44)(33-⋃,)+∞【解析】解:双曲线221169x y -=的左焦点为1F ,过1F 的直线l 交双曲线左支于A 、B 两点,双曲线的渐近线方程为:34y x =±,所以l 斜率满足3||4k >,即(k ∈-∞,33)(44-⋃,)+∞. 【答案】B . 5.已知向量a ,b 满足,且(2)a a b ⊥+,则b 在a 方向上的投影为( )A .1B .2C 2D .1-【解析】解:向量a ,b 满足,且(2)a a b ⊥+,可得220a a b +=, 可得2a b =-,则b 在a 方向上的投影为:1||a ba =-. 【答案】D .6.已知,0ω>,||)2πϕ<部分图象如图,则()f x 的一个对称中心是()A .(,0)πB .(,0)12πC .5(,1)6π-- D .(,1)6π--【解析】解:函数的最大值为1A B +=,最小值为3A B -+=-, 得2A =,1B =-, 即,,,即T π=,即2ππω=,得2ω=,则,由五点对应法得得3πϕ=,得,由23x k ππ+=,得62k x ππ=-+,k Z ∈, 即函数的对称中心为(62k ππ-+,1)-,k Z ∈ 当0k =时,对称中心为(6π-,1)-,【答案】D .7.已知等比数列{}n a 的公比为q ,34a =,2410a a +=-,且||1q >,则其前4项的和为( ) A .5B .10C .5-D .10-【解析】解:等比数列{}n a 的公比为q ,34a =,2410a a +=-,∴4410q q+=-,解得12q =-(舍去),或2q =-,1241a q∴==,,【答案】C .8.已知ABC ∆是边长为2的等边三角形,D 为BC 的中点,且23BP BC =,则(AD AP = )A B .1 C D .3【解析】解:由23BP BC =,可得点P 为线段AB 的三等分点且靠近点A ,过点P 作PE AD ⊥交AD 于点E , 则,【答案】B .9.根据党中央关于“精准”脱贫的要求,我市某农业经济部门派四位专家对三个县区进行调研,每个县区至少派一位专家,则甲,乙两位专家派遣至同一县区的概率为( ) A .16B .14 C .13D .12【解析】解:我市某农业经济部门派四位专家对三个县区进行调研, 每个县区至少派一位专家, 基本事件总数,甲,乙两位专家派遣至同一县区包含的基本事件个数,∴甲,乙两位专家派遣至同一县区的概率为.【答案】A .10.已知x ,y 满足约束条件,则2z x y =+的最大值是( )A .0B .2C .5D .6【解析】解:画出约束条件表示的平面区域,如图所示;由解得(3,4)A -,此时直线在y 轴上的截距最大,所以目标函数2z x y =+的最大值为.【答案】C .11.将函数的图象向左平移8π个单位得到()g x 的图象,则()g x 在下列那个区间上单调递减( ) A .[,0]2π-B .9[,]1616ππC .[0,]2πD .[,]2ππ【解析】解:将函数的图象向左平移8π个单位得到的图象,在区间[0,]2π上,则2[0x ∈,]π,()g x 单调递减,故C 满足条件,在区间[2π-,0]上,则2[x π∈-,0],()g x 单调递增,故A 不满足条件; 在区间[16π,9]16π上,则2[8x π∈,9]8π,()g x 没有单调性,故B 不满足条件;在区间[0,]2π上,则2[0x ∈,]π,()g x 单调递减,故C 满足条件; 在区间[2π,]π上,则2[x π∈,2]π,()g x 没有单调性,故D 不满足条件,【答案】C .12.已知()f x 为定义在R 上的偶函数,,且当(x ∈-∞,0]时,()g x 单调递增,则不等式的解集为( )A .3(,)2+∞B .3(,)2-+∞C .(,3)-∞-D .(,3)-∞【解析】解:根据题意,,则,若()f x 为偶函数,则,即可得函数()g x 为偶函数,又由当(x ∈-∞,0]时,()g x 单调递增, 则,解可得32x >-,即不等式的解集为3(2-,)+∞;【答案】B .第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.学校要从5名男生和2名女生中随机抽取2人参加社区志愿者服务,若用ξ表示抽取的志愿者中女生的人数,则随机变量ξ的数学期望()E ξ的值是47.(结果用分数表示) 【解析】解:学校要从5名男生和2名女生中随机抽取2人参加社区志愿者服务, 用ξ表示抽取的志愿者中女生的人数, 则ξ的可能取值为0,1,2,,,,∴随机变量ξ的数学期望:.故答案为:47. 14.若,则cos2α的值是 .【解析】解:已知:,根据三角函数的诱导公式,,所以:则:3cos 5α=, 则:.故答案为:725-15.已知点F 是抛物线2:4C y x =的焦点,点M 为抛物线C 上任意一点,过点M 向圆作切线,切点分别为A ,B ,则四边形AFBM 面积的最小值为 12. 【解析】解:如下图所示:圆的圆心与抛物线的焦点重合, 若四边形AFBM 的面积最小, 则MF 最小, 即M 距离准线最近,故满足条件时,M 与原点重合,此时1MF =,,此时四边形AFBM 面积,故答案为:12. 16.设数列{}n a 是递减的等比数列,且满足2712a a =,3694a a +=,则1232n a a a a ⋯的最大值为 64 . 【解析】解:设递减的等比数列{}n a 的公比为q ,2712a a =,3694a a +=, ∴,3694a a +=, 解得32a =,614a =. 36318a q a ∴==,12q ∴=,3128a a q ==,24a =,41a =.5n …时,(0,1)n a ∈. .的最大值为64.故答案为:64.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c .已知.(Ⅰ)求证:2B A π-=;(Ⅱ)若c =,3C π=,求ABC ∆的面积.【解析】解:(Ⅰ)证明:, ∴由正弦定理可得:,可得:,,,,sin02B A+≠,,,,2B A π∴-=,即2B A π=+.(Ⅱ)3C π=,,又2B A π-=,所以712B π=,12A π=, 由正弦定理得sin sin a cA C=,,.18.梯形ABCD 中,//AD BC ,6ABC π∠=,3BCD π∠=,2AD CD ==,过点A 作AE AB ⊥,交BC于E (如图1).现沿AE 将ABE ∆折起,使得BC DE ⊥,得四棱锥B AECD -(如图2). (Ⅰ)求证:平面BDE ⊥平面ABC ;(Ⅱ)若F 为BC 的中点,求二面角D EF C --的余弦值.【解析】(Ⅰ)证明:在ABE ∆中,6ABC π∠=,AE AB ⊥,3BEA π∴∠=,又3BCD π∠=,//AE DC ∴,又//AD BC ,∴四边形AECD 为平行四边形,AD CD =,∴平行四边形AECD 为菱形,则DE AC ⊥, 又BC DE ⊥,AC ,BC ⊂平面ABC ,,DE ∴⊥平面ABC ,又DE ⊂平面BDE ,∴平面BDE ⊥平面ABC ;(Ⅱ)解:DE ⊥平面ABC ,AB ⊂平面ABC ,AB DE ∴⊥, 又AB AE ⊥,AE ,DE ⊂平面AECD ,,AB ∴⊥平面AECD ,设,O ∴,F 分别为AC ,BC 的中点,则//OF AB ,OF ∴⊥平面AECD .由(Ⅰ)得,以O 为原点,建立如图所示空间直角坐标系, 不妨设2AD CD ==,可知2AE CD ==,.则(0F ,0,(0C 0),(1E ,0,0), 设平面EFC 的一个法向量为(,,)m x y z =,则,取x =(3,1,1)m =.平面DEF 的一个法向量(0,1,0)n =.设二面角D EF C --的平面角为θ,则.即二面角D EF C --.19.已知动直线与y 轴交于点A ,过点A 作直线AB l ⊥,交x 轴于点B ,点C 满足3AC AB =,C 的轨迹为E .(Ⅰ)求E 的方程;(Ⅱ)已知点(1,0)F ,点(2,0)G ,过F 作斜率为1k 的直线交E 于M ,N 两点,延长MG ,NG 分别交E 于P ,Q 两点,记直线PQ 的斜率为2k ,求证:12k k 为定值. 【解析】解:()I 动直线与y 轴交于点(0,3)A k ,直线AB l ⊥,∴直线AB 的方程为:,交x 轴于点2(3B k ,0).设(,)C x y ,点C 满足3AC AB =, (x ∴,,3)k -.29x k ∴=,6y k =-.消去k 可得:.即为C 的轨迹方程E .()II 证明:设M ,N ,P ,Q 的坐标依次为(i x ,)(1i y i =,2,3,4). 直线MN 的方程为:1x ty =+,联立214x ty y x =+⎧⎨=⎩,化为:,124y y t ∴+=,124y y =-,设直线MG 的方程为:2x my =+,联立224x my y x =+⎧⎨=⎩,化为:,138y y ∴=-,318y y ∴=-.同理可得:428y y =-.,2344k y y =+. ∴为定值.20.某企业打算处理一批产品,这些产品每箱100件,以箱为单位销售.已知这批产品中每箱出现的废品率只有两种可能10%或者20%,两种可能对应的概率均为0.5.假设该产品正品每件市场价格为100元,废品不值钱.现处理价格为每箱8400元,遇到废品不予更换.以一箱产品中正品的价格期望值作为决策依据.(Ⅰ)在不开箱检验的情况下,判断是否可以购买;(Ⅱ)现允许开箱,有放回地随机从一箱中抽取2件产品进行检验.()i 若此箱出现的废品率为20%,记抽到的废品数为X ,求X 的分布列和数学期望; ()ii 若已发现在抽取检验的2件产品中,其中恰有一件是废品,判断是否可以购买.【解析】解:(Ⅰ)在不开箱检验的情况下,一箱产品中正品的价格期望值为:,∴在不开箱检验的情况下,可以购买.(Ⅱ)()i X 的可能取值为0,1,2,, , ,X ∴的分布列为:.()ii 设事件A :发现在抽取检验的2件产品中,其中恰有一件是废品,则P (A ),一箱产品中,设正品的价格的期望值为η,则8000η=,9000,事件1B :抽取的废品率为20%的一箱,则,事件2B :抽取的废品率为10%的一箱,则,,∴已发现在抽取检验的2件产品中,其中恰有一件是废品,不可以购买.21.已知函数.(Ⅰ)若0a =,求过点(1,0)-与曲线()y f x =相切的切线方程; (Ⅱ)若不等式恒成立,求a 的取值范围.【解析】解:(Ⅰ)当0a =时,()x f x e =,()x f x e '=,设切点为0(x ,0)x e ,则,得00x =.∴所求切线方程为1y x =+;(Ⅱ)依题意,得,即,也就是恒成立,令()x g x e x =+,则()g x 在R 上单调递增, 则等价于()x ln x a >-恒成立.即x e x a >-恒成立,即x a x e >-恒成立.令()x h x x e =-,()1x h x e '=-,由()0h x '>,得0x <,由()0h x '<,得0x >, ()h x ∴在(,0)-∞上单调递增,在(0,)+∞上单调递减..1a ∴>-.故实数a 的取值范围为(1,)-+∞.请考生在第22、23题中任选一题作答.注意:只能做所选定的题目.如果多做,则按所做第一个题目计分,做答时,请用2B 铅笔在答题卡上将所选题号后的方框涂黑.22.在平面直角坐标系xOy 中,已知曲线C 的参数方程为为参数,直线,以O 为极点,x 轴正半轴为极轴建立极坐标系. (Ⅰ)求曲线C 的极坐标方程;(Ⅱ)若直线l 与曲线C 交于A ,B 两点,求||||OA OB 的值.【解析】解:(Ⅰ)由曲线C 的参数方程消去参数α可得曲线C 的普通方程为:,即,化为极坐标方程为.(Ⅱ)直线l 的极坐标方程为,将θβ=代入方程,得,123ρρ∴=-,.23.已知不等式的解集是A .(Ⅰ)求集合A ;(Ⅱ)设x ,y A ∈,对任意a R ∈,求证:. 【解析】解:(Ⅰ)当12x <时,不等式变形为,解得102x <<; 当112x 剟时,不等式变形为,解得112x 剟;当1x >时,不等式变形为,解得12x <<;综上得.(Ⅱ)x ,y A ∈,0x ∴<,2y <,,0x <,2y <,,||2x y ∴-<,,,,即.。
文 科 数 学(二)本试题卷共6页,23题(含选考题)。
全卷满分150分。
考试用时120分钟。
第Ⅰ卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合0y A yx ⎧⎫==⎨⎬⎩⎭,集合(){}10B x x x =->,则A B =R ð( ) A .{}|01x x ≤≤ B .{}|01x x << C .{}0D ∅2.已知复数z 满足1i 1z z -=+,则复数z 在复平面内对应点在( ) A .第一、二象限B .第三、四象限C .实轴D .虚轴3.为了得到函数cos 2y x =的图像,可将函数sin 26y x π⎛⎫=-⎪⎝⎭的图像( ) A .向右平移6π个单位长度B .向右平移3π个单位长度C .向左平移6π个单位长度D .向左平移3π个单位长度4.某公司准备招聘了一批员工.有20人经过初试,其中有5人是与公司所需专业不对口,其余都是对口专业,在不知道面试者专业情况下,现依次选取2人进行第二次面试,第一个人已面试后,则第二次选到与公司所需专业不对口的概率是( ) A .519B .119C .14D .125.《九章算术》中“开立圆术”曰:“置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径”.“开立圆术”相当于给出了已知球的体积V ,求其直径d,公式为d =13,根据“开立圆术”的方法求球的体积为( ) A .481π B .6π C .481D .61 6.若变量,x y 满足不等式组120x x y x y ⎧⎪⎨⎪++⎩≤≥≥,则(),x y 的整数解有( )A .6B .7C .8D .97.某几何体的三视图如图所示,设正方形的边长为a ,则该三棱锥的表面积为( ) A .2aB2C2 D.28.已知等差数列{}n a 的前n 项和为S n ,且S 2=4,S 4=16,数列{}n b 满足1n n n b a a +=+,则数列{}n b 的前9和9T 为( )A .80B .20C .180D .1669.已知直线:21l y x =+与圆C :221x y +=交于两点A ,B ,不在圆上的一点()1,M m -,若MA 1MB ⋅=,则m 的值为( ) A .1-,75B .1,75C .1,75-D .1-,75-10.已知函数()()22e x f x x x =-,关于()f x 的性质,有以下四个推断: ①()f x 的定义域是(),-∞+∞; ②函数()f x 是区间()0,2上的增函数;③()f x 是奇函数; ④函数()f x在x =其中推断正确的个数是( ) A .0B .1C .2D .311.已知椭圆的标准方程为22154x y +=,12,F F 为椭圆的左右焦点,O 为原点,P 是椭圆在第一象限的点,则12PF PF -的取值范围( ) A .()0,2B .()1,6C.(D .()0,612.已知正方体1111ABCD A B C D -的棱长为1,E 为棱1CC 的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F 、B 、E 、G 、H 为面MBN 过三点B 、E 、F 的截面与正方体1111ABCD A B C D -在棱上的交点,则下列说法错误的是( ) A .HF //BE B.2BM =C .∠MBND .△MBN第Ⅱ卷本卷包括必考题和选考题两部分。
决胜2024年高考数学押题预测卷02数 学(新高考九省联考题型)(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若(12i)(32i)2i z ---=+,则z =( )A 33i - B. 33i+ C. 33i-+ D. 33i--2.已知向量(2,0),(a b ==-r r,则a r 与()a b -r r 夹角的余弦值为( )A. B. 12-C.123. “直线1sin 102x y q +-=与cos 10x y q ++=平行”是“π4q =”的( )A. 充分不必要条件 B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件4.若()62345601234561x a a x a x a x a x a x a x -=++++++,则246a a a ++=( )A. 64B. 33C. 32D. 315.公元656年,唐代李淳风注《九章》时提到祖暅的“开立圆术”.祖暅在求球的体积时,使用一个原理:“幂势既同,则积不容异”.“幂”是截面积,“势”是立体的高,意思是两个同高的立体,如在等高处的截面积相等,则体积相等.更详细点说就是,介于两个平行平面之间的两个立体,被任一平行于这两个平面的平面所截,如果两个截面的面积相等,则这两个立体的体积相等.上述原理在中国被称为“祖暅原理”.3D 打印技术发展至今,已经能够满足少量个性化的打印需求,现在用3D 打印技术打印了一个“睡美人城堡”.如图,其在高度为h 的水平截面的面积S 可以近似用函数()()2π9S h h =-,[]0,9h Î拟合,则该“睡美人城堡”的体积约为( )A. 27πB. 81πC. 108πD. 243π.6.在ABC V 中,内角,,A B C 的对边分别为a b c 、、,若()()()sin sin sin sin a c A C b A B +-=-,且c =2ba -的取值范围为( )A. ()1,2-B. ö÷øC. æççèD. (-7.已知正实数,,a b c 满足2131412,3,4a b c a b c a b c a b c+++=-=-=-,则,,a b c 的大小关系为( )A. c b a <<B. a b c<<C. a c b<< D. b a c<<8.已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且12π3F PF Ð=,若椭圆的离心率为1e ,双曲线的离心率为2e ,则22122212313e e e e +++的最小值是( )二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法正确的是( )A. 数据6,2,3,4,5,7,8,9,1,10的第70百分位数是8.5B. 若随机变量()()2~2,10.68X N P x s>=,,则()230.18P x £<=C. 设A B ,为两个随机事件,()0P A >,若()()P BA PB =∣,则事件A 与事件B 相互独立D. 根据分类变量X 与Y 的成对样本数据,计算得到2 4.712=c ,依据0.05a =的卡方独立性检验()0.05 3.841=x ,可判断X 与Y 有关且该判断犯错误的概率不超过0.0510.若函数2222()2sin log sin 2cos log cos f x x x x x =×+×,则( )A. ()f x 的最小正周期为pB. ()f x 的图象关于直线4x p=对称C. ()f x 的最小值为1-D. ()f x 的单调递减区间为2,24k k p p p æö+ç÷èø,k ZÎ11.设函数()f x 的定义域为R ,()f x 为奇函数,(1)(1)f x f x +=-,(3)1f =,则( )A ()11f -= B. ()(4)f x f x =+C. ()(4)f x f x =-D.181()1k f k ==-å三、填空题:本题共3小题,每小题5分,共15分..12.已知集合{}24A x x =-<<,122x B x ìü=>íýîþ,则A B =I ______________.13.已知A 为圆C :()22114x y +-=上动点,B 为圆E :()22134x y -+=上的动点,P 为直线12y x =上的动点,则PB PA -的最大值为______________.14.已知数列{}n a 的通项公式为122311,3+==++×××++n n n n a S a a a a a a n ,若对任意*N n Î,不等式()432n n S n l +<+恒成立,则实数l 的取值范围是______.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.甲、乙、丙三人进行投篮比赛,共比赛10场,规定每场比赛分数最高者获胜,三人得分(单位:分)情况统计如下:场次12345678910甲8101071288101013乙9138121411791210丙121191111998911(1)从上述10场比赛中随机选择一场,求甲获胜的概率;(2)在上述10场比赛中,从甲得分不低于10分的场次中随机选择两场,设X 表示乙得分大于丙得分的场数,求X 的分布列和数学期望()E X ;(3)假设每场比赛获胜者唯一,且各场相互独立,用上述10场比赛中每人获胜的频率估计其获胜的概率.甲、乙、丙三人接下来又将进行6场投篮比赛,设1Y 为甲获胜的场数,2Y 为乙获胜的场数,3Y 为丙获胜的场数,写出方差()1D Y ,()2D Y ,()3D Y 的大小关系.16.如图,在多面体ABCDEF 中,底面ABCD 为平行四边形,2,90AB AD ABD Ð===o ,矩形BDEF 所在平面与底面ABCD 垂直,M 为CE 的中点.的(1)求证:平面BDM P 平面AEF ;(2)若平面BDM 与平面BCF CE 与平面BDM 所成角的正弦值.17.已知函数()()ln 1f x x a x a =--ÎR .(1)若曲线()y f x =在点(1,0)处的切线为x 轴,求a 的值;(2)讨论()f x 在区间(1,)+¥内极值点的个数;18.已知抛物线:22y x =,直线:4l y x =-,且点,B D 在抛物线上.(1)若点,A C 在直线l 上,且,,,A B C D 四点构成菱形ABCD ,求直线BD 的方程;(2)若点A 为抛物线和直线l 的交点(位于x 轴下方),点C 在直线l 上,且,,,A B C D 四点构成矩形ABCD ,求直线BD 的斜率.19.若无穷数列{}n a 的各项均为整数.且对于,,i j i j *"Î<N ,都存在k j >,使得k j i j i a a a a a =--,则称数列{}n a 满足性质P .(1)判断下列数列是否满足性质P ,并说明理由.①n a n =,1n =,2,3,…;②2n b n =+,1n =,2,3,….(2)若数列{}n a 满足性质P ,且11a =,求证:集合{}3∣n n a *Î=N 为无限集;(3)若周期数列{}n a 满足性质P ,请写出数列{}n a 的通项公式(不需要证明).决胜2024年高考数学押题预测卷02数 学(新高考九省联考题型)(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
专题02 高考数学仿真押题试卷(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.ð()1.已知集合,则M=R15.从左至右依次站着甲、乙、丙3个人,从中随机抽取2个人进行位置调换,则经过两次这样的调换后,甲在乙左边的概率是________.16.如图所示,在中,AB与CD是夹角为60︒的两条直径,,E F分别是与直径CD 上的动点,若,则λ的取值范围是________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.某校随机调查了80位学生,以研究学生中爱好羽毛球运动与性别的关系,得到下面的数据表:爱好不爱好合计男20 30 50女10 20 30合计30 50 80(1)将此样本的频率估计为总体的概率,随机调查了本校的3名学生.设这3人中爱好羽毛球运动的人数为X ,求X 的分布列和期望值;(2)根据表中数据,能否有充分证据判定爱好羽毛球运动与性别有关联?若有,有多大把握?附:()2P k χ≥0.1000.0500.010k2.7063.841 6.63518.已知数列{}n a 为等差数列,首项11a =,公差0d ≠.若成等比数列,且.X 0 1 2 3P125512 225512 135512 27512∴.(2),故没有充分证据判定爱好羽毛球运动与性别有关联.18.【答案】(1)1312n n b -+=;(2)22n -.【解析】(1),,111b a a ==,23b a =,∴3q =,,∴1312n n b -+=.(2),.19.【答案】(1)见解析;(2)155.(2)如图,分别以OD ,1OB ,OC 所在直线为x ,y ,z 轴,以O 为坐标原点,建立如图所示的空间直角坐标系,,O x y z -,则,,,6(,0,0)3D ,,,,设平面ABC 的法向量为(,,)x y z =n , 则00AB AC ⎧⋅=⎪⎨⋅=⎪⎩n n ,即,令1y =,则1z =-,22x =,所以.设直线CD 与平面ABC 所成角为α,则:.20.【答案】(1)2p =;(2)3π.【解析】(1)0,2p F ⎛⎫⎪⎝⎭,当直线的倾斜角为45︒时,直线的方程为2p y x =+,设()11,A x y ,()22,B x y ,222py x x py ⎧=+⎪⎨⎪=⎩得, 122x x p +=,,得AB 中点为3,2D p p ⎛⎫ ⎪⎝⎭,AB 中垂线为,0x =代入得552y p ==,2p ∴=. (2)设的方程为1y kx =+,代入24x y =得,,AB 中点为,令,,SABα∴=, D 到x 轴的距离,, 当20k =时,cos α取最小值12,α的最大值为3π,故SAB 的最大值为3π.21.【答案】(1)1a >,B A ⊆;(2)2m =. 【解析】(1),,()1,x ∈+∞.易知在()1,+∞上递减,.存在()01,x ∈+∞,使得()00m x '=,函数()m x 在()01,x x ∈递增,在递减,()0a m x ≥. 由()00m x '=得001ln x x =,,1a ∴>,B A ⊆.(2)令,,()1,x ∈+∞.,()1,x ∈+∞,由于,,x →+∞,,由零点存在性定理可知:,函数()f x 在定义域内有且仅有一个零点.,()1,x ∈+∞,,x →+∞,()g x →+∞,同理可知,函数()g x 在定义域内有且仅有一个零点.假设存在0x 使得,,消得, 令,,()h x ∴递增,,,,此时,所以满足条件的最小整数2m =.选做题:请考生在22~23两题中任选一题作答,如果多做,按所做的第一题记分. 22.选修4—4:坐标系与参数方程选讲 【答案】(1)直线:l y x =,曲线;(2)点M 的轨迹是椭圆夹在平行直线3y x =±之间的两段弧. 【解析】(1)直线:l y x =,曲线,(2)设点00(,)M x y 及过点M 的直线为,由直线1l 与曲线C 相交可得:,,即:,表示一椭圆,取y x m =+代入2212x y +=得:,0∆≥得,故点M 的轨迹是椭圆夹在平行直线3y x =±之间的两段弧.。
2019届高考新课标2卷文科数学押题卷含答案第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.设全集为R,集合A={x∈R|x2<4},B={x|-1<x≤4},则A∩(∁R B)=()A.(-1,2)B.(-2,-1)C.(-2,-1]D.(-2,2),其中i为虚数单位,则=()2.若复数z=-A.1+iB.1-iC.-1+ID.-1-i3.函数f(x)=sin(-2x)的一个递增区间是()A.,B.-,-C.,D.-,-4.设S n为等比数列{a n}的前n项和,8a1-a4=0,则= ()A.-8B.8C.5D.155.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:建设前经济收入构成比例建设后经济收入构成比例则下面结论中不正确的是()A.新农村建设后,种植收入减少B.新农村建设后,其他收入增加了一倍以上C.新农村建设后,养殖收入增加了一倍D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半6.直线ax+by-a=0与圆x2+y2+2x-4=0的位置关系是()A.相离B.相切C.相交D.与a,b的取值有关7.已知△ABC是非等腰三角形,设P(cos A,sin A),Q(cos B,sin B),R(cos C,sin C),则△PQR的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.不确定8.已知某个几何体的三视图如图所示,根据图中标出的尺寸(单位: c m),则这个几何体的体积是()A.8 cm3B.12 cm3C.24 cm3D.72 cm39.设变量x,y满足约束条件-,-,,则-的最小值是()A.1B.-1C.2D.-210.已知双曲线=1(a>0,b>0),斜率为1的直线截得的弦的中点为(4,1),则该双曲线离心率的值是()A.B.C.D.211.已知函数f(x)=,-,-,,若f(1)+f(a)=2,则a的所有可能值为()A.1B.-C.1,-D.1,12.两球O1和O2在棱长为1的正方体ABCD-A1B1C1D1的内部,且互相外切,若球O1与过点A的正方体的三个面相切,球O2与过点C1的正方体的三个面相切,则球O1和O2的表面积之和的最小值为()A.3(2-)πB.4(2-)πC.3(2+)πD.4(2+)π第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.已知函数f(x)=ax3+x+1的图象在点(1,f(1))处的切线过点(2,7),则a=.14.已知a,b∈R,且a-3b+6=0,则2a+的最小值为.15.已知α∈,,tan α=2,则cos-=.16.已知等差数列{a n}的前n项和为S n=(a+1)n2+a,某三角形三边之比为a2∶a3∶a4,则该三角形的面积为.三、解答题(本大题共6小题,共70分)17.(12分)已知{a n}是各项均为正数的等比数列,{b n}是等差数列,且a1=b1=1,b2+b3=2a3,a5-3b2=7.(1)求{a n}和{b n}的通项公式;(2)设c n=a n b n,n∈N*,求数列{c n}的前n项和.18.(12分)如图,AB是☉O的直径,点C在☉O上,矩形DCBE所在的平面垂直于☉O所在的平面,AB=4,BE=1.(1)证明:平面ADE⊥平面ACD;(2)当三棱锥C-ADE的体积最大时,求点C到平面ADE的距离.19.(12分)如图,茎叶图记录了甲、乙两组各四名同学完成某道数学题的得分情况.乙组某个数据的个位数模糊,记为x,已知甲、乙两组的平均成绩相同.(1)求x的值,并判断哪组学生成绩更稳定;(2)在甲、乙两组中各抽出一名同学,求这两名同学的得分之和低于20分的概率.20.(12分)已知点F为抛物线E:y2=2px(p>0)的焦点,点A(2,m)在抛物线E上,且|AF|=3.(1)求抛物线E的方程;(2)已知点G(-1,0),延长AF交抛物线E于点B,证明:以点F为圆心且与直线GA相切的圆,必与直线GB相切。
高考数学仿真押题试卷(二)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.集合,,则=B A ( )A .)1,(--∞B .]1,(--∞C .),1(+∞D .),1[+∞2.已知复数,则||z z +=( )A .12-B .12-+ C .12+ D .12 3.若,(0,)2απ∈,则sin α的值为( )A .624- B .624+ C .187 D .32 4.如图,在矩形区域ABCD 的A ,C 两点处各有一个通信基站,假设其信号覆盖范围分别是扇形区域ADE 和扇形区域CBF (该矩形区域内无其他信号来源,基站工作正常),若在该矩形区域内随机地选一地点,则该地点无信号的概率是( )A .14π-B .12π- C .22π-D .4π 5.已知一几何体的三视图如图所示,则该几何体的体积为( )A .163π+ B .112π+ C .1123π+ D .143π+6.若A ,B 是锐角△ABC 的两个内角,则点P (cos B -sin A ,sin B -cos A )在( )A .第一象限B .第二象限C .第三象限D .第四象限7.已知函数的部分图象如图所示,则函数图象的一个对称中心可能为( )A .)0,2(-B .)0,1(C .)0,10(D .)0,14(8.函数的大致图象为( )A .B .C .D .9.已知点A ,B ,C ,D 在同一个球的球面上,,2=AC ,若四面体ABCD 的体积为332,球心O 恰好在棱DA 上,则这个球的表面积为( )A .254πB .4πC .8πD .16π10.F 为双曲线22221x y a b-=右焦点,M ,N 为双曲线上的点,四边形OFMN 为平行四边形,且四边形OFMN 的面积为bc ,则双曲线的离心率为( ) A .2B .22C .2D .311.已知不等式组表示的平面区域恰好被圆所覆盖,则实数k 的值是( ) A .3B .4C .5D .612.已知0x 是方程的实根,则关于实数0x 的判断正确的是( )A .0ln 2x ≥B .01ex < C .D .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.展开式中含3x 项的系数为 .(用数字表示)14.已知(1,)a λ=,(2,1)b =,若向量2a b +与(8,6)c =共线,则a 在b 方向上的投影为 . 15.在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,,且8=a ,ABC△的面积为34,则c b +的值为 .16.如图所示,点F 是抛物线x y 82=的焦点,点A ,B 分别在抛物线x y 82=及圆的实线部分上运动,且AB 总是平行于x 轴,则FAB △的周长的取值范围是 .三、解答题:解答应写出文字说明、证明过程或演算步骤. 17.设n S 为数列}{n a 的前n 项和,且11=a ,,*n ∈N .(1)证明:数列}1{+nS n为等比数列; (2)求.(2)若参与班级宣传的志愿者中有12名男生,8名女生,从中选出2名志愿者,用X 表示所选志愿者中的女生人数,写出随机变量X 的分布列及其数学期望.20.已知椭圆的长轴长为6,且椭圆C 与圆的公共弦长为3104. (1)求椭圆C 的方程;(2)过点)2,0(P 作斜率为)0(>k k 的直线l 与椭圆C 交于两点A ,B ,试判断在x 轴上是否存在点D ,使得ADB △为以AB 为底边的等腰三角形,若存在,求出点D 的横坐标的取值范围;若不存在,请说明理由.21.已知函数.(1)当0a ≤时,试求)(x f 的单调区间;(2)若)(x f 在)1,0(内有极值,试求a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程已知曲线C :,直线(t 为参数,0α<π≤).(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于B A ,两点(A 在第一象限),当时,求a 的值.23.选修4-5:不等式选讲 已知函数.(1)求不等式()3f x ≤的解集;(2)若函数)(x f y =的最小值记为m ,设a ,b ∈R ,且有m b a =+22,试证明:.高考数学仿真押题试卷(二)【答案解析】第Ⅰ卷一、选择题 1.【答案】C【解析】,,,选C .2.【答案】C【解析】,1z =,.故选C .3.【答案】A【解析】,,,故选A . 4.【答案】A【解析】几何概型,由面积比例可以得出答案. 5.【答案】C【解析】由三视图可知:该几何体是由一个三棱锥和一个圆锥的14组成的,故选C . 6.【答案】B7.【答案】C【解析】由题知A =,8ωπ=,再把点(2,-代入可得34ϕπ=-,,故选C .8.【答案】D 【解析】由函数不是偶函数,排除A 、C ,当时,sin y x =为单调递增函数,而外层函数e x y =也是增函数,所以在上为增函数.故选D .11.【答案】D【解析】由于圆心(3,3)在直线上,又由于直线与直线互相垂直其交点为,直线与的交点为(0,6)-.由于可行域恰好被圆所覆盖,及三角形为圆的内接三角形圆的半径为,解得6k =或6k =-(舍去).故选D .12.【答案】C 【解析】方程即为,即,令()e xf x x =,,则,函数()f x 在定义域内单调递增,结合函数的单调性有:,故选C .二、填空题13.【答案】0【解析】5(1)x -展开式中含3x 项的系数为3510C =,含2x 项的系数为3510C -=-,所以展开式中含3x 项的系数为10-10=0.14.【答案】【解析】由题知1λ=.15.【答案】【解析】,∴由正弦定理1cos 2A =-,23A π=, 8a =,由余弦定理可得:,又因为ABC △面积12=,16bc =,b c +=.三、解答题 17.【答案】(1)数列{1}nS n+是首项为2,公比为2的等比数列.(2).【解析】 (1)因为,所以,即,则,所以,又1121S +=, 故数列{1}nS n+是首项为2,公比为2的等比数列. (2)由(1)知,所以,故.设,则,所以,所以,所以.18.【答案】二面角E AC F --. 【解析】(1)因为底面ABCD 为菱形,所以AC BD ⊥, 又平面BDEF ⊥底面ABCD ,平面BDEF 平面,因此AC ⊥平面BDEF ,从而AC EF ⊥. 又BD DE ⊥,所以DE ⊥平面ABCD , 由2AB a =,,, 可知,2BD a =,,,从而,故EF AF ⊥. 又,所以EF ⊥平面AFC .又EF ⊂平面AEF ,所以平面AEF ⊥平面AFC .(2)取EF 中点G ,由题可知OG DE ∥,所以OG ⊥平面ABCD ,又在菱形ABCD 中,OA OB ⊥,所以分别以OA ,OB ,OG 的方向为x ,y ,z 轴正方向建立空间直角坐标系O xyz -(如图所示),则(0,0,0)O,,0,0)A ,,,,所以,,.由(1)可知EF ⊥平面AFC ,所以平面AFC 的法向量可取为. 设平面AEC 的法向量为(,,)n x y z =,则0,0,n AE n AC ⎧⋅=⎪⎨⋅=⎪⎩,即,即,0,y x ⎧=⎪⎨=⎪⎩,令z =,得4y =,所以.从而.故所求的二面角E AC F --19.【答案】(1) (2)【解析】(1)用分层抽样的方法,每个人被抽中的概率是515010=, 所以,参与到班级宣传的志愿者被抽中的有120210⋅=人, 参与整理、打包衣物的志愿者被抽中的有130310⋅=人, 故“至少有1人是参与班级宣传的志愿者”的概率是.(2)女生志愿者人数0,1,2X =,则,,.∴X 的分布列为∴X 的数学期望为.(2)直线l 的解析式为2y kx =+,设11(,)A x y ,22(,)B x y ,AB 的中点为00(,)E x y .假设存在点(,0)D m ,使得ADB △为以AB 为底边的等腰三角形,则DE AB ⊥.由得,故,所以,.因为DE AB ⊥,所以1DE k k =-,即,所以.当0k >时,,所以.综上所述,在x 轴上存在满足题目条件的点D ,且点D 的横坐标的取值范围为.(2)若()f x 在(0,1)内有极值,则()f x '在(0,1)x ∈内有解.令,e 0x ax -=,e xa x =. 设e ()xg x x =(0,1)x ∈,所以,当(0,1)x ∈时,()0g x '<恒成立,所以()g x 单调递减.又因为(1)e g =,又当0x →时,()g x →+∞,即()g x 在(0,1)x ∈上的值域为(e,)+∞,所以当e a >时,有解.设,则(0,1)x ∈,所以()H x 在(0,1)x ∈单调递减.因为,,所以在(0,1)x ∈有唯一解0x .所以有:所以当e a >时,()f x 在(0,1)内有极值且唯一.当e a ≤时,当(0,1)x ∈时,()0f x '≥恒成立,()f x 单调递增,不成立. 综上,a 的取值范围为(e,)+∞.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4—4:坐标系与参数方程【答案】(1) 244x y =+;(2) ∴6απ=.【解析】(2)证明:由图可知函数()y f x =的最小值为32,即32m =.所以223 2a b+=,从而,从而.当且仅当时,等号成立,即21 6a=,24 3b=时,有最小值,所以得证。
专题10高考数学仿真押题试卷(十)注意事项:1 •答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴 在答题卡上的指定位置。
2 •选择题的作答:每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3 •非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和 答题卡上的非答题区域均无效。
4 •考试结束后,请将本试题卷和答题卡一并上交。
第I 卷一、选择题:本大题共12小题,每小题 5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1 •设集合丄'-'讨丄;寸,7- 则£B =()AB . (3,4) C. (—2,1) D. (4,::)【答案】B •2 .复数Z =2,则Z 对应的点所在的象限为()1 +i A. 第四象限B ・第三象限C.第二象限Z.2•如土w【解析】解: , 则Z =1 -i ,对应的点的坐标为(1,-1)位于第四象限,【答案】A •3•下列函数中,是偶函数且在区间(0,;)上单调递减的函数是( )【解析】解:T 集合一纠丄•• -:f 娟恥{x|3<z4}・3 = {x —<0}-{x|l<x<4} jf-4D.第一象限A. y =2xB. y= .xC. y =| x |D. y =1【解析】解:A•根据y =2x的图象知该函数非奇非偶,.该选项错误;B •根据y = 的图象知该函数非奇非偶,•该选项错误;C • x (0,::)时,y r|x|=x为增函数;即y Tx|在(0,;)上单调递增,.该选项错误;D •显然y=-x21为偶函数,根据其图象可看出该函数在(0,二)上单调递减,.该选项正确. 【答案】D •v = cor(x+-)*sin;(x+^]4 •函数匚-的最小正周期为()A. 2-B. -C.二D.-2 4y - cos:(x+-i-sin:(x+-j = cos(2x +-]=一sin lx【解析】解:- - 一,2下.函数的最小正周期为:——二二,2【答案】B •5 •以下说法错误的是()A命题“若“ .SU,则x =1 ”的逆否命题为“若x=1,则-一”B. “ x =2 ”是“ 一- ”的充分不必要条件C. 若命题p :存在x o • R,使得',则一p :对任意R,都有x2-x •仆0D. 若p且q为假命题,则p , q均为假命题【解析】解:A.“若“,则X =1 ”的逆否命题为“若x式1,贝3l+2#0 ”,正确;B •由■3i+2:,解得x =1 , 2,因此“ x =2 ”是“'-- ”的充分不必要,正确;C •命题p :存在怡• R,使得',则一p :对任意R,都有x^x 1-0,正确;D .由p且q为假命题,则p , q至少有一个为假命题,因此不正确.【答案】D .6•在等差数列中,a i a5 =16,则S^( )A. 80B. 40C. 31D. —31 【解析】解:T在等差数列{an}中,印*5=16 ,二 3 =彳(坷 + 曲)=&“6=40【答案】B .7 .已知函数 d 咼颈期恥触)的部分图象如图所示,其中点A 坐标为2为(5 , _1),点C 的坐标为(3, _1),则f (x)的递增区间为(3【解析】解:设■■- - - ■ ■-,则:x =2心 y =3心- 2 , 3 , 5 十;x yz.k =1 时2 3 5 k ・1时,lii ;。
专题01 高考数学仿真押题试卷(一)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则()A.B.C.D.2.已知与为互相垂直的单位向量,,,且与的夹角为锐角,则实数的取值范围是()A.B.C.D.3.已知倾斜角为的直线与直线垂直,则的值为()A.B.C.D.4.我国古代数学著作《九章算术》有如下问题:“今有金簪,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金杖,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金杖由粗到细是均匀变化的,则中间3尺重量为()A.9斤B.9.5斤C.6斤D.12斤5.6个棱长为1的正方体在桌面上堆叠成一个几何体,该几何体的主视图与俯视图如图所示,则其侧视图不可能为()A.B.C.D.6.已知点和圆,过点作圆的切线有两条,则的取值范围是()A.B.C.D.7.已知,是双曲线的焦点,是双曲线的一条渐近线,离心率等于的椭圆与双曲线的焦点相同,是椭圆与双曲线的一个公共点,设,则的值为()A.B.C.D.且且8.已知函数,若,,互不相等,且,则的取值范围是()A.B.C.D.9.设双曲线的左、右焦点分别为、,离心率为,过的直线与双曲线的右支交于、两点,若是以为直角顶点的等腰直角三角形,则()A.B.C.D.10.如图,半径为的圆内有两条半圆弧,一质点自点开始沿弧做匀速运动,则其在水平方向(向右为正)的速度的图像大致为()A.B.C.D.11.已知定义在上的可导函数的导函数为,满足,,则不等式的解集为()A.B.C.D.12.已知定义在的函数对任意的满足,当,.函数,若函数在上有个零点,则实数的取值范围是()A.B.C.D.第Ⅱ卷二、填空题:本大题共4小题,每小题5分.13.等比数列各项均为正数,,则__________.14.已知实数、满足,则的最大值为_______.15.两个不共线向量、的夹角为,、分别为线段、的中点,点在直线上,且,则的最小值为_______.16.若函数对定义域内的每一个,都存在唯一的,使得成立,则称为“自倒函数”.给出下列命题:①是自倒函数;②自倒函数可以是奇函数;③自倒函数的值域可以是;④若,都是自倒函数,且定义域相同,则也是自倒函数.则以上命题正确的是________(写出所有正确命题的序号).三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知的前项和.(1)求数列的通项公式;(2)求数列的前项和.18.在中,内角A、B、C所对的边长分别是a、b、c,已知,.(1)求的值;(2)若,D为AB边上的点,且,求CD的长.19.如图是某直三棱柱被削去上底后的直观图与三视图的侧视图、俯视图,在直观图中,M是BD的中点,,侧视图是直角梯形,俯视图是等腰直角三角形,有关数据如图所示.(1)求证:平面;(2)求出该几何体的体积.20.动点到定点的距离比它到直线的距离小1,设动点的轨迹为曲线C,过点F的直线交曲线C于A、B两个不同的点,过点A、B分别作曲线C的切线,且二者相交于点M.(1)求曲线C的方程;(2)求证:;(3)求△ABM的面积的最小值.21.已知函数(m、n为常数,是自然对数的底数),曲线在点处的切线方程是.(1)求m、n的值;(2)求的最大值;(3)设(其中为的导函数),证明:对任意,都有.(注:)选做题:请考生在22~23两题中任选一题作答,如果多做,按所做的第一题记分.22.选修4—4:坐标系与参数方程选讲在直角坐标系中,以原点为极点,x轴的正半轴为极轴建立极坐标系,已知曲线,过点的直线的参数方程为:(为参数),直线与曲线C分别交于M、N两点.(1)写出曲线C的直角坐标方程和直线的普通方程;(2)若,,成等比数列,求的值.23.选修4-5:不等式选讲已知函数.(1)解不等式;(2)已知,若恒成立,求实数的取值范围.【答案解析】第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】,,所以,选D.4.【答案】A【解析】由等差数列性质得中间3尺重量为,选A.5.【答案】D【解析】如图(1)所以,A正确;如图(2)所示,B正确;如图(3)所示,C正确,故选D.6.【答案】C【解析】由题意得点在圆外,,,,选C.④取,,其中,它们都是“自倒函数”,但是,这是常数函数,它不是“自倒函数”.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.【答案】(1);(2).【解析】(1)当时,,当时,适合上式,.(2)解:令,所以,,两式相减得:,故.18.【答案】(1);(2).(2)解:由得:,由正弦定理得:,,在中,,.19.【答案】(1)见解析;(2)4.【解析】(1)为的中点,取中点,连接、、;则,且,且,故四边形为平行四边形,,又平面,平面,平面.(2)解:由己知,,,,且,平面,,又,平面,是四棱锥的高,梯形的面积,,即所求几何体的体积为4.20.【答案】(1);(2)见解析;(3)4.【解析】(1)由已知,动点在直线上方,条件可转化为动点到定点的距离等于它到直线距离,动点的轨迹是以为焦点,直线为准线的抛物线,故其方程为.(2)证:设直线的方程为:,由得:,设,,则,.由得:,,直线的方程为:···①,直线的方程为:···②,①-②得:,即,将代入①得:,,故,,,,.1(3)解:由(2)知,点到的距离,,,当时,的面积有最小值4.21.【答案】(1),;(2);(3)见解析.【解析】(1)由,得,由已知得,解得.又,,.(2)解:由(1)得:,当时,,,所以;当时,,,所以,∴当时,;当时,,的单调递增区间是,单调递减区间是,时,.(3)证明:.对任意,等价于,令,则,由得:,∴当时,,单调递增;当时,,单调递减,所以的最大值为,即.设,则,∴当时,单调递增,,故当时,,即,,∴对任意,都有.选做题:请考生在22~23两题中任选一题作答,如果多做,按所做的第一题记分.22.【答案】(1),;(2).【解析】(1)解:由得:,∴曲线C的直角坐标方程为:;由消去参数得直线的普通方程为.(2)解:将直线的参数方程代入中,得:,设M、N两点对应的参数分别为、,则有,,,,即,解得.(2)解:,令,时,,要使不等式恒成立,只需,即,实数取值范围是.。
2024年新高考数学押题试卷(二)注意事项:1.答卷前,考生务必要填涂答题卷上的有关项目.2.选择题每小题选出答案后,用2B 铅笔把答案涂在答题卷相应的位置上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内;如需改动、先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液,不按以上要求作答的答案无效.4.请考生保持答题卷的整洁,考试结束后,将答题卷交回.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知i ⋅z =5-2i ,则z 在复平面内对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限 2.设 的取值范围为()A ={x ∈-2<x <3},Z B ={x 4x -a ≥0},且A B ={12},则,a A .(0,1]C .(0,4B .(0,1)]D .(0,4) 3.为了了解小学生的体能情况,抽取了某小学四年级100名学生进行一分钟跳绳次数测试,将所得数据整理后,绘制如下频率分布直方图.根据此图,下列结论中错误的是()A .x =0.015B .估计该小学四年级学生的一分钟跳绳的平均次数超过125C .估计该小学四年级学生的一分钟跳绳次数的中位数约为119D .四年级学生一分钟跳绳超过125次以上优秀,则估计该小学四年级优秀率为35%ππ24.若α∈4⎫⎛-,- ⎪⎝⎭3π12,且cos 2α+cos 2⎛+2α⎫=- ⎪⎝,则tan α=(⎭)C .-B .-A .23D .-5.设,为双曲线C :的左、右焦点,Q 为双曲线右支上一点,点P (0,2).当1F 2F 2213xy -=1QF PQ+取最小值时,的值为( ) 2QFA B CD22+6.安排5名大学生到三家企业实习,每名大学生只去一家企业,每家企业至少安排1名大学生,则大学生甲、乙到同一家企业实习的概率为( )A .B .C .D .153103256257.对于数列,若存在正数,使得对一切正整数,都有,则称数列是有界的.若这样{}n a M n n a M ≤{}n a 的正数不存在,则称数列是无界的.记数列的前项和为,下列结论正确的是( ) M {}n a {}n a n n S A .若,则数列是无界的 B .若,则数列是有界的 1n a n={}n a sin n a n n ={}n a C .若,则数列是有界的D .若,则数列是有界的 ()1nn a =-{}n S 212n a n =+{}n S8.如图,中,,为的中点,将沿折叠成三棱锥ABC A 90BAC ∠=︒AB AC ==D BC ABC A AD ,则当该三棱锥体积最大时它的外接球的表面积为( )A BCD -A .B .C .D .π2π3π4π二、选择题:本题共4小题,每小题5分,共20分。
2023-2024学年高二数学下学期期末押题试卷02本套试卷根据九省联考题型命制,题型为8+3+3+5模式考试时间:120分钟 满分:150分 测试范围:新高考全部内容一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|1}A x x a =< ,{|12}B x x =<<,若A B A = ,则实数a 的取值范围是( ) A .(1,)+∞B .(1,2]C .(2,)+∞D .[2,)+∞【分析】由题知B A ⊆,再根据集合关系求解即可. 【解答】解:因为A B A = , 所以B A ⊆,因为{|1}A x x a =< ,{|12}B x x =<<, 则2a ,所以实数a 的取值范围是[2,)+∞. 故选:D .【点评】本题主要考查并集及其运算,属于基础题. 2.已知复数(12)(1)2i z i +−=−+,则||(z = )AB .2C D .3【分析】利用复数的除法运算法则求出复数,再利用复数模的公式,即可求解. 【解答】解:2(2)(12)5111112(12)(12)5i i i iz i i i i −+−+−=+=+=+=+++−,则||z = 故选:A .【点评】本题主要考查复数模公式,属于基础题. 3.若点(1,1)P −在角α的终边上,则sin()(4πα+= )A .1−B .C .0D .1【分析】由任意角的三角函数求出sin α,cos α,再由两角和的正弦公式代入即可得出答案. 【解答】解:因为点(1,1)P −在角α的终边上,则sin α=,cos α==所以sin()sin coscos sin0444πππααα+=+==. 故选:C .【点评】本题考查了任意角的三角函数的定义,两角和的正弦公式在三角函数求值中的应用,考查了转化思想,属于基础题.4.在直三棱柱111ABC A B C −中,各棱长均为2,其顶点都在同一球面上,则该球的表面积为( )A .283πB .27C .163π D 【分析】作出图形,找到球心,解三角形求出半径,再根据球的表面积公式,即可求解. 【解答】解:如图,设上下底面中心分别为E ,F , 取EF 的中点O ,连接BO ,BF ,则三棱柱111ABC A B C −外接球的半径R OB =,根据题意易知23BF =1OF =, 222247133R OB BF OF ∴==+=+=,∴三棱柱111ABC A B C −外接球的表面积为22843R ππ=. 故选:A .【点评】本题考查正三棱柱的外接球问题,属基础题.5.设两个单位向量a ,b 的夹角为θ,若a在b 上的投影向量为13b ,则cos (θ= )A .13−B .13C . D【分析】根据投影向量的定义可得13||||a b b b b b ⋅⋅=,结合向量的数量积运算求解即可. 【解答】解: a在b 上的投影向量为13b ,∴13||||a b b b b b ⋅⋅=, ∴211||33a b b ⋅== , ∴1||||cos 3a b θ=,1cos 3θ∴=. 故选:B .【点评】本题主要考查了向量的数量积运算,考查了投影向量的定义,属于基础题.6.推动小流域综合治理提质增效,推进生态清洁小流域建设是助力乡村振兴和建设美丽中国的重要途径之一.某乡村落实该举措后因地制宜,发展旅游业,预计2023年平均每户将增加4000元收入,以后每年度平均每户较上一年增长的收入是在前一年每户增长收入的基础上以10%的增速增长的,则该乡村每年度平均每户较上一年增加的收入开始超过12000元的年份大约是( )(参考数据:3 1.10ln ≈,10 2.30ln ≈,11 2.40)ln ≈A .2033年B .2034年C .2035年D .2036年【分析】设经过n 年之后,每年度平均每户收入增加y 元,且4000(110%)12000n y =⋅+>,解不等式可得答案.【解答】解:设经过n 年之后,每年度平均每户收入增加y 元, 由题得4000(110%)12000n y =⋅+>,即1.13n >, 则 1.13nln ln >,33111.11110ln ln n ln ln ln >=≈−,又*n N ∈,则12n =.所以所求年份大约是2035年. 故选:C .【点评】本题考查函数模型的运用,考查学生的计算能力,属于中档题.7.已知1F ,2F 分别为双曲线22126x y −=的左,右焦点,直线l 过点2F ,且与双曲线右支交于A ,B 两点,O 为坐标原点,△12AF F ,△12BF F 的内切圆的圆心分别为1O ,2O ,则△12OO O 面积的取值范围是( )A. B.C.)+∞ D. 【分析】先根据切线长定理判定两个内切圆的横坐标值,再设△12AF F 的内切圆半径为1r ,根据图形性质计算得△12OO O面积的解析式12112)OO O S r r =+ ,再利用函数单调性即可求得△12OO O 面积的取值范围.【解答】解:设圆1O 与1AF ,2AF ,12F F 分别切于点M ,N ,P ,由双曲线定义知,12||||2AF AF a −=,∴12||||||||2AM MF AN NF a +−−=||||AM AN = ,11||||MF F P =,22||||NF F P =,∴12||||F P F P −12||||2F P F P c +=∴12|||F P F P c a ==−,即点P 为双曲线的右顶点,1O P x ⊥ 轴,1O2O12O F 平分21AF F ∠,22O F 平分21BF F ∠,∴1222O F O π∠=, 设△12AF F 、△12BF F 的内切圆半径分别为1r ,2r ,12O O x ⊥ 轴,∴2122||2r r PF ⋅==,||OP =∴12121112()||)2OO O S r r OP r r =+⋅=+ ,设直线AB 倾斜角为α,又AB 为双曲线右支上两点,又渐近线方程为y=,∴由题意得2(,)33ππα∈,∴121(,)63O F Fππ∠∈,∴121tan O F F∠,即1(3r∈,又12112)OO OS rr=+在单调递减,在单调递增,当1r=时,122OO OS=,此时取得最小值,当1r=12OO OS=,当1r=时,12OO OS=,∴12OO OS∈.故选:B.【点评】本题考查了双曲线的性质,属于中档题.8.已知01a b<<<,e为自然对数的底数,则下列不等式不成立的是()A.a bae be<B.b aae be<C.alna blnb>D.b aa b<【分析】采用逐一验证的方法,通过构造函数()xf x xe=,()xeh xx=,()t x xlnx=,()lnxg xx=,根据这些函数在(0,1)上的单调性可得结果.【解答】解:因为01a b<<<,e为自然对数的底数,对于A,设()xf x xe=,01x<<,则()()0xf x x e′=+>,()f x在(0,1)上单调递增,故f(a)f<(b),即a bae be<,故A正确;对于B,设()xeh xx=,01x<<,则2(1)()0xe xh xx−′=<在(0,1)上恒成立,故()h x在(0,1)上单调递减,故h(a)h>(b),即a be ea b>,故b aae be<,故B正确;对于C,设()t x xlnx=,01x<<,则()1t x lnx′=+,当1(0,)xe∈时,()0t x′<,当1(xe∈,1)时,()0t x′>,故()t x在1(0,)e上单调递减,在1(e,1)上单调递增,故t(a)与t(b)得大小关系不确定,故C错误;对于D,设()lnxg xx=,01x<<,则21()0lnxg xx−′=>,故函数()g x在(0,1)上单调递增,所以g (a )g <(b ),即lna lnba b<,化为blna alnb <,即b a lna lnb <,即b a a b <,故D 正确. 故选:C .【点评】本题考查了利用导数研究函数的单调性,依题意合理构造函数,并判断出所构造的函数的单调性是解决问题的关键,考查逻辑推理能力与数学运算能力,属于中档题.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分 9.下列说法错误的是( )A .事件A 的概率P (A )必满足0P <(A )1<B .事件A 的概率P (A )0.999=,则事件A 是必然事件C .用某种药物对患有胃溃疡的500名病人进行治疗,结果有380人有明显的疗效,现有患胃溃疡的病人服用此药,则估计此药有明显的疗效的可能性为76%D .某奖券的中奖率为50%,则某人购买此券10张,一定有5张中奖 【分析】根据概率的定义和性质逐个判断各个选项即可.【解答】解:对于A ,由概率的基本性质可知,0P (A )1 ,故A 错误; 对于B ,事件A 的概率P (A )0.999=,则事件A 是随机事件,故B 错误; 对于C ,由题意可知,估计此药有明显的疗效的可能性为380100%76%500×=,故C 正确; 对于D ,某奖券的中奖率为50%,则某人购买此券10张,可能有5张中奖,故D 错误. 故选:ABD .【点评】本题主要考查了概率的定义和性质,属于基础题.10.圆锥内半径最大的球称为该圆锥的内切球,若圆锥的顶点和底面的圆周都在同一个球面上,则称该球为圆锥的外接球.如图,圆锥PO 的内切球和外接球的球心重合,且圆锥PO 的底面直径为2a ,则( )A .设内切球的半径为1r ,外接球的半径为2r ,则212r r =B .设内切球的表面积1S ,外接球的表面积为2S ,则124S S =C .设圆锥的体积为1V ,内切球的体积为2V ,则1294V V = D .设S ,T 是圆锥底面圆上的两点,且ST a =,则平面PST 截内切球所得截面的面积为215a π【分析】作出圆锥的轴截面,依题意可得PAB ∆为等边三角形,设球心为G (即为PAB ∆的重心),即可求出PAB ∆的外接圆和内切圆的半径,即可为圆锥的外接球、内切球的半径,即可判断A 、B ,由圆锥及球的体积公式判断C , ST 所对的圆心角为3π(在圆O 上),设ST 的中点为D ,即可求出OD ,不妨设D 为OB 上的点,连接PD ,过点G 作GE PD ⊥交PD 于点E ,利用三角形相似求出GE ,即可求出截面圆的半径,从而判断D . 【解答】解:作出圆锥的轴截面如下:因为圆锥PO 的内切球和外接球的球心重合,所以PAB ∆为等边三角形, 又2PB a =,所以OP ,设球心为G (即为PAB ∆的重心),所以23PGPO ==,13OG PO ==,即内切球的半径为1r OG ==,外接球的半径为2r PG ==, 所以212r r =,故A 正确;设内切球的表面积1S ,外接球的表面积为2S ,则214S S =,故B 错误; 设圆锥的体积为1V,则23113V a a π==, 内切球的体积2V,则3324)3V a π==, 所以1294V V =,故C 正确;设S 、T 是圆锥底面圆上的两点,且ST a =,则ST 所对的圆心角为3π(在圆O 上),设ST 的中点为D,则sin3OD a π==,不妨设D 为OB 上的点,连接PD ,则PD ,过点G 作GE PD ⊥交PD 于点E ,则PEG POD ∆∆∽, 所以GE PG OD PD ==,解得GE =, 所以平面PST截内切球截面圆的半径r 所以截面圆的面积为2215a r ππ=,故D 正确.故选:ACD .【点评】本题考查圆锥的内切球与外接球问题,属中档题.11.古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状,把数分成许多类,如图中第一行图形中黑色小点个数:1,3,6,10,…称为三角形数,第二行图形中黑色小点个数:1,4,9,16,…称为正方形数,记三角形数构成数列{}n a ,正方形数构成数列{}n b ,则下列说法正确的是( )A .312123122221n n b b b b a a a a n ⋅…=+B .1849既是三角形数,又是正方形数C .12311113320n b b b b +++…+<D .*m N ∀∈,2m ,总存在p ,*q N ∈,使得mp q b a a =+成立 【分析】利用累加法分别求出n a ,n b ,进而分别利用裂项求和法、放缩法,逐个分析各个选项即可. 【解答】解:三角形数构成数列{}:1n a ,3,6,10,…,易发现212a a −=,323a a −=,434a a −=,…,1(2)n n a a n n −−= , 累加得,1(1)(2)2342n n n a a n −+−=+++…+=,(1)(2)2n n n a n +∴= , 显然11a =满足上式, (1)2n n n a +∴=, 正方形数构成数列{}:1n b ,4,9,16,…,易发现213b b −=,325b b −=,437b b −=,…,121(2)n n b b n n −−=− , 累加得1(22)(1)2n n n b b +−−=, 2(2)n b n n ∴= , 显然11b =满足上式,2n b n ∴=,对于A ,22(1)1n n b n na n n n ==++, 3121231231222223411n n b b b b n a a a a n n ⋅⋅⋅…⋅=×××…×=++,故A 正确; 对于B ,令(1)18492nn n a +==,得(1)3698n n +=, 606136603698×=< ,616238443698×=>,(1)3698n n ∴+=无正整数解,即1849不是三角形数,令21849nb n ==,43n ∴=,即1849是正方形数,故B 错误; 对于C ,22114112()412121n b n n n n ==<=−−−+, ∴2212311111115111111511332331()2()2()434577921214521202120nb b b b nn n n n +++…++++…+<+−+−+…+−+−−<−+++,故C 正确;对于D ,取m p q ==,且*m N ∈, 令2(1)(1)22m m m m m +−=+,有1mm m b a a −=+,故*m N ∀∈,2m ,总存在p ,*q N ∈,使得mp q b a a =+成立,故D 正确. 故选:ACD .【点评】本题主要考查了数列的应用,考查了归纳推理,考查了转化思想和运算求解能力,属于中档题.三、填空题:本题共3小题,每小题5分,共15分. 12.已知甲组样本数据(1i x i =,2,…,6),如下表所示:1x2x3x4x5x6x2 3 3 4 6 6若乙组样本数据23i i y x =−,则乙组样本数据的平均数y = 5 ,乙组样本数据的方差2s =乙. 【分析】根据题意,求出乙组数据,结合平均数和方差定义计算,即可得答案. 【解答】解:根据题意,乙组样本数据如下表所示:1y2y3y4y5y6y1 3 3 5 9 9则乙组样本数据的平均数1(133599)56y =×+++++=, 乙组样本数据的方差()()()()()()222222212815353555959563s =−+−+−+−+−+−=乙. 故答案为:5;283. 【点评】本题考查样本数据平均数、方差的计算,注意平均数和方差的计算公式,属于基础题. 13.从1,2,3,4,7,9六个数中任取不相同的两个数,分别作为对数的底数和真数,可得到 17 个不同的对数值.【分析】分所取得两个数中是否含有1分为两类,再利用排列的计算公式、对数的运算法则和性质即可得出.【解答】解:根据题意,分2种情况讨论:①当取得两个数中有一个是1时,则1只能作真数,此时log 10a =,2a =或3或4或7或9. ②所取的两个数不含有1时,即从2,3,4,7,9中任取两个, 分别作为底数与真数可有2520A =个对数,其中3924log log =,2439log log =,4923log log =,2349log log =,综上可知:共可以得到201417+−=个不同的对数值. 故答案为:17.【点评】本题考查计数原理的应用,熟练掌握对数的运算法则和性质、排列的计算公式是解题的关键.14.已知抛物线2:2(0)C y px p =>与圆22:5O x y +=交于A ,B 两点,且||4AB =,直线l 过C 的焦点F ,且与C 交于M ,N 两点,则||2||MF NF +的最小值为 3+【分析】由已知可求得抛物线方程,设直线:1l x my =+,与抛物线联立方程组可求得111||||MF NF +=,进而根据基本不等式求||2||MF NF +最小值即可. 【解答】解:由抛物线2:2(0)C y px p =>与圆22:5O x y +=交于A ,B 两点,且||4AB =, 得到第一象限交点(1,2)在抛物线2:2(0)C y px p =>上,所以222p =, 解得2p =,所以2:4C y x =,则(1,0)F ,设直线:1l x my =+,与24y x =联立得2440y my −−=, 设1(M x ,1)y ,2(N x ,2)y ,所以124y y m +=,124y y =−,所以212|||4(1)MN y y m −=+, 由抛物线的定义,21212221221212122()41111441()||||111144()316x x m y y m y y MF NF x x x x x x m m y y ++++++=+====+++++++++,所以112||||||2||(||2||)()33||||||||NF MF MF NF MF NF MF NF MF NF +=++=+++, 当且仅当||1MF =,||1NF =+故答案为:3+【点评】本题考查求抛物线的方程,考查基本不等式的应用,考查运算求解能力,属中档题. 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.已知函数()sin()cos()sin cos ,(0,||)222f x x x πππωϕωϕωϕ=+−+><的最小正周期为π,且()f x 图象关于直线6x π=对称.(1)求()f x 的解析式;(2)设函数2()()2sin g x f x x =+,求()g x 的单调增区间. 【分析】(1)利用诱导公式及两角和的正弦公式化简,再根据正弦函数的周期性及对称性即可得解; (2)先利用降幂公式及辅助角公式化简,再根据正弦函数的单调性即可得解. 【解答】解:(1)已知()sin()cos()sin cos cos sin sin cos sin()22f x x x x x x ππωϕωϕωϕωϕωϕ=+−+=+=+, 因为函数的最小正周期为π, 所以2ππω=,故2ω=,又因()f x 图象关于直线6x π=对称,所以262k ππϕπ×++,k Z ∈,则,6k k Z πϕπ=+∈,又||2πϕ<, 所以6πϕ=,所以()sin(2)6f x x π=+;(2)由(1)得2()sin(2)6g x x sin x π=++11cos 22cos 2222xx x −++⋅12cos 21sin(2)126x x x π−+=−+, 令222262k x k πππππ−+−+ ,得,63k x k k Z ππππ−++∈,所以函数()g x 的单调递增区间为[,],63k k k Z ππππ−++∈.【点评】本题考查了三角函数的性质,重点考查了三角恒等变换,属中档题.16.华容道是古老的中国民间益智游戏,以其变化多端、百玩不厌的特点与魔方、独立钻石一起被国外智力专家并称为“智力游戏界的三个不可思议”.据《资治通鉴》注释中说“从此道可至华容也”.通过移动各个棋子,帮助曹操从初始位置移到棋盘最下方中部,从出口逃走.不允许跨越棋子,还要设法用最少的步数把曹操移到出口.2021年12月23日,在厦门莲坂外图书城四楼佳希魔方,厦门市新翔小学六年级学生胡宇帆现场挑战“最快时间解44×数字华容道”世界纪录,并以4.877秒打破了“最快时间解44×数字华容道”世界纪录,成为了该项目新的世界纪录保持者. (1)小明一周训练成绩如表所示,现用ˆˆy bxa =+作为经验回归方程类型,求出该回归方程; 第x (天) 1 2 3 4 5 6 7 用时y (秒)105844939352315(2)小明和小华比赛破解华容道,首局比赛小明获得胜利的概率是0.6,在后面的比赛中,若小明前一局胜利,则他赢下后一局的概率是0.7,若小明前一局失利,则他赢下后一局比赛的概率为0.5,比赛实行“五局三胜”,求小明最终赢下比赛的概率是多少.参考公式:对于一组数据1(u ,1)v ,2(u ,2)v , ,(n u ,)n v ,其回归直线ˆˆˆv u αβ=+的斜率和截距的最小二乘估计公式分别为:121()()ˆ()nii i nii uu v v uu β==−−=−∑∑,ˆˆv u αβ=− 参考数据:721140ii x ==∑,71994i i i x y ==∑【分析】(1)先求出,x y ,套公式求出ˆb和ˆa ,得到回归方程; (2)记小明获胜时比赛的局数为X ,则X 的可能取值为3,4,5,分别求出其对应的概率,利用概率的加法公式即可求解.【解答】解:(1)由题意,根据表格中的数据,可得11(1234567)4,(105844939352315)5077x y =++++++==++++++=, 可得71722179941400ˆ14.5287i ii ii x yxybxx ==−−===−−∑∑,所以ˆˆ108a y bx =−=,因此y 关于x 的回归方程为:14.5108y x =−+;(2)记小明获胜时比赛的局数为X ,则X 的可能取值为3,4,5, (3)0.60.70.70.294P X ==××=,(4)0.40.50.70.70.60.30.50.70.60.70.30.50.224P X ==×××+×××+×××=,(5)0.60.70.30.50.50.60.30.50.30.50.60.30.50.50.70.40.50.50.70.70.40.50.30.50.70.40.50.70.30.50.1675P X ==××××+××××+××××+××××+××××+××××=,0.2940.2240.16750.6855P =++=小明获胜.【点评】本题考查了线性回归方程的计算以及互斥事件的概率加法计算,属于中档题. 17.如图,在多面体ABCDEF 中,四边形ABCD 为平行四边形,且112BD CD ==,BD CD ⊥.DE ⊥平面ABCD ,且12DEBF ==,//DE BF .点H ,G 分别为线段DC ,EF 上的动点,满足(02)DH EG λλ==<<.(1)证明:直线//GH 平面BCF ;(2)是否存在λ,使得直线GH 与平面AEF 所成角的正弦值为14?请说明理由.【分析】(1)法()i 过点G 作BD 的垂线,由题意可得//QH 平面BCF ,且//GQ 平面BCF ,进而可证得平面//GQH 平面BCF ,再证得线面的平行;法()ii 由题意建立空间直角坐标系,求出各点的坐标,由向量的数量积为0,可得向量垂直,再证得线面的平行;(2)由空间向量求出直线与平面的法向量的夹角的余弦值,进而可得线面所成的角的正弦值,由题意可得λ的值.【解答】(1)证明:法()i 过点G 作BD 的垂线,交BD 于点Q ,则//GQ BF , 连接QH ,则12DQ λ=,且由DH λ=,所以2DH DQ =,//QH BC ,又因为QH ⊂平面BCF ,BC ⊂平面BCF , 所以//QH 平面BCF ,且//GQ 平面BCF , 又GQ QH Q = ,所以平面//GQH 平面BCF , 又因为HG HQG ⊂, 所以//HG 平面BCF ;法()ii 因为112BDCD ==,12DE BF ==,如图,以D 为原点,分别以DC ,DB ,DE 方向为x ,y ,z 轴建立坐标系,由题意可得(2C ,0,0),(0B ,1,0),(2A −,1,0),E,F , (2,1,0)BC =−,BF =,(2,AE =−,EF = , 设平面BCF 的法向量为1111(,,)n x y z =,则1100n BC n BF ⋅= ⋅=,即111200x y −= = ,取11x =,解得1(1,2,0)n =, 因为2DC EF ==,EG DH λ==,所以,22DH DC EG EF λλ== ,2EG EF λ=,解得(H λ,0,0),(0,)2G λ+,(,,)2GH λλ=−−, 所以10n GH ⋅=,且GH ⊂/平面BCF ,所以//GH 平面BCF ;(2)设平面AEF 的法向量为2222(,,)n x y z =, 则由2200n AE n EF ⋅= ⋅=,即22222200x y y −= +=,令21z =−,解得2n =1)−,所以2n GH ⋅=++=,||GH=,||n =,所以2cos n <,GH >=,设直线GH 与平面AEF 所成的角为θ, 则2sin |cos n θ=<,||GH >= , 解得1λ=.【点评】本题考查线面平行的证法及空间向量的方法求线面所成角的正弦值,属于中档题.18.已知椭圆2222:1(0)x y C a b a b+=>>的上顶点为(0,2)D ,直线:l y kx =与椭圆C 交于A ,B 两点,且直线DA 与DB 的斜率之积为13−,(1)求椭圆C 的方程;(2)若直线//l l ′,直线l ′与椭圆C 交于M ,N 两点,且直线DM 与DN 的斜率之和为1,求l ′与l 之间距离的取值范围.【分析】(1)联立方程组,根据13DA DB k k =−,利用韦达定理可求a ,从而得解;(2)设直线:l y kx m =+,(2)m ≠±,联立方程 组,根据1DM DN k k +=,利用韦达定理可得42m k =−,由两平行直线间的距离公式,并利用导数求最值. 【解答】解:(1)设1(A x ,1)kx ,2(B x ,2)kx ,由题意,可知2b =,则椭圆222:14x y C a +=, 联立方程组22214y kxx y a=+= ,整理可得:2222(4)40a k x a +−=,显然△0>,且120x x +=,2122244a x x a k −=+, 因为13DA DB k k =−,即12122213kx kx x x −−⋅=−, 化简得21212(31)6()120k x x k x x +−++=,所以22224(31)1204a k a k −+⋅+=+, 解得212a =,所以椭圆22:1124x y C +=; (2)由直线//l l ′,设直线:l y kx m =+,(2)m ≠±,设3(M x ,3)kx m +,4(B x ,4)kx m +, 联立方程组221124y kx m x y =+ +=,整理可得:222(13)63120k x kmx m +++−=, 则△222222364(31)(4)12(124)0k m k m k m −+−=−+>,可得22124m k + ,① 且342631kmx x k −+=+,234231231m x x k −=+, 又因为1DM DN k k +=,即3434221kx m kx m x x +−+−+=, 化简得3434(21)(2)()0k x x m x x −+−+=,则2223126(21)(2)03131m kmk m k k −−−+−=++, 化简得(2)(42)0m k m −−−=,因为2m ≠±,所以42m k =−, 结合①可知04k <<,l ′与l之间距离d = 设22441()1k k g k k −+=+,则222(21)(2)()(1)k k g k k −+′=+, 当12k =时,()0g k ′=, 则当1(0,)2k ∈,()0g k ′<,则()g x 单调递减,当1(,4)2k ∈,()0g k ′>,则()g x 单调递增,所以1()()02min g x g ==,又(0)1g =,(4)g =所以49()17g x <,所以d ∈.【点评】本题考查椭圆方程的求法,直线与椭圆的综合应用,平行线间的距离公式的应用,用导函数的性质可得函数值域的求法,属于中档题. 19.已知函数2cos ()x xf x x−=,(0,)x ∈+∞. (1)证明:函数()f x 在(0,)+∞上有且只有一个零点; (2)当(0,)x π∈时,求函数()f x 的最小值; (3)设()i i g x k x b =+,1i =,2,若对任意的[2x π∈,)+∞,12()()()g x f x g x 恒成立,且不等式两端等号均能取到,求12k k +的最大值.【分析】(1)设()cos h x x x =−,求导分析单调性,可得存在唯一0(6x π∈,)π,使得0()0h x =,进而可得答案.(2)求导得3sin 2cos ()x x x xf x x −−′=,分析()f x ′的符号,进而可得()f x 的单调性,即可得出答案.(3)分析当2b π<−时,0b 时,当2b π=−时,20b π−< 时,12k k +的最大值,即可得出答案.【解答】解:(1)证明:设()cos h x x x =−, 则()sin 1h x x ′=−−, 因为1sin 1x − , 所以()0h x ′ 恒成立,所以()h x 在(0,)+∞上单调递减,又因为()066h ππ−>,()10h ππ=−−<, 所以存在唯一0(6x π∈,)π,使得0()0h x =,所以()f x 在(0,)+∞上有且只有一个零点, (2)3sin 2cos ()x x x xf x x −−′=, 设()sin 2cos m x x x x x =−−,()1sin cos 1cos (tan )m x x x x x x x ′=+−=+−, ()cos cos sin m x x x x x ′′=−+, 当(0,)x π∈上,sin 0x x >,()0m x ′′>,()m x ′单调递增, 又(0)10m ′=>,所以()m x 在(0,)π上的单调递增,因为()02m π=,所以当(0,)2x π∈时,()0m x <,()f x 单调递减,当(2x π∈,)π时,()0m x >,()f x 单调递增,所以()f x 在(0,)π上有最小值2()2f ππ=−.(3)由(1)可知,[2x π∈,)+∞时,()0f x <,由(2)可知2x π=为()f x 的极小值点,且[x π∈,)+∞时,222cos 112x x x x x πππ−−−−−>− , 所以[2x π∈,)+∞时,()f x 在2x π=取到最小值2π−,2b π<−时,10k >,存在1(x m ∈,)+∞使得1()0g x >与1()()f x g x 矛盾,0b 时,20k <,存在2(x m ∈,)+∞使得22()g x π<−与2()()f x g x 矛盾,当2b π=−时,令10k =,则12()g x π=−,满足题,此时1k 取得最大值,再过点2(0,)π−作函数()f x 的切线,设切点为(P t ,())f t ,则2()()f t b f t t +′=,解得32t π=, 所以切线方程为2829x y ππ=−, 当2b π=−时,2k 的最大值为289π−,又因为3(2x π∈,)+∞时,33sin 2cos 22cos ()x x x x x x f x x x −−−′=, 设322cos ()x xx x ϕ−=, 4442sin 3cos 233()0x x x x x x xx x x x ϕ−++−++−′=<=<,所以()x ϕ单调递减, 即3222cos 8()9x x f x x π−′,所以20π−< 时,12k k +取得最大值289π,接下来证明当[2x π∈,)+∞时,22cos 829x x x x ππ−− , 先证:32282()cos 09x x q x x x ππ=−+− ,[2x π∈,3]2π恒成立, 2284()1sin 3x xq x x ππ′=−++, 2164()cos 3x q x x ππ′′=−+,216()sin 3q x x π′′′=−, 当[2x π∈,3]2π时,()q x ′′′单调递增, 216()1023q ππ′′′=−+<,2316()1023q ππ′′′=+>,216()03q ππ′′′=>, 所以存在唯一的1(2x π∈,)π使得()0q x ′′′=,且(2x π∈,1)x 时,()0q x ′′′<,()q x ′′单调递减,1(x x ∈,3)2π时,()0q x ′′′>,()q x ′′单调递增, 因为2()023q π′=>,1()03q π′=−<,3()02q π′=, 所以存在唯一的3(2x π∈,)π使得()0q x ′=,且(2x π∈,3)x 时,()0q x ′>,()q x 单调递增, 3(x x ∈,3)2π时,()0q x ′<,()q x 单调递减, 又因为()29q ππ=,3()02q π=,所以当[2x π∈,3]2π时,32282()cos 09x x q x x x ππ=−+− , 当3[2x π∈,)+∞时,228442()1sin (1)1sin 0333x x x x q xx x πππ′=−++=−++ , 所以()0q x , 综上所述,[2x π∈,)+∞时,22cos 829x x x x ππ−− , 当3(2x π∈,)+∞,332sin 2cos 22cos 8()9x x x x x x f x x x π−−−′= , 所以当20b π−< 时,2k 的最大值为289π,即12k k +的最大值为289π.【点评】本题考查导数的综合应用,解题中需要理清思路,属于难题.。
哈尔滨市第六中学2019届高考冲刺押题卷(二)数学试卷(理工类)考试说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟1.答卷前,考生务必将自己的姓名、准考证号填写在本试卷和答题卡相应位置上.2.做答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号,写在本试卷上无效.3.做答第Ⅱ卷时,请按题号顺序在各题目规定的答题区域内做答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效.4.保持答题卡面清洁,不得折叠、不要弄破、弄皱,不准用涂改液、修正带、刮纸刀.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知向量b a,满足)2,1(2m ba ,),1(mb ,且a 在b 方向上的投影是552,则实数m()A .5 B.5 C.2 D.22.已知等差数列}{n a 中,11a ,前10项的和等于前5的和,若06a a m,则m ()A .10 B.9 C.8 D.23.若z 为复数,0:zz p ,2:z q 为实数,则p 是q 的()A .充分不必要条件B .必要不充分条件C .充要条件 D.既不充分也不必要条件4.2018年9月24日,阿贝尔奖和菲尔兹奖双料得主、英国著名数学家阿蒂亚爵士宣布自己证明了黎曼猜想,这一事件引起了数学界的震动.在1859年,德国数学家黎曼向科学院提交了题目为《论小于某值的素数个数》的论文并提出了一个命题,也就是著名的黎曼猜想.在此之前,著名数学家欧拉也曾研究过这个问题,并得到小于数字x 的素数个数大约可以表示为xx x n ln )(的结论(素数即质数,43429.0lg e ).根据欧拉得出的结论,如下流程图中若输入n 的值为100,则输。
○…………外………○…………内………河北衡水中学2019年高考押题试卷理数(二)注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、选择题1.设复数z 满足1+z1+i=2−i ,则|1z|=( )A. √5B. 15C. √55 D. √5252.若1cos 43πα⎛⎫+= ⎪⎝⎭, 0,2πα⎛⎫∈ ⎪⎝⎭,则sin α的值为( ) C. 7183.已知直角坐标原点O 为椭圆2222:1(0)x y C a b a b+=>>的中心, 1F , 2F 为左、右焦点,在区间()0,2任取一个数e ,则事件“以e 为离心率的椭圆C 与圆O : 2222x y a b +=-没有交点”的概率为( )A.4 B. 44- C. 2 D. 22-4.定义平面上两条相交直线的夹角为:两条相交直线交成的不超过90︒的正角.已知双曲线E :22221(0,0)x y a b a b-=>>,当其离心率e ⎤∈⎦时,对应双曲线的渐近线的夹角的取值范围为( ) A. 0,6π⎡⎤⎢⎥⎣⎦ B. ,63ππ⎡⎤⎢⎥⎣⎦ C. ,43ππ⎡⎤⎢⎥⎣⎦ D. ,32ππ⎡⎤⎢⎥⎣⎦5.某几何体的三视图如图所示,若该几何体的体积为3π+2,则它的表面积是( )答案第2页,总18页……外…………○……○…………订…………○…………线※※※装※※订※线※※内※※答※※题※※……内…………○……○…………订…………○…………线A. (3√132+3)π+√22+2 B. (3√134+32)π+√22+2C. √132π+√22 D.√134π+√226.函数y =sinx +ln |x |在区间[−3,3]的图象大致为( )A. B.C. D.7.执行下图的程序框图,若输入的0x =, 1y =, 1n =,则输出的p 的值为( )A. 81B.812 C. 814 D. 8188.已知数列11a =, 22a =,且()2221nn n a a +-=--, *n N ∈,则2017S 的值为( ) A. 201610101⨯- B. 10092017⨯ C. 201710101⨯- D. 10092016⨯ 9.已知函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的图象如图所示,令g(x)=f(x)+f′(x),则下列关于函数g(x)的说法中不正确的是( )A. 函数g(x)图象的对称轴方程为x =kπ−π12(k ∈Z)B. 函数g(x)的最大值为2√2○…………外…○…………内… C. 函数g(x)的图象上存在点P ,使得在P 点处的切线与直线l :y =3x −1平行D. 方程g(x)=2的两个不同的解分别为x 1,x 2,则|x 1−x 2|最小值为π210.已知函数()3231f x ax x =-+,若()f x 存在三个零点,则a 的取值范围是( ) A. (),2-∞- B. ()2,2- C. ()2,+∞ D. ()()2,00,2-⋃第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)11.向量(),a m n =, ()1,2b =-,若向量a , b 共线,且2a b =,则mn 的值为_________.12.设点M 是椭圆x 2a 2+y 2b2=1(a >b >0)上的点,以点M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M与y 轴相交于不同的两点P 、Q ,若ΔPMQ 为锐角三角形,则椭圆的离心率的取值范围为__________.13.设x , y 满足约束条件230,{220,220,x y x y x y +-≥-+≥--≤则yx的取值范围为__________.14.在平面五边形ABCDE 中,已知120A ∠=︒, 90B ∠=︒, 120C ∠=︒, 90E ∠=︒, 3AB =,3AE =,当五边形ABCDE 的面积S ⎡∈⎣时,则BC 的取值范围为__________.三、解答题(题型注释)15.已知数列{}n a 的前n 项和为n S , 112a =, ()*1212,n n S S n n N -=+≥∈. (1)求数列{}n a 的通项公式;(2)记()*12log n n b a n N =∈求11n n b b +⎧⎫⎨⎬⎩⎭的前n 项和n T .16.如图所示的几何体ABCDEF 中,底面ABCD 为菱形, 2AB a =, 120ABC ∠=︒, AC 与BD 相交于O 点,四边形BDEF 为直角梯形, //DE BF , BD DE ⊥, 2DE BF ==,平面BDEF ⊥底面ABCD .答案第4页,总18页…○…………线…※※…○…………线…(1)证明:平面AEF ⊥平面AFC ; (2)求二面角E AC F --的余弦值.17.某校为缓解高三学生的高考压力,经常举行一些心理素质综合能力训练活动,经过一段时间的训练后从该年级800名学生中随机抽取100名学生进行测试,并将其成绩分为A 、B 、C 、D 、E 五个等级,统计数据如图所示(视频率为概率),根据以上抽样调查数据,回答下列问题:(1)试估算该校高三年级学生获得成绩为B 的人数;(2)若等级A 、B 、C 、D 、E 分别对应100分、90分、80分、70分、60分,学校要求平均分达90分以上为“考前心理稳定整体过关”,请问该校高三年级目前学生的“考前心理稳定整体”是否过关?(3)为了解心理健康状态稳定学生的特点,现从A 、B 两种级别中,用分层抽样的方法抽取11个学生样本,再从中任意选取3个学生样本分析,求这3个样本为A 级的个数ξ的分布列与数学期望.18.已知椭圆C : 22221(0)x y a b a b +=>>的离心率为2,且过点2P ⎛ ⎝⎭,动直线l : y kx m-+交椭圆C 于不同的两点A , B ,且0OA OB ⋅=(O 为坐标原点) (1)求椭圆C 的方程.(2)讨论2232m k -是否为定值?若为定值,求出该定值,若不是请说明理由. 19.设函数()()22ln f x a x x ax a R =-+-∈.(1)试讨论函数()f x 的单调性;(2)设()()22ln x x a a x ϕ=+-,记()()()h x f x x ϕ=+,当0a >时,若方程()()h x m m R =∈有两个不相等的实根1x , 2x ,证明12'02x x h +⎛⎫> ⎪⎝⎭. 20.选修4-4:坐标系与参数方程 在直角坐标系xOy 中,曲线1C : 3,{2x cost y sintαα=+=+(t 为参数, 0a >),在以坐标原点为极点, x 轴的非负半轴为极轴的极坐标系中,曲线2C : 4sin ρθ=.(1)试将曲线1C 与2C 化为直角坐标系xOy 中的普通方程,并指出两曲线有公共点时a 的取值范围;……○…………线_______……○…………线(2)当3a =时,两曲线相交于A , B 两点,求AB . 21.选修4-5:不等式选讲. 已知函数()211f x x x =-++.(1)在下面给出的直角坐标系中作出函数()y f x =的图象,并由图象找出满足不等式()3f x ≤的解集;(2)若函数()y f x =的最小值记为m ,设,a b R ∈,且有22a b m +=,试证明:221418117a b +≥++.答案第6页,总18页参数答案1.C【解析】1.由题意可得: 1+z=(2−i)(1+i)=3+i,∴z =2+i,|1z|=|12+i|=|1||2+i|=√55.2.A【解析】2.由题意可得: 3,,sin 4444ππππαα⎛⎫⎛⎫+∈∴+== ⎪ ⎪⎝⎭⎝⎭ , 结合两角和差正余弦公式有:sin sin sin cos cos sin 444444ππππππαααα⎡⎤⎛⎫⎛⎫⎛⎫=+-=+-+=⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ . 本题选择A 选项.3.A【解析】3.满足题意时,椭圆上的点()cos ,sin Pa b θθ 到圆心()0,0O 的距离:()()222222cos 0sin 0d a b r a b θθ=-+->=+ ,整理可得2222222222sin sin 11,111sin 1sin 1sin 2b b e a a θθθθθ>∴=-<-=<+++ , 据此有: 21,02e e <<<, 题中事件的概率0220p -==- .本题选择A 选项.4.D【解析】4.由题意可得: [][]222222212,4,1,3c b b e a a a==+∈∴∈ ,设双曲线的渐近线与x 轴的夹角为θ , 双曲线的渐近线为b y x a =±,则,46ππθ⎡⎤∈⎢⎥⎣⎦,结合题意相交直线夹角的定义可得双曲线的渐近线的夹角的取值范围为,32ππ⎡⎤⎢⎥⎣⎦. 本题选择D 选项. 5.A【解析】5.由三视图可知,该几何体是由四分之三圆锥和一个三棱锥组成的组合体,其中:V 圆锥=34×13×πa 2×3=34πa 2,V 三棱锥=12a 2×3×13=12a 2 由题意:34πa 2+12a 2=3π+2,∴a =2 ,据此可知:S 底=2aπ×34+12×2×2=3π+2 ,S 圆锥侧=34π×√13×2=3√132π ,S 棱锥侧=12×2√2×√11=√22 ,它的表面积是 (3√132+3)π+√22+2.本题选择A 选项.6.A【解析】6.分析:判断f (x )的奇偶性,在(0,1)上的单调性,计算f (1)的值,结合选项即可得出答案. 详解:设f (x )=sinx +ln |x |,当x >0 时,f (x )=sinx +lnx ⇒f ′(x )=cosx +1x,当x∈(0,1)时,f ′(x )>0,即函数f (x )在(0,1)上为单调递增函数,排除B ; 由当x=1时,f (1)=sin1>0,排除D ;因为f (−x )=sin(−x)+ln |−x |=f (x )=−sinx +ln |x |≠±f (x ),所以函数f (x )为非奇非偶函数,排除C ,故选A. 7.C【解析】7.依据流程图运行程序,首先 初始化数值, 0,1,1x y n === ,进入循环体:1,12y y nx n y +====,时满足条件2y x ≥ ,执行12n n =+= ,进入第二次循环, 32,22y y n x n y +====,时满足条件2y x ≥ ,执行13n n =+= ,进入第三次循环,99,y y n x n y +====,时不满足条件2y x ≥ ,输出81p xy == .答案第8页,总18页本题选择C 选项. 8.C【解析】8.由递推公式可得:当n 为奇数时, 24n n a a +-= ,数列{}21n a - 是首项为1,公差为4的等差数列, 当n 为偶数时, 20n n a a +-= ,数列{}21n a - 是首项为2,公差为0的等差数列,()()20171320172420161100910091008410082220171010 1.S a a a a a a =+++++++=+⨯⨯⨯+⨯=⨯-本题选择C 选项. 9.C【解析】9.根据函数f (x )的图象求出A 、T 、ω和φ的值,写出f (x )的解析式,求出f ′(x ),写出g (x )=f (x )+f ′(x )的解析式,再判断题目中的选项是否正确. 根据函数f (x )=A sin (ωx +φ)的图象知,A =2,T 4=2π3−π6=π2,∴T =2π,ω=2πT=1;根据五点法画图知, 当x =π6时,ωx +φ=π6+φ=π2,∴φ=π3,∴f (x )=2sin (x +π3); ∴f ′(x )=2cos (x +π3),∴g (x )=f (x )+f ′(x ) =2sin (x +π3)+2cos (x +π3)=2√2sin (x +π3+π4)=2√2sin (x +7π12);令x +7π12=π2+k π,k ∈Z,解得x =−π12+k π,k ∈Z,∴函数g (x )的对称轴方程为x =−π12+k π,k ∈Z,A 正确;当x +7π12=π2+2k π,k ∈Z 时,函数g (x )取得最大值2√2,B 正确;g ′(x )=2√2cos (x +7π12),假设函数g (x )的图象上存在点P (x 0,y 0),使得在P 点处的切线与直线l :y =3x ﹣1平行, 则k =g ′(x 0)=2√2cos (x 0+7π12)=3,解得cos (x 0+7π12)=2√21,显然不成立,所以假设错误,即C 错误; 方程g (x )=2,则2√2sin (x +7π12)=2,∴sin(x +7π12)=√22,∴x +7π12=π4+2k π或x +7π12=3π4+2k π,k ∈Z;∴方程的两个不同的解分别为x 1,x 2时, |x 1﹣x 2|的最小值为π2,D 正确. 故选:C . 10.D【解析】10.很明显0a ≠ ,由题意可得: ()()2'3632f x ax x x ax =-=- ,则由()'0f x = 可得1220,x x a==, 由题意得不等式: ()()122281210f x f x a a=-+< ,即: 2241,4,22a a a><-<< ,综上可得a 的取值范围是 ()()2,00,2-⋃. 本题选择D 选项. 11.-8【解析】11.由题意可得: ()22,4a b ==- 或()22,4a b =-=- ,答案第10页,总18页…○…………外…………○…………装※※请※※不※※要…○…………内…………○…………装则: ()248mn =-⨯=- 或()248mn =⨯-=- . 12.√6−√22<e <√5−12【解析】12.分析:设M(c,y),由题意y >c >√22y,y =±b 2a,从而可求椭圆的离心率的取值范围.详解:因为圆M 与x 轴相切于焦点F ,所以圆心与F 的连线必垂直于x 轴,不妨设M(c,y), 因为M(c,y)在椭圆上,则y =±b 2a(a 2=b 2+c2),所以圆的半径为b 2a, 由题意y>c >√22y ,所以c 2<(1−e 2)2<2e 2,所以√6−√22<e <√5−12.13.27,54⎡⎤⎢⎥⎣⎦【解析】13.绘制不等式组表示的可行域如图所示,目标函数yx表示可行域内的点(),x y 与坐标原点()0,0 之间连线的斜率,目标函数在点47,55A ⎛⎫⎪⎝⎭处取得最大值74 ,在点51,42⎛⎫⎪⎝⎭处取得最小值25 , 230,220,220,x y x y x y +-≥-+≥--≤则y x 的取值范围为27,54⎡⎤⎢⎥⎣⎦.14.【解析】14.由题意可设:BC DE a==,则:()211189222244ABCDES a a a a⎡=⨯⨯+⨯⨯=-∈⎣,则:当a=时,面积由最大值;当a=时,面积由最大值;结合二次函数的性质可得:BC的取值范围为.15.(1)()*12n na n N=∈;(2)1nn+.【解析】15.试题分析:(1)由题意可得数列{}n a是以12为首项,12为公比的等比数列,12n na=()*n N∈.(2)裂项求和,11111n nb b n n+=-+,故1nnTn=+.试题解析:(1)当2n=时,由121n nS S-=+及112a=,得2121S S=+,即121221a a a+=+,解得214a=.又由121n nS S-=+,①可知121n nS S+=+,②②-①得12n na a+=,即()1122nnana+=≥.且1n=时,2112aa=适合上式,因此数列{}n a是以12为首项,12为公比的等比数列,故12n na= ()*n N∈.(2)由(1)及12logn nb a=()*n N∈,可知121log2nnb n⎛⎫==⎪⎝⎭,答案第12页,总18页所以()1111111n n b b n n n n +==-++, 故2231111n n n nT b b b b b b +=+++= 1111112231n n ⎡⎤⎛⎫⎛⎫⎛⎫-+-++-= ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦1111n n n -=++. 16.(1)见解析;(2)3.【解析】16.试题分析:(1)利用题意证得EF ⊥平面AFC .由面面垂直的判断定理可得平面AEF ⊥平面AFC .(2)结合(1)的结论和题意建立空间直角坐标系,由平面的法向量可得二面角E AC F --试题解析:(1)因为底面ABCD 为菱形,所以AC BD ⊥,又平面BDEF ⊥底面ABCD ,平面BDEF ⋂平面ABCD BD =, 因此AC ⊥平面BDEF ,从而AC EF ⊥. 又BD DE ⊥,所以DE ⊥平面ABCD ,由2AB a =, 2DE BF ==, 120ABC ∠=︒, 可知AF =, 2BD a =,EF==,AE=,从而222AF FE AE +=,故EF AF⊥.又AF AC A ⋂=,所以EF ⊥平面AFC .又EF ⊂平面AEF ,所以平面AEF⊥平面AFC . (2)取EF 中点G ,由题可知//OG DE ,所以OG ⊥平面ABCD ,又在菱形ABCD中, OA OB ⊥,所以分别以OA , OB , OG 的方向为x , y , z 轴正方向建立空间直角坐标系O xyz -(如图示),则()0,0,0O , ),0,0A, (),0,0C ,()0,E a -, ()0,F a ,所以())0,,0,0AE a =--= (),a -, ()),0,0,0,0AC =--=(),0,0-, ()()0,0,EF a a =-- ()0,2,a =.由(1)可知EF ⊥平面AFC ,所以平面AFC 的法向量可取为()0,2,EF a =.设平面AEC 的法向量为(),,n x y z =,…订…………○…_____考号:___________…订…………○…则0,{0,n AE n AC ⋅=⋅=即0,{0,y x -+==即,{0,y x ==令z =4y =,所以(0,4,2n =. 从而cos ,n EF =363n EF n EF⋅==⋅. 故所求的二面角E AC F --17.(1)448;(2)该校高三年级目前学生的“考前心理稳定整体”已过关;(3)见解析.【解析】17.试题分析:(1)由频率分布直方图估算该校高三年级学生获得成绩为B 的人数为448; (2)计算平均分可得该校高三年级目前学生的“考前心理稳定整体”已过关. (3) ξ的可能值为0,1,2,3.由超几何分布的概率写出分布列,求得数学期望为1211. 试题解析:(1)从条形图中可知这100人中,有56名学生成绩等级为B ,所以可以估计该校学生获得成绩等级为B 的概率为561410025=, 则该校高三年级学生获得成绩为B 的人数约有1480044825⨯=.(2)这100名学生成绩的平均分为()1321005690780370260100⨯+⨯+⨯+⨯+⨯ 91.3=,因为91.390>,所以该校高三年级目前学生的“考前心理稳定整体”已过关.(3)由题可知用分层抽样的方法抽取11个学生样本,其中A 级4个, B 级7个,从而任意选取3个,这3个为A 级的个数ξ的可能值为0,1,2,3.则()03473117033C C P C ξ===, ()124731128155C C P C ξ===, ()214731114255C C P C ξ===, ()304731143165C C P C ξ===. 因此可得ξ的分布列为:………○………○则()7281440123335555165Eξ=⨯+⨯+⨯+⨯1211=.18.(1)2212xy+=;(2)22322m k-=.【解析】18.试题分析:(1)由题意求得21b=,22a=,故所求的椭圆方程为2212xy+=.(2)联立直线与椭圆的方程,利用根与系数的关系结合题意可证得22322m k-=为定值.试题解析:(1)由题意可知2ca=,所以()222222a c a b==-,即222a b=,①又点2P⎛⎝⎭在椭圆上,所以有2223144a b+=,②由①②联立,解得21b=,22a=,故所求的椭圆方程为2212xy+=.(2)设()()1122,,,A x yB x y,由0OA OB⋅=,可知1212x x y y+=.联立方程组22,{1,2y kx mxy=++=消去y化简整理得()222124220k x kmx m+++-=,由()()22221681120k m m k∆=--+>,得2212k m+>,所以122412kmx xk+=-+,21222212mx xk-=+,③又由题知1212x x y y+=,即()()1212x x kx m kx m+++=,答案第14页,总18页整理为()()22121210k x x km x x m ++++=. 将③代入上式,得()22222224101212m kmkkm m k k-+-⋅+=++. 化简整理得222322012m k k--=+,从而得到22322m k -=. 19.(1)见解析;(2)见解析.【解析】19.试题分析:(1)求解函数的导函数,分类讨论可得:①若0a >时,当()0,x a ∈时,函数()f x 单调递减,当(),x a ∈+∞时,函数()f x 单调递增; ②若0a =时,函数()f x 单调递增; ③若0a <时,当0,2a x ⎛⎫∈-⎪⎝⎭时,函数()f x 单调递减,当,2a x ⎛⎫∈-+∞ ⎪⎝⎭时,函数()f x 单调递增. (2)构造新函数()()()h x f x x ϕ=+= ()22ln x a x a x +-- (0)x >,结合新函数的性质即可证得题中的不等式.试题解析:(1)由()22ln f x a x x ax =-+-,可知()2'2a f x x a x =-+-= ()()2222x a x a x ax a x x+---=. 因为函数()f x 的定义域为()0,+∞,所以,①若0a >时,当()0,x a ∈时, ()'0f x <,函数()f x 单调递减,当(),x a ∈+∞时, ()'0f x >,函数()f x 单调递增;②若0a =时,当()'20f x x =>在()0,x ∈+∞内恒成立,函数()f x 单调递增; ③若0a <时,当0,2a x ⎛⎫∈- ⎪⎝⎭时, ()'0f x <,函数()f x 单调递减,当,2a x ⎛⎫∈-+∞ ⎪⎝⎭时, ()'0f x >,函数()f x 单调递增.(2)证明:由题可知()()()h x f x x ϕ=+= ()22ln x a x a x +-- (0)x >,所以()()'22a h x x a x=+--= ()()()22221x a x a x a x x x +---+=.答案第16页,总18页所以当0,2a x ⎛⎫∈ ⎪⎝⎭时, ()'0h x <;当,2a x ⎛⎫∈+∞ ⎪⎝⎭时, ()'0h x >;当2a x =时, '02a h ⎛⎫= ⎪⎝⎭. 欲证12'02x x h +⎛⎫>⎪⎝⎭,只需证12''22x x a h h +⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,又()2''20a h x x =+>,即()'h x 单调递增,故只需证明1222x x a+>. 设1x , 2x 是方程()h x m =的两个不相等的实根,不妨设为120x x <<,则()()211122222,{2,x a x alnx m x a x alnx m +--=+--=两式相减并整理得()1212ln ln a x x x x -+-= 22121222x x x x -+-,从而221212121222ln ln x x x x a x x x x -+-=-+-,故只需证明()2212121212122222ln ln x x x x x x x x x x +-+->-+-, 即22121212121222ln ln x x x x x x x x x x -+-+=-+-.因为1212ln ln 0x x x x -+-<, 所以(*)式可化为12121222ln ln x x x x x x --<+,即11212222ln 1x x x x x x -<+.因为120x x <<,所以1201x x <<, 不妨令12x t x =,所以得到22ln 1t t t -<+, ()0,1t ∈. 记()22ln 1t R t t t -=-+, ()0,1t ∈,所以()()()()222114'011t R t t t t t -=-=≥++,当且仅当1t =时,等号成立,因此()R t 在()0,1单调递增.又()10R =,因此()0R t <, ()0,1t ∈, 故22ln 1t t t -<+, ()0,1t ∈得证, 从而12'02x x h +⎛⎫>⎪⎝⎭得证. 20.(1)1C , ()()22232x y a -+-=, 2C : ()2224x y +-=; []1,5;(2)3.【解析】20.试题分析:(1)由题意计算可得曲线1C 与2C 化为直角坐标系xOy 中的普通方程为()()22232x y a -+-=,()2224x y +-=; a 的取值范围是[]1,5;(2)首先求解圆心到直线的距离,然后利用圆的弦长计算公式可得AB =. 试题解析: (1)曲线1C : 3,{2,x cost y sint αα=+=+消去参数t 可得普通方程为()()22232x y a -+-=.曲线2C : 4sin ρθ=,两边同乘ρ.可得普通方程为()2224x y +-=.把()2224y x -=-代入曲线1C 的普通方程得: ()22234136a x x x =-+-=-,而对2C 有()22224x x y ≤+-=,即22x -≤≤,所以2125a ≤≤故当两曲线有公共点时, a 的取值范围为[]1,5.(2)当3a =时,曲线1C : ()()22329x y -+-=,两曲线交点A , B 所在直线方程为23x =. 曲线()2224x y +-=的圆心到直线23x =的距离为23d =,所以3AB ==. 21.(1)[]1,1-;图见解析(2)见解析.○…………订………※※订※※线※※内※※答※※题○…………订………(1)将函数写成分段函数的形式解不等式可得解集为[]1,1-.(2)整理题中所给的算式,构造出适合均值不等式的形式,然后利用均值不等式的结论证明题中的不等式即可,注意等号成立的条件.试题解析:(1)因为()211f x x x=-++=3,1,1{2,1,213,.2x xx xx x-<--+-≤≤>所以作出图象如图所示,并从图可知满足不等式()3f x≤的解集为[]1,1-.(2)证明:由图可知函数()y f x=的最小值为32,即32m=.所以2232a b+=,从而227112a b+++=,从而221411a b+=++()()22222141171a ba a b⎛⎫⎡⎤++++=⎪⎣⎦++⎝⎭()222241215711aba b⎡⎤⎛⎫++⎢⎥⎪++≥⎪++⎢⎥⎝⎭⎣⎦218577⎡⎢+=⎢⎣.当且仅当()222241111aba b++=++时,等号成立,即216a=,243b=时,有最小值,所以221418117a b+≥++得证.答案第18页,总18页。