第六章.工程热力学
- 格式:ppt
- 大小:590.00 KB
- 文档页数:28
习题提示与答案第六章 热能的可用性及火用分析6-1 汽车用蓄电池中储存的电能为1 440W ·h 。
现采用压缩空气来代替它。
设空气压力为6.5 MPa 、温度为25 ℃,而环境的压力为0.1MPa ,温度为25 ℃,试求当压缩空气通过容积变化而作出有用功时,为输出1 440 W ·h 的最大有用功所需压缩空气的体积。
提示:蓄电池存储的电能均为可转换有用功的火用 ,用压缩空气可逆定温膨胀到与环境平衡时所作出的有用功替代蓄电池存储的电能,其有用功完全来源于压缩空气的火用 ,即W u =me x ,U 1。
单位质量压缩空气火用 值()()()010010011,x s s T v v p u u e U ---+-=,空气作为理想气体处理。
答案:V =0.25 m 3。
6-2 有一个刚性容器,其中压缩空气的压力为3.0 MPa ,温度和环境温度相同为25 ℃,环境压力为0.1 MPa 。
打开放气阀放出一部分空气使容器内压力降低到1.0 MPa 。
假设容器内剩余气体在放气时按可逆绝热过程变化,试求:(1) 放气前、后容器内空气比火用U e x,的值;(2) 空气由环境吸热而恢复到25 ℃时空气的比火用U e x,的值。
提示:放气过程中刚性容器中剩余气体经历了一个等熵过程,吸热过程为定容过程;空气可以作为理想气体处理;各状态下容器中空气的比 火用()()()00000x s s T v v p u u e U ,---+-=。
答案:e x ,U 1=208.3 kJ/kg ,e x ,U 2=154.14 kJ/kg ,e x ,U 3=144.56kJ/kg 。
6-3 有0.1 kg 温度为17 ℃、压力为0.1 MPa 的空气进入压气机中,经绝热压缩后其温度为207 ℃、压力为0.4 MPa 。
若室温为17 ℃,大气压力为0.1 MPa ,试求该压气机的轴功,进、出口处空气的比 火用 H e x,。
第6章 热力学一般关系式和实际气体的性质6-1 一个容积为23.3m 3的刚性容器内装有1000kg 温度为360℃水蒸气,试分别采用下述方式计算容器内的压力:1) 理想气体状态方程; 2) 范德瓦尔方程; 3) R-K 方程;4) 通用压缩因子图;4)查附录,水蒸气的临界参数为:K T cr 3.647=,bar p cr 9.220=,Z Pakg m K K kg J Z p v T ZR p p p cr g cr r 5682.0109.220/0233.015.633/9.461153=×××⋅×=×==978.03.64715.633===K K T T T crr 查通用压缩因子图6-3,作直线r p Z 76.1=与978.0=r T 线相交,得82.0=r p则bar MPa p p p cr r 1819.22082.0=×== 5)查水蒸气图表,得bar p 02.100=6-2 试分别采用下述方式计算20MPa 、400℃时水蒸气的比体积: 1) 理想气体状态方程; 2) 范德瓦尔方程; 3) R-K 方程;()b V V T b V m m m +−5.05.05.022−⎟⎟⎠⎜⎜⎝−+−pT V pT b p V p m m m mm m V V V ⎟⎠⎞⎜⎝⎛×−+×××−××−⇒5.02626315.67320059.14202111.010*******.015.6733.8314102015.6733.8314 067320002111.059.1425.0=××−()000058.002748.00004456.0005907.0279839.023=−−+−×−⇒m m m V V V000058.002112.0279839.023=−×+×−⇒m m m V V Vkmol m V m /1807.03=⇒ 则kg m V v m /01003.002.18/3==⇒4)查附录,水蒸气的临界参数为:K T cr 3.647=,bar p cr 9.220=,905.09.220200===cr r p pp()()()∫∫∫⎟⎠⎞⎜⎝⎛−−+−⎟⎟⎠⎞⎜⎜⎝⎛−=−−21212122221221v v v v v v g dv v a dv b v b b v d b v T R ()()⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎟⎠⎞⎜⎜⎝⎛−−−+⎟⎟⎠⎞⎜⎜⎝⎛−−=1212212211211ln 21v v a b v b v b b v b v T R g 6-4 Berthelot 状态方程可以表示为:2mm TV ab V RT p −−=,试利用临界点的特性即0=⎟⎟⎠⎞⎜⎜⎝⎛∂∂cr T m V p 、022=⎟⎟⎠⎞⎜⎜⎝⎛∂∂crT m V p 推出:cr cr p T R a 326427=,cr cr p RT b 83= 解:()0232=+−−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂m cr m cr T m V T a b V RT V p cr()322m cr m cr V T ab V RT =−⇒ (1) ()0624322=−−=⎟⎟⎞⎜⎜⎛∂∂cr V T a b V RT V p ()433cr V T a b V RT =−⇒ (2)()22T R b v T p g v−−=⎟⎠⎞⎜⎝⎛∂∂()()v C T R b v p g 22+−=⇒ 由于以上两式是同一方程,必然有()()021==v C T C ,即()TR b v p g 2−=6-6 在一个大气压下,水的密度在约4℃时达到最大值,为此,在该压力下,我们可以方便地得到哪个温度点的()T p s ∂∂/的值?是3℃,4℃还是5℃?解:由麦克斯韦关系式p TT v p s ⎟⎠⎞⎜⎝⎛∂∂−=⎟⎟⎠⎞⎜⎜⎝⎛∂∂,可知在一个大气压的定压条件下,4℃时有0=⎟⎠⎞⎜⎝⎛∂∂T v 。