数列的综合运用(一)
- 格式:doc
- 大小:195.00 KB
- 文档页数:2
数列的综合运用范文数列是数学中一种重要的概念,它是由一组按照一定规律排列的数所组成的序列。
在数学中,数列的综合运用十分广泛,涉及到数列的求和、递推关系、数列的性质和应用等方面。
本文将从上述几个方面综合运用数列进行详细探讨。
首先,数列的求和是数列的基本操作,它包括求等差数列的和、等比数列的和以及一些特殊的数列的和。
对于等差数列来说,求和可以通过求首项与末项的平均数乘以项数来得到,也可以通过求首项与末项之和乘以项数的一半得到。
对于等比数列来说,求和可以通过首项乘以公比的幂次减1再除以公比减1得到。
此外,还可以利用数列的递推关系求得求和的公式,例如斐波那契数列的求和公式即为斐波那契数列的通项公式的一个特殊情况。
其次,数列的递推关系指的是后一项与前一项之间的关系,它描述了数列的演化过程。
数列的递推关系可以通过观察数列的前几项来得到,并根据这种规律来确定后面的项。
例如等差数列的递推关系为后一项等于前一项加上公差,等比数列的递推关系为后一项等于前一项乘以公比。
利用数列的递推关系可以解决一些实际生活中的问题,如利用斐波那契数列的递推关系可以解决兔子繁殖问题。
第三,数列的性质是指数列在运算中所具有的一些特点。
其中常见的性质有有界性、单调性和周期性等。
数列的有界性指的是数列的所有项都存在一个上界和一个下界,即数列的所有项都位于这个区间内。
数列的单调性指的是数列的所有项是递增的或者递减的,即数列的项之间存在一种明显的大小关系。
数列的周期性指的是数列的项按照一定的规律重复出现,即数列的第n项与第n+k项相等。
利用数列的性质可以研究数列的极限、范围和周期等问题。
最后,数列的应用广泛存在于实际生活和各个学科中。
在实际生活中,数列的应用可以帮助我们解决一些数学和经济等问题,如利用利率的等比数列可以计算存款的本息和。
在学科中,数列的应用可以帮助我们研究和解决一些科学问题,如利用斐波那契数列可以表达自然界中一些规律和现象。
另外,数列的应用还可以帮助我们提高思维能力和解决问题的能力,如数列的递推关系与递归问题的求解有密切的关系。
高中数学《导数和数列综合证明(一)》导学案例2:已知:x x <+)1ln(2,(1)求证:)*2222()21...(81)41)(21(N n e n ∈<+⎪⎭⎫ ⎝⎛+++(2)求证:*2()311)...(8111)(911(N n e n ∈<+++)(3)求证:(1+421)(1+431)…(1+41n)<e )211ln(......)411ln()211ln()]211)...(411)(211ln[()1ln(12222222n n x x ++++++=+++∴<+ )(e n n n n <+++∴<⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-=++++<)211)...(411)(211(12112112112121 (814121222),)311)...(8111)(911(21311213113113131......3131)311ln(......)8111ln()911()]311)...(8111)(911ln[(2212222e e n n n n n n =<+++∴<⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛-=++<++++++=+++∴)( (3)ln[(1+421)(1+431)……(1+41n )]=ln[(1+421)(1+431)+…ln (1+41n )<221+231+…+21n<)1(1321211-+⨯+⨯n n =1-21+21-31+…+n n 111--=1-n 1<1∴(1+421)(1+431)……(1+41n )<e 例3:设曲线y = f (x ) =cx bx x a ++23213在点x 处的切线斜率为k (x ),且k (-1) = 0.对一切实数x ,不等式).0()1(21)(2≠+≤≤a x x k x 恒成立(1)求f (1)的值;(2)求函数k (x )的表达式;(3)设数列)(1n k 的前n 项和为S n ,求证22+>n nS n解:(1)04)1(,0,00)(222≤--≤∆>∴≥-++++=ac b a x c bx ax c bx ax x k ①0)21)(21(4,0,021,02121222≤---≤∆<-∴≤--++c a b a x c bx ax ②又,4)1(1)1(),11(21)1(12a cb a k k k =++==∴+≤≤ 又1270)1(41=∴=∴f a(2))0()(2≠++='=a c bx ax y x k ,由0)1(,1)1(=-=k k 得⎩⎨⎧=+-=++01c b a c b a 得⎪⎩⎪⎨⎧==+2121b c a 又)1(21)(2+≤≤x x k x 恒成立,则由)0(0212≠≥+-a c x ax 恒成立得410402141==⇒⎪⎩⎪⎨⎧=+≤-=∆>c a c a ac a 同理由02121)21(2≥-++-c x x a 恒成立得41==c a 综上,21,41===b c a 412141)(2++=∴x x k(3)∑=+++⨯+⨯>+++=ni n n n i k 122])2)(1(1431321[41])1(121[41)(1 22]2121[41+=+-=n n n 法二:和式代换,要证22+>n n S n ,即也证()1121+->-n n S n ,只需证:()()()21411222++=+--+>n n n n n n a n ,只需()()()21414)(12++>+=n n n n k ,且()322121114211=+>=+==S a ,故22+>n n S n。
辅导专题之六:数列的综合运用1.已知公差不为零的等差数列{a n }的前n 项和为S n ,若3411S S 34与的等比中项为534111S ,S S 534与的等差中项为1,求此数列的前n 项和S n 取得最大值时n 的值。
1580,0,N*233n n a a n n n +≥≤⇒≤≤∈⇒=2.某企业2008年的纯利润为500万元,因设备老化等原因,企业的生产能力将逐年下降,若不进行技术改造,预计从2009年起每年比上一年纯利润减少20万元。
2009年初该企业一次性投入资金600万元进行技术改造,预计在未扣除技术改造资金的情况下,第n 年(2009年为第一年)的利润为1500(1)2n +万元(n 为整数)。
从2009年起的前n 年,若该企业不进行技术改造的累计纯利润为n A 万元,进行技术改造后的累计纯利润为n B 万元(需扣除技术改造资金),求n A 和n B 的表达式;250049010,5001002n n n A n n B n =-=--3.数列{}n a 的前n 项和2n nS an b=+,若112a =,256a =.(1)求数列{}n a 的前n 项和n S ;(2)求数列{}n a 的通项公式; (3)设21nn a b n n =+-,求数列{}n b 的前n 项和n T .()2211,,1111n n n n n n S a T n n n n +-===-+++4.数列{}n a 的前n 项和为22n n S a =-,数列{}n b 是首项为1a ,公差不为零的等差数列,且1311,,b b b 成等比数列.(1)求123,,a a a 的值;(2)求数列{}n a 与{}n b 的通项公式;(3)求证:3121235nnb b b b a a a a ++++<. (1)2,4,8(2)2,31n n n a b n ==-(3)3552n nn T +=-5.已知数列}{n a 的前n 项和为n S ,数列}1{+n S 是公比为2的等比数列,2a 是1a 和3a 的等比中项.(1)求数列}{n a 的通项公式;(2)求数列{}n na 的前n 项和n T .()12,121n n n n a T n -==-+6.已知向量1*1(,2),(2,),,n n n n p a q a n N ++==-∈向量p 与q 垂直,且1 1.a = (1)求数列{}n a 的通项公式;(2)若数列{}n b 满足2log 1n n b a =+ ,求数列{}n n a b ⋅的前n 项和n S .()12,121n n n n a S n -==-+7.已知数列{}n a 中11=a ,121+=+n nn a a a (+∈N n ).⑴求证:数列⎭⎬⎫⎩⎨⎧n a 1为等差数列; ⑵设1+⋅=n n n a a b (+∈N n ),数列{}n b 的前n 项和为n S ,求满足20121005>n S 的最小正整数n .111,121221n n a S n n ⎛⎫==- ⎪-+⎝⎭8.在数列{}n a 中,*)(1,111N n a a a a n nn ∈+==+.(1)求证:数列⎭⎬⎫⎩⎨⎧n a 1是等差数列,并求数列{}n a 的通项公式;(2)设nn n a b ⋅=21,求数列}{n b 的前n 项和为n T ;1,2n n n n a b n ==9.已知数列{}n a 的前n 项和为n S ,且n a 是n S 与2的等差中项,而数列{}n b 的首项为1, 120n n b b +--=.(1)求1a 和2a 的值;(2)求数列{}n a ,{}n b 的通项n a 和n b ;(3)设n n n c a b =⋅,求数列{}n c 的前n 项和n T 。
数列的综合应用1、数列的通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。
⑵已知n S (即12()n a a a f n +++= )求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。
⑶已知12()n a a a f n = 求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。
⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++- 1a +(2)n ≥。
⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅L (2)n ≥。
⑹已知递推关系求n a ,用构造法(构造等差、等比数列)。
特别地,(1)形如1n n a ka b -=+、1n n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。
(2)形如11n n n a a ka b --=+的递推数列都可以用倒数法求通项。
注意:(1)用1--=n n n S S a 求数列的通项公式时,你注意到此等式成立的条件了吗?(2n ≥,当1n =时,11S a =);(2)一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。
2、数列求和的常用方法:(1)公式法:①等差数列求和公式; ②等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.; ③常用公式:1123(1)2n n n ++++=+L222112(1)(21)6n n n n +++=++L ,33332n(n+1)1+2+3++n =[]2L .(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性 ,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:①111(1)1n n n n =-++; ②1111()()n n k k n n k =-++; ③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k-=<<=-++--; ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ; ⑤2122(1)2(1)11n n n n n n n n n +-=<<=--+++-.(6)通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。
专练32 高考大题专练(三) 数列的综合运用1.[2021·全国乙卷]设{a n }是首项为1的等比数列,数列{b n }满足b n =na n3.已知a 1,3a 2,9a 3成等差数列.(1)求{a n }和{b n }的通项公式;(2)记S n 和T n 分别为{a n }和{b n }的前n 项和.证明:T n <S n2.2.[2022·全国甲(文),18]记S n 为数列{}a n 的前n 项和.已知2S nn+n =2a n +1.(1)证明:{}a n 是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.3.[2022·新高考Ⅰ卷,17]记S n 为数列{}a n 的前n 项和,已知a 1=1,⎩⎨⎧⎭⎬⎫S n an 是公差为13的等差数列.(1)求{}a n 的通项公式; (2)证明:1a 1+1a 2+…+1a n<2.4.[2021·全国甲卷]记S n 为数列{a n }的前n 项和,已知a n >0,a 2=3a 1,且数列{S n }是等差数列,证明:{a n }是等差数列.5.[2022·云南省高三联考(二)]已知正项数列{a n }的前n 项和为S n ,满足4S n =a 2n +2a n-8.(1)求数列{a n }的通项公式;(2)求数列{(-1)n(S n -3n )}的前n 项和T n .专练32 高考大题专练(三) 数列的综合运用1.解析:(1)设{a n }的公比为q ,则a n =qn -1.因为a 1,3a 2,9a 3成等差数列,所以1+9q 2=2×3q ,解得q =13,故a n =13n -1,b n =n 3n .(2)由(1)知S n =1-13n1-13=32(1-13n ),T n =13+232+333+…+n3n ,①13T n =132+233+334+…+n -13n +n3n +1,② ①-②得23T n =13+132+133+…+13n -n 3n +1,即23T n =13(1-13n )1-13-n 3n +1=12(1-13n )-n3n +1, 整理得T n =34-2n +34×3n ,则2T n -S n =2(34-2n +34×3n )-32(1-13n )=-n 3n <0,故T n <S n2.2.解析:(1)证明:由已知条件,得S n =na n -n 22+n2.当n =1时,a 1=S 1.当n ≥2时,a n =S n -S n -1=na n -n 22+n 2-⎣⎢⎡⎦⎥⎤(n -1)a n -1-(n -1)22+n -12,∴(1-n )a n=-n +1-(n -1)a n -1.等式两边同时除以1-n ,得a n =1+a n -1, ∴a n -a n -1=1.∴{a n }是公差为1的等差数列. (2)由(1)可得a n =a 1+(n -1). ∴a 4=a 1+3,a 7=a 1+6,a 9=a 1+8. ∵a 4,a 7,a 9成等比数列,∴a 27 =a 4·a 9, 即(a 1+6)2=(a 1+3)(a 1+8),∴a 1=-12, ∴S n =na 1+n (n -1)2×1=-12n +n 2-n 2=12n 2-252n .当n =12或n =13时,S n 取得最小值,为12×122-252×12=-78.3.解析:(1)∵a 1=1,∴S 1a 1=1.又∵⎩⎨⎧⎭⎬⎫S n a n 是公差为13的等差数列,∴S n a n =S 1a 1+13(n -1), 即S n =(13n +23)a n =13(n +2)a n ,∴当n ≥2时,S n -1=13(n +1)a n -1,∴a n =S n -S n -1=13(n +2)a n -13(n +1)a n -1,n ≥2,即(n -1)a n =(n +1)a n -1,n ≥2,∴a n a n -1=n +1n -1,n ≥2, ∴当n ≥2时,a n a n -1·a n -1a n -2·…·a 3a 2·a 2a 1=n +1n -1·n n -2·…·42·31=n (n +1)2,∴a n =n (n +1)2.当n =1时,a 1=1满足上式,∴a n =n (n +1)2.(2)证明:由(1)知a n =n (n +1)2,∴1a n=2n (n +1)=2(1n -1n +1),∴1a 1+1a 2+…+1a n =2(1-12+12-13+…+1n -1n +1)=2(1-1n +1). ∵n ∈N *,∴0<1n +1≤12,∴1-1n +1<1, ∴2(1-1n +1)<2,∴1a 1+1a 2+…+1a n<2. 4.解析:由题意可知,数列{S n }的首项为a 1,设等差数列{S n }的公差为d ,由题意得S 1=a 1,S 2=a 1+a 2=4a 1=2a 1,则d =S 2-S 1=a 1+a 2-a 1=a 1,所以S n =a 1+(n -1)a 1=n a 1,即S n =a 1·n 2,所以a n =⎩⎪⎨⎪⎧a 1,n =1S n -S n -1=(2n -1)a 1,n ≥2,即a n =(2n -1)a 1,所以a n +1-a n =2a 1,所以数列{a n }是以a 1为首项,2a 1为公差的等差数列.5.解析:(1)由4S n =a 2n +2a n -8, 得4S n -1=a 2n -1 +2a n -1-8(n ≥2), 两式相减得:4a n =a 2n +2a n -a 2n -1 -2a n -1, 则a 2n -a 2n -1 -2(a n +a n -1)=0, 即(a n -a n -1-2)(a n +a n -1)=0, 因为a n >0, 所以a n -a n -1=2,又4a 1=a 21 +2a 1-8,解得a 1=4或a 1=-2(舍去), 所以数列{a n }是以4为首项,以2为公差的等差数列, 所以a n =4+2(n -1)=2n +2;(2)由(1)知:4S n =(2n +2)2+2(2n +2)-8, 所以S n =n (n +3),则(-1)n (S n -3n )=(-1)n n 2,当n 为偶数时,T n =-12+22-32+42-…+n 2, =3+7+…+2n -1,=n2(3+2n -1)2=n (n +1)2;当n 为奇数时,T n =-12+22-32+42-…+(n -1)2-n 2, =3+7+…+2n -3-n 2,=n -12(3+2n -3)2-n 2=-n (n +1)2.所以T n=⎩⎪⎨⎪⎧n (n +1)2,n 为偶数-n (n +1)2,n 为奇数.。
数列的综合应用数列是数学中重要的概念之一,它在各个领域中都有着广泛的应用。
数列的综合是数列中各个数值的求和运算,可以帮助我们解决很多实际问题。
本文将探讨数列的综合应用,从数学角度分析其在现实生活中的具体应用。
一、数列的定义和性质在介绍数列的综合应用之前,我们首先需要了解数列的基本定义和性质。
数列是按照一定规律排列的一组数,其中每个数称为数列的项。
根据数列的性质,我们可以将数列分为等差数列和等比数列两种常见类型。
1. 等差数列:等差数列中的任意两个相邻项之差都相等,这个固定的差值称为公差。
等差数列的一般形式为an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。
2. 等比数列:等比数列中的任意两个相邻项之比都相等,这个固定的比值称为公比。
等比数列的一般形式为an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。
二、数列的综合应用数列的综合应用广泛存在于日常生活和各个学科领域中,下面将从几个具体问题场景中介绍数列的应用。
1. 汽车里程计算假设一辆汽车从起点出发,每小时行驶的里程数分别是12公里、15公里、18公里、21公里...... 如果想知道5个小时内总共行驶了多少公里,我们可以使用等差数列的综合公式来计算。
首先确定首项a1=12,公差d=3(每小时增加3公里),然后带入数列综合公式Sn =(n/2)[2a1+(n-1)d],代入n=5进行计算得出结果为75公里。
因此,这辆汽车在5个小时内共行驶了75公里。
2. 学生成绩评估假设某学生在数学考试中的成绩分别是80分、85分、90分、95分......,如果想知道前10次考试的总分,我们可以使用等差数列的综合公式进行计算。
首先确定首项a1=80,公差d=5(每次考试分数增加5分),然后带入数列综合公式Sn = (n/2)[2a1+(n-1)d],代入n=10进行计算得出结果为875分。
因此,这名学生前10次数学考试的总分为875分。
数列的综合运用(一)
一、选择题
1.已知数列{}n a 中,1(1)21n
n n a a n ++-=-,则数列{}n a 的前12和12S =( ) A.76 B.78 C.80 D.82
2.在 ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,且cos a C ,cos b B ,cos c A
成等差数列,若b =,则a c +的最大值为( )
A.
3
2
B.3
C.
D.9 二、填空题
3.在等差数列{}n a 中,12a =,36a =,若将1a ,4a ,5a 都加上同一个数,所得的三个数依次成等比数列,则所加的这个数为 .
4.已知数列{}n a 中,11a =,22a =,122(3)n n n a a a n --=+≥,则1260a a a +++= . 三、解答题
5.在数1和2之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记为n A ,令2log n n a A =,n ∈N +. (1)求数列{}n A 的前n 项和n S ;
(2)求2446222tan tan tan tan tan tan n n n T a a a a a a +=⋅+⋅++⋅ 的值.
6.已知数列1
{2
}n n a -⋅的前n 项和12n n S =-
. (1)求数列{}n a 的通项公式;(2)设||n n a b n
=,求数列1
{}n b 的前n 项和.
7.已知数列{}n a 的前n 项和为n S ,且21n n S a =-;正项数列{}n b 满足11n n n n b b b b ---=(2n ≥,n ∈n ∈N +),11b =.
(1)求数列{}n a ,{}n b 的通项公式;(2)求数列{}n
n
a b 的前n 项和n T .
8.若数列{}n a 满足11a =,13(n n a a n +=∈N +). (1)求数列{}n a 的通项公式;
(2)已知等差数列{}n b 的各项均为正数,其前n 项和为n T ,且315T =,又11a b +,22a b +,
33a b +成等比数列,求n T .
9.已知等比数列{}n a 满足13223a a a +=,且32a +是2a ,4a 的等差中项. (1)求数列{}n a 的通项公式;
(2)若2
1l o
g n n n
b a a =+,12n n S b b b =+++ ,求使1
2470n n S +-+<成立的正整数n 的最小值.。