微积分发展简史_刘和义
- 格式:pdf
- 大小:157.97 KB
- 文档页数:3
简述中国微积分的发展历程
中国微积分的发展历程可以追溯到古代,但真正开始发展起来要从19世纪末20世纪初开始。
当时,国内知识分子开始接触西方的数学思想,调查研究西方数学的发展历程,并开始翻译传播西方的数学经典。
20世纪20年代,中国开始产生自己的微积分学派,早期的代表人物有丁取忠、刘维惠等。
在这一时期,微积分学派主要是以解决实际问题为目标,着重研究微积分的应用。
20世纪30年代,中国的数学家开始系统地研究微积分的理论,逐渐形成了自己的微积分学体系。
1949年新中国成立后,中国的数学事业迎来了蓬勃发展的时期。
国内的微积分研究不断创新,涌现出一批杰出的数学家,如华罗庚、陈省身、王元等。
这一时期,中国的微积分学家开始与世界上的数学家开展交流合作,并在微积分的理论研究和应用创新方面取得了显著的成绩。
今天,中国的微积分研究已经成为国际数学领域的重要组成部分。
中国的微积分学家们在微积分的理论研究和应用创新上取得了很高
的成就,在微积分的教育和科研方面的贡献也日益显著。
- 1 -。
微积分发展简介文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]对微积分理论的简要品论通常所说的微积分实际上包含了微分和积分两方面的内容。
微积分理论是建立在实数、函数、极限的基础上的,是由牛顿和莱布尼茨从不同的研究领域出发独立创立的。
经过后来众多的数学家加以完善和补充,成为了数学史上具有划时代意义的理论之一。
下面就为积分的理论发展史及其意义加以简要的品论。
早在牛顿和莱布尼茨创立微积分前,极限思想萌芽就已经诞生,如魏晋时期数学家刘徽创立的“割圆术”以及南北朝时期祖冲之祖恒父子继承刘徽思想估算圆周率;古希腊时期也有极限思想,如安提芬的“穷竭法”和阿基米德的“平衡法”。
这些都体现了近代积分法的基本思想,是定积分概念的雏形。
先前微分学研究的相对少一些,在此不予列举。
微积分的思想真正的迅速发展是在16世纪以后,在这一时期,以常量为研究对象的古典数学已经不能满足对运动与变化的研究需求,为了处理17世纪所面临的主要问题;由位移公式求速度和加速度,求曲线的切线,函数的极值,天文学问题;牛顿在接受前人的成果基础上,从研究实际物体的运动出发,创立了微积分理论;莱布尼茨通过对前人科学成的研究,从求曲线的切线问题出发,创立了微积分理论。
他们两人虽然独立创造了微积分理论,但都有其各自的不足,对微积分学的基础的解释都含混不清。
牛顿和莱布尼茨对创立微积分理论的贡献都是相当的,然而,局外人的争议却带来了严重的后果,造成了支持莱布尼茨的欧陆数学家和支持牛顿的英国数学家的两派的不和,两派的数学家在数学的发展道路上分道扬镳,停止了思想的交换,最终导致英国数学家的落后。
为了寻求牛顿和莱布尼茨提出的微积分理论不足之处的解决方案,后续数学家们又作出了大量的努力。
其中有罗尔提出的罗尔定理,罗比达法则的提出,泰勒定理的提出,以及麦克劳级数理论和微积分的另两位重要奠基人伯努利兄弟雅各布和约翰完善了微积分的部分内容。
雅各布、法尼亚诺、欧拉、拉格朗日和泰勒等数学家在考虑无理函数的积分时,积累了特殊类型的“椭圆积分”的大量结果。
引言:微积分是数学中的一个重要分支,对于解决各种实际问题具有重要意义。
本文将继续探讨微积分的发展史,重点关注于17世纪到19世纪初期这段时间内微积分的发展。
通过了解微积分的历史,我们可以更好地理解微积分的概念和应用。
概述:17世纪至19世纪初期是微积分发展的关键时期。
在这个时期,许多数学家和科学家对微积分的理论和应用进行了深度研究。
他们的贡献奠定了现代微积分的基础。
正文:一、近似计算方法的改进1.1泰勒级数的发现1.2泰勒级数在近似计算中的应用1.3拉格朗日中值定理的发展与应用1.4极限的概念的确立二、变分法的兴起2.1最速降线问题的解决2.2欧拉对变分法的贡献2.3欧拉拉格朗日方程的建立2.4变分法在物理学领域的应用三、微分方程的研究3.1微分方程的基本概念与分类3.2欧拉对微分方程理论的贡献3.3柯西与克拉末对微分方程的研究3.4微分方程在物理学和工程学中的应用四、复变函数与积分变换4.1复变函数的引入与发展4.2柯西黎曼方程的建立4.3积分变换的概念与应用4.4拉普拉斯变换的研究与应用五、极限分析的深化5.1极限分析理论的完善5.2庞加莱对极限理论的贡献5.3序列与级数的研究5.4极限分析在数学和物理学中的应用总结:微积分的发展经历了17世纪至19世纪初期的重要阶段。
通过改进近似计算方法、变分法的兴起、微分方程的研究、复变函数与积分变换以及极限分析的深化等方面的努力,微积分的理论和应用得到了极大的发展。
这些成果为现代数学、物理学和工程学的发展奠定了坚实的基础,并在解决实际问题中发挥着重要作用。
了解微积分发展史的过程,有助于我们更好地理解微积分的概念和应用,并能够更加深入地探索微积分在各领域中的应用前景。
微积分的发展史简述引言概述:微积分是数学中的一个重要分支,它是解析几何和数学分析的基础。
从古代到现代,微积分的发展历程经历了众多数学家和科学家的探索和贡献。
本文将以引言概述、五个大点和详细的小点阐述微积分的发展史,并在文末进行总结。
微积分发展简史
《微积分发展简史》
嘿,咱今天来聊聊微积分的发展那点事儿。
话说很久很久以前,人们就开始和各种数量打交道啦。
那时候啊,可没有现在这么多厉害的数学工具呢。
后来呢,一些聪明的脑袋瓜子就开始琢磨怎么更好地处理这些数量关系。
慢慢的,就有了一些初步的想法冒出来啦。
这些想法就像小芽儿一样,一点点地成长。
那些数学家们就像辛勤的园丁,不断地浇水施肥,让微积分这棵大树慢慢长大。
在这个过程中啊,有好多厉害的人物出现哟!比如说牛顿和莱布尼茨,这两位大佬那可是相当牛啊,他们为微积分的发展做出了巨大的贡献。
他们就像是武林高手,把微积分的招式变得越来越厉害。
随着时间的推移,微积分也在不断地进化呢。
它从一个小小的幼苗长成了参天大树,在各个领域都发挥着重要的作用。
无论是物理、工程还是经济,都离不开微积分这个好帮手呀。
再后来呀,越来越多的人加入到研究微积分的队伍中来啦。
大家一起努力,让微积分变得越来越强大,越来越完善。
哎呀呀,这一路走来,微积分可真是不容易呀!从一开始的小不点,到现在的厉害角色,经历了好多风风雨雨呢。
到了今天,我们还在不断地探索和研究微积分,让它能更好地为我们服务。
这就像是一场没有终点的旅程,我们一直在路上。
怎么样,听我这么一说,是不是对微积分的发展有了更深刻的了解呀?哈哈,这就是微积分的故事,一个充满智慧和挑战的故事哟!
好啦,就说到这儿啦,下次再给你们讲其他有趣的数学故事哟!。
微积分发展简史一.微积分思想萌芽微积分的思想萌芽,部分可以追溯到古代。
在古代希腊、中国和印度数学家的著作中,已不乏用朴素的极限思想,即无穷小过程计算特别形状的面积、体积和曲线长的例子。
在中国,公元前5世纪,战国时期名家的代表作《庄子?天下篇》中记载了惠施的一段话:"一尺之棰,日取其半,万世不竭",是我国较早出现的极限思想。
但把极限思想运用于实践,即利用极限思想解决实际问题的典范却是魏晋时期的数学家刘徽。
他的"割圆术"开创了圆周率研究的新纪元。
刘徽首先考虑圆内接正六边形面积,接着是正十二边形面积,然后依次加倍边数,则正多边形面积愈来愈接近圆面积。
用他的话说,就是:"割之弥细,所失弥少。
割之又割,以至于不可割,则与圆合体,而无所失矣。
"按照这种思想,他从圆的内接正六边形面积一直算到内接正192边形面积,得到圆周率的近似值3.14。
大约两个世纪之后,南北朝时期的著名科学家祖冲之(公元429-500年)祖恒父子推进和发展了刘徽的数学思想,首先算出了圆周率介于3.1415926与3.1415927之间,这是我国古代最伟大的成就之一。
其次明确提出了下面的原理:"幂势既同,则积不容异。
"我们称之为"祖氏原理",即西方所谓的"卡瓦列利原理"。
并应用该原理成功地解决了刘徽未能解决的球体积问题。
欧洲古希腊时期也有极限思想,并用极限方法解决了许多实际问题。
较为重要的当数安提芬(Antiphon,B.C420年左右)的"穷竭法"。
他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积。
但他的方法并没有被数学家们所接受。
后来,安提芬的穷竭法在欧多克斯(Eudoxus,B.C409-B.C356)那里得到补充和完善。
之后,阿基米德(Archimedes,B.C287-B.C212)借助于穷竭法解决了一系列几何图形的面积、体积计算问题。
微积分发展史简述微积分是数学中的重要分支,广泛应用于自然科学、工程学、经济学等领域。
它的发展历史可以追溯到古希腊时期,但直到17世纪才得到了系统的发展和完善。
本文将简要介绍微积分的发展史。
1. 古希腊时期:微积分的雏形在古希腊时期,数学家们对于几何学有着深入的研究。
亚里士多德和欧几里得等人提出了许多与微积分相关的概念,如无穷小量和极限。
然而,由于当时的数学工具和观念的限制,微积分的发展受到了很大的阻碍。
2. 牛顿和莱布尼茨:微积分的创始人17世纪,牛顿和莱布尼茨几乎同时独立地发展出微积分学。
牛顿创立了微积分的主要思想和方法,他提出了差分和积分的概念,并建立了微分方程和牛顿运动定律等基本理论。
莱布尼茨独立地发展出了微积分的符号表示法,引入了微积分中的极限和导数的概念。
牛顿和莱布尼茨的工作为微积分的发展奠定了基础。
3. 微积分的完善:极限与连续性18世纪,欧拉和拉格朗日等数学家对微积分进行了深入的研究和发展。
欧拉进一步完善了微积分的符号表示法,并提出了欧拉公式等重要结果。
拉格朗日则对微积分中的极限和连续性进行了系统的研究,提出了拉格朗日中值定理和泰勒展开等重要定理。
这些工作使微积分的理论更加严谨和完备。
4. 微积分的应用:物理学和工程学19世纪,微积分的应用开始扩展到物理学和工程学等实际问题中。
拉普拉斯和傅里叶等数学家使用微积分的方法解决了一系列的物理学问题,为微积分的应用奠定了基础。
同时,微积分也在工程学中得到了广泛的应用,如力学、电磁学和流体力学等领域。
微积分的应用使得工程学的发展取得了重大的突破。
5. 微积分的发展与现代数学的关系20世纪,微积分的发展与现代数学的发展密切相关。
在集合论和数理逻辑的基础上,数学家们对微积分的理论进行了深入的研究和推广。
勒贝格和黎曼等数学家提出了测度论和黎曼积分等新的概念和方法,为微积分的发展带来了新的思路和工具。
同时,微积分也成为了现代数学的重要组成部分,在数学的其他分支中得到了广泛的应用。
极限的思考程诚PB08207049我们刚刚接触微积分时,学习的就是极限。
但作为微积分最基础的部分,或者说是微积分中的核心,极限理论也并不是一开始就被创立出来的。
微积分经过了很长时间的发展,当中也经历了几次危机。
但在一代又一代伟大的数学家的努力下,终于对微积分和极限理论进行了逐步的完善。
特别是法国大数学家柯西,他不仅化解了微积分史上的一次危机,还通过他的著作赋予微积分以今天大学教科书中的模型,他给出了“极限”的合适定义:当同一变量逐次所取的值无限趋向于一个固定的值,最终使它的值与该定值的差要多小就多小,那么最后这个定值就称为所有其他值的极限。
柯西的工作是微积分走向严格化的极为关键的一步。
后来维尔斯特拉斯又进一步将极限严格化,创造了一整套ε- 语言、ε-N语言,消除了微积分中以前出现的错误与混乱。
极限理论也正式为人们所接受。
所谓万事开头难。
虽然自己在高中也接触过极限、导数这些概念,也会用这些理论来解决一些问题,但对极限的实质并没有真正理解。
最初接触这些含有ε的语句的时候,我确实感觉到了理解上的困难,更不用说应用这种语言来进行证明和应用。
虽然老师说ε语言所描述的其实就是要多小就有多小的概念,但当自己面对这些纯符号时,一开始真的很不适应,完全无法理解那些晦涩难懂的语句,对极限的学习我感到十分困难。
然而有一次,我看到一篇有关微积分的文章,上面写到庄子《天下篇》里的一句话:“一尺之棰,日取其半,万世不竭。
”我很惊讶,其实早在几千年前,我们的先辈就已经提出了极限的形象解释。
虽然他们不是数学家,但世间的万事万物的相通性,同样使他们能看清事物的一些本质。
但是更让我惊讶的是,我随后看到的陈景润的一次讲座内容,他也提到了这句话,并且对这句话做出了自己的理解,而且正是用了我很难理解的ε-N语言来说明的。
这让人耳目一新,也让我感觉到大师为什么是大师。
他说:“一尺之棰,日取其半,万世不竭。
”说的就是微积分学中的无穷小,也就是每天切割棒棰,最后棒棰长度的极限为0。
微积分发展简史一、微积分的创立微积分中的极限、穷竭思想可以追溯到两千五百年前的古希腊文明,著名的毕达哥拉斯学派,经过了漫长时期的酝酿,到了17世纪,在工业革命的刺激下,终于通过牛顿(Newton)和莱布尼兹(Leibniz)的首创脱颖而出了。
大约从15世纪初开始的文艺复兴时期起,工业、农业、航海事业与上古贸易的大规模发展,刺激着自然科学蓬勃发展,到了17世纪开始进入综合突破的阶段,而所有这些所面临的数学困难,最后汇总成四个核心问题,并最终导致微积分的产生。
这四个问题是:1.运动中速度、加速度与距离之间的虎丘问题,尤其是非匀速运动,使瞬时变化率的研究成为必要;2.曲线求切线的问题,例如要确定透镜曲面上的任一点的法线等;3.有确定炮弹最大射程,到求行星轨道的近日点与远日点等问题提出的求函数的极大值、极小值问题;4.当然还有千百年来人们一直在研究如何计算长度、面积、体积与重心等问题。
第一、二、三问题导致微分的概念,第四个问题导致积分的概念。
微分与积分在17世纪之前还是比较朦胧的概念,而且是独立发展的。
开普勒(Kepler)、伽利略(Galileo)、费马(Fermat)、笛卡尔(Descartes)、卡瓦列里(Cavalieri)等学者都做出了杰出贡献。
1669,巴罗(Barrow,牛顿的老师)发表《几何讲义》,首次以几何的面貌,用语言表达了“求切线”和“求面积”是两个互逆的命题。
这个比较接近于微积分基本定理。
牛顿和莱布尼兹生长在微积分诞生前的水到渠成的年代,这时巨人已经形成,牛顿和莱布尼兹之所以能完成微积分的创立大业,正事由于它们占到了前辈巨人们的肩膀上,才能居高临下,才能高瞻远瞩,终于或得了真理。
可以这样说:微积分的产生是量变(先驱们的大量工作的积累)到质变(牛顿和莱布尼兹指出微分与积分是对矛盾)的过程,是当时历史条件(资本主义萌芽时期)下的必然产物。
微积分基本定理的建立标志着微积分的诞生。
牛顿自1664年起开始研究微积分,钻研了伽利略、开普勒、瓦利斯(Wallis),尤其是笛卡尔的著作。
微积分的发展史简述作者:周锐来源:《当代人(下半月)》2018年第04期摘要:微积分是数学的一个分支,在数学史上占有重要地位。
本文根据时间进程阐述了微积分的发展史及其简要应用。
关键词:微积分;发展史;牛顿;莱布尼兹微积分是数学中的基础学科,也是近现代数学中的重要基石和起点。
它在物理、化学、生物等自然学科中被普遍利用,在社会、经济、人文等范畴也是重要的研究工具之一。
本文将沿着微积分学的发展时间历程,简要论述微积分的发展史。
一、微积分的萌芽之初微积分学发展得最早的是积分学的思想,可以追溯到古希腊时期[1]。
其中做出重要贡献的有古希腊数学家芝诺提出的四大悖论。
古希腊哲学家德谟克利特斯的原子论则充分体现了近代积分的思想,他认为任意事物都是由原子构成。
古希腊诡辩家安提丰提出的“穷竭法”是极限理论最早的表现形式。
古希腊数学家欧多克斯进一步研究原子论和穷竭法,使这两个理论得以稳健前进。
古希腊著名数学家阿基米德所提出的“平衡法”实质上是一种较原始的“积分法”。
他在著作《抛物线求积法》一书中运用穷竭法求出了抛物线构成的弓形的面积。
二、微积分创立之前的酝酿由于种种影响,微积分的概念在15世纪之前一直处于萌芽阶段[2]。
推动欧洲崛起的新航路开辟和文艺复兴是15世纪的大事件。
从14世纪到16世纪的文艺复兴在意大利各城市兴起,之后推广到西欧各国,带来了一场关于科学与艺术的革命。
随着文艺复兴的兴起,生产的发展带动了科学的发展。
与此同时希腊的著作大量进入欧洲,随着活板印刷的发明,知识的传播更加迅速,自然学科开始活跃,自然学科中的数学得以有进一步发展的机会。
在时代背景下,数学成为唯一被公认的真理得以推广。
天文学、光学、力学等自然学科的发展被生产力的发展所推动,为数学带来了大量的研究问题[3],许多学者开始考虑研究微积分的思想[4]。
开普勒是德国杰出的天文学家、物理学家、数学家和哲学家。
他在《测量酒桶的新立体几何》一书中主要对如何求解旋转体体积的方法进行研究。