273位似(第2课时)修改[1]
- 格式:ppt
- 大小:2.31 MB
- 文档页数:21
27.3 位似第2课时一、教学目标【知识与技能】1.巩固位似图形及其有关概念.2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.【过程与方法】通过学生动手操作,探究坐标的变化,类比平移,轴对称,旋转(中心对称)等变换,提高学生的动手能力和归纳问题的能力.【情感态度与价值观】1.让学生经历探究过程,体会数与形的联系,激发学生探究用坐标的变化规律来表示位似的兴趣.2.渗透数形结合的数学思想,培养学生良好的学习习惯。
二、课型新授课三、课时第1课时共2课时四、教学重难点【教学重点】用图形的坐标的变化来表示图形的位似变换.【教学难点】把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.五、课前准备教师:课件、三角尺、直尺等.学生:三角尺、直尺、铅笔.六、教学过程(一)导入新课(出示课件2)我们知道,在直角坐标系中,可以利用变化前后两个多边形对应顶点的坐标之间的关系表示某些平移、轴对称和旋转(中心对称).那么,位似是否也可以用两个图形坐标之间的关系来表示呢?(二)探索新知知识点1 平面直角坐标系中的位似变换在平面直角坐标系中,有两点A(6,3),B(6,0).以原点O为,把线段AB缩小,观察对应点之间坐标的变位似中心,相似比为13化.(出示课件4)学生自主作图后作答:把AB缩小后A,B的对应点为:(出示课件5)A′(2,1),B'(2,0);A"(-2,-1),B"(-2,0).如图,△ABC三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O为位似中心,相似比为2,将△ABC放大,观察对应顶点坐标的变化,你有什么发现?(出示课件6)学生自主作图后作答:位似变换后A,B,C的对应点为:A'(4,6),B'(4,2),C'(12,4);A"(-4,-6),B"(-4,-2),C"(-12,-4).教师问:1.在平面直角坐标系中,以原点为位似中心作一个图形的位似图形可以作几个?(出示课件7)2.所作位似图形与原图形在原点的同侧,那么对应顶点的坐标的比与其相似比是何关系?如果所作位似图形与原图形在原点的异侧呢?学生分组讨论后,师生共同总结:(出示课件8)1.在平面直角坐标系中,以原点为位似中心作一个图形的位似图形可以作两个.2.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点坐标的比等于k或-k.3.在平面直角坐标系中,以原点O为位似中心,位似比为k,若原图形上点A的坐标为(x,y),那么位似图形对应点A'的坐标为(kx,ky)或(-kx,-ky).教师强调:当k>1时,图形扩大为原来的k倍;当0<k<1时,图形缩小为原来的1k.出示课件9,学生独立思考后口答,教师订正.考点 利用平面直角坐标系中的位似变换作图例 如图,在平面直角坐标系中,△ABO 三个顶点的坐标分别为A(-2,4),B(-2,0),O(0,0).以原点O 为位似中心,画出一个三角形使它与△ABO 的相似比为3:2.(出示课件10)教师提示:画三角形关键是确定它各顶点的坐标.根据前面的归纳可知,点A 的对应点A ′的坐标为332422⎛⎫-⨯⨯ ⎪⎝⎭,,即(-3,6),类似地,可以确定其他顶点的坐标.(出示课件11)师生一起解答:解:利用位似中对应点的坐标的变化规律,分别取点A ′(-3,6),B ′(-3,0),O(0,0).顺次连接点A ′,B ′,O ,所得的△A ′B ′O 就是要画的一个图形.教师问:还有其他画法吗?自己试一试.学生尝试其他作法,教师加以指导.出示课件12,学生独立解答,教师订正.知识点2 平面直角坐标系中的图形变换出示课件13,将图中的△ABC做下列运动,画出相应的图形,指出三个顶点的坐标所发生的变化.(1)沿y轴正向平移3个单位长度;(2)关于x轴对称;(3)以C为位似中心,将△ABC放大2倍;(4)以C为中心,将△ABC顺时针旋转180°.学生按要求作图后,教师用多媒体加以展示.教师问:截止现在,你总共学了哪些图形变换?它们有何异同点?学生分组讨论后,师生共同总结:(出示课件14)出示课件15、16,学生独立解答,教师订正.(三)课堂练习(出示课件17-26)练习课件17-26相应题目,巩固本课知识点,约用时15分钟。
“自学互帮导学法”课堂教学设计新授课修改意见课题位似(2)课时 1 课型教学目标1.巩固位似图形及其有关概念.无2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.教学重点用图形的坐标的变化来表示图形的位似变换.无教学难点把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.无学情分析无学法指导小组探究讨论、合作交流,类比学习无教学过程教学环节教师活动学生活动效果预测(可能出现的问题)设计意图情境引入合作学习,探索新知识例复习回顾1.什么叫位似图形?2.位似图形的性质3.位似图形与中心对称图形有何关系?4.利用位似可以把一个图形放大或缩小提问:如何把三角形ABC放大为原来的2倍?探索1:在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,位似比为3:1,把线段AB缩小.[.Com]在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为3:1,把线段AB缩小.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图独立思考后表达交流,得出结论对应点连线都交于________对应线段以小组为单位先猜想,再通过合作探究,得出结论后表达交流先独立思考,再以小组为单位先猜想,再通过合作探究,得出结论后表达交流并对其判定进行数学语言表。
让学生把刚学到的知识在应用的我过程中得到熟悉,并理解数学来源于实际,是用来解决实际问题的题分析,巩固新师生互动,归纳小结形对应点的坐标的比等于k或-k.练一练:1.如图表示△ABC把它缩小后得到的△COD,求它们的相似比2.如图△ABC的三个顶点坐标分别为A(2,-2),B(4,-5),C(5,-2),以原点O为位似中心,将这个三角形放大为原来的2倍.[.Com]小结:收获与疑惑示小组合作探究得出解决问题的办法,并进行验证独立思考完成从知识、方法、情感态度等方面谈收获,谈体会,并结合本节教学目标,发现在学习中学会了什么,还存在哪些问题。
第二十七章273位似第2课时(人教版九下)27.3位似第2课时1.理解位似图形及其有关概念.(重点)2.会用图形的坐标的变化来表示图形的位似变换,掌握把一个图形按一定大小比例放大或缩小后,点的坐标变化的规律.(重点、难点)3.了解四种变换(平移、轴对称、旋转和位似)的异同,并能在复杂图形中找出这些变换.(重点)一、位似图形与坐标在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k或-kk,那么位似图形对应点的坐标的比等于_______.二、图形变换平移、轴对称、旋转和_____.位似图形变换包括:_____(打“√”或“某”)(1)以原点为位似中心,相似比为1的两个三角形的对应点的坐标相等.(某)(2)图形变换不改变图形的形状和大小.(某)(3)连接等边三角形各边中点所得到的三角形与原三角形是位似图形.(某)知识点1位似变换与坐标【例1】在平面直角坐标系某Oy中,已知△ABC和△DEF的顶点坐标分别为A(1,0),B(3,0),C(2,1),D(4,3),E(6,5),F(4,7).按下列要求画图:以点O为位似中心,将△AB C向y轴左侧按比例尺2∶1放大得△ABC的位似图形△A1B1C1,并解决下列问题:(1)顶点A1的坐标为,B1的坐标为,C1的坐标为.(2)请你利用旋转、平移两种变换,使△A1B1C1通过变换后得到△A2B2C2,且△A2B2C2恰与△DEF拼成一个平行四边形﹙非正方形﹚.写出符合要求的变换过程.【思路点拨】(1)根据以原点为位似中心的图形点的坐标规律,得到△A1B1C1各点的坐标,然后画图.(2)根据平移和旋转的性质作图.【自主解答】画图如下图.(1)(-2,0)(-6,0)(-4,-2)(2)将△A1B1C1先向上平移一个单位后,再以点A1为圆心顺时针旋转90°后,再沿某轴的正方向平移8个单位后,即可得到△A2B2C2.【总结提升】图形变换与坐标1.图形沿水平方向左右平移,点的纵坐标不变,横坐标减去或加上平移的长度,图形上下平移,点的横坐标不变,纵坐标加上或减去平移的长度.2.若绕原点旋转180°,则对应点的横纵坐标都互为相反数.3.若两个图形关于某轴对称,则对应点的横坐标相同,纵坐标互为相反数;若两个图形关于y轴对称,则对应点的纵坐标相同,横坐标互为相反数.4.以原点为位似中心的两个图形,其中一个图形上的点的坐标是另一个图形上对应点的坐标的k(或-k)倍.知识点2图形变换【例2】观察下图,从平移、旋转、轴对称、位似四个方面分析,该图案包含的变换有哪些【思路点拨】从平移、旋转、轴对称、位似的特征去分析,该图案包含哪些变换.【自主解答】1.平移:平移是图形沿一定的方向移动一定的距离,平移不改变图形的形状与大小,所以本图案不包含平移.2.旋转:旋转是绕某个点按照某个方向,旋转一定角度,旋转不改变图形大小,改变图形的方向,所以本图案包含旋转.3.轴对称:轴对称是图形沿某条直线对折,直线两旁的部分能完全重合,所以本图案包含轴对称.4.位似:位似是在图形相似的前提下,过对应点的直线都经过同一点,所以本图案包含位似.【总结提升】图形变换的分类1.全等变换:全等变换不改变图形的大小与形状,全等变换包括平移、旋转、轴对称.2.相似变换:相似变换改变图形的大小,不改变图形的形状,相似变换包括相似与位似.题组一:位似变换与坐标1.如图,已知△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,得到点A′,B′,C′.下列说法正确的是()A.△A′B′C′与△ABC是位似图形,位似中心是点(1,0)B.△A′B′C′与△ABC是位似图形,位似中心是点(0,0)C.△A′B′C′与△ABC是相似图形,但不是位似图形D.△A′B′C′与△ABC不是相似图形【解析】选B.∵△ABC三个顶点的坐标分别为(1,2),(-2,3),(-1,0),把它们的横坐标和纵坐标都扩大到原来的2倍,∴点A′,B′,C′的坐标分别为(2,4),(-4,6),(-2,0).∵对应点的连线交于原点,∴△A′B′C′与△ABC是位似图形,位似中心是点(0,0).2.(2022·泰州中考)如图,平面直角坐标系某Oy中,点A,B的坐标分别为(3,0),(2,-3),△AB′O′是△ABO关于点A的位似图形,且O′的坐标为(-1,0),则点B′的坐标为.【解析】如图,设B′到某轴的距离为b,由位似知-3OA3,bOA4∴b=4,∴点B′的纵坐标是-4,设直线AB的解析式为:y=k某+b,3kb0,则2kb-3,k3,解得b-9,∴AB所在直线的解析式为y=3某-9.把y=-4代入y=3某-9得某=.∴点B′的坐标是(5,-4).答案:(5,-4)33533.如图,已知△OAB与△OA′B′是相似比为1∶2的位似图形,点O为位似中心,若△OAB内一点P(某,y)与△OA′B′内一点P′是一对对应点,则点P′的坐标是_____.【解析】∵相似比为1∶2,两图形分别位于位似中心两侧,∴对应点P′的坐标为点P坐标的-2倍,即P′(-2某,-2y).答案:(-2某,-2y)。
第27章《位似》第二课时教案教学目标:1、理解位似图形的定义能够熟练准确地利用坐标变化将一个图形放大或缩小2、从具体操作活动中,培养学生动手操作能力,能够准确地利用坐标的变化将一个图形放大或缩小。
教学重点:用图形的坐标的变化啦表示图形的位似变换。
教学难点:把一个图形按一定比例放大或缩小后,点的坐标变换的规律。
教学方法:讲授法教具:黑板、多媒体、三角板教学过程设计: 一、复习回顾1、前面我们学过哪些图形变换? 平移、轴对称、旋转、位似2、在平面直角坐标系中,⊿ABC 的三个顶点A 、B 、C 的坐标分别为A (2,1)、B(3,2)、C (-1,2)。
(1)将⊿ABC 向右平移3个单位后的对应点的坐标是 ; (2)将⊿ABC 沿x 轴翻折后对应点的坐标为 ; (3)将⊿ABC 沿y 轴翻折后对应点的坐标为 ; (4)以坐标原点O 为旋转中心,旋转180°后的对应点的坐标为 。
二 探究:(1)如图,在平面直角坐标系中,有两点A(6,3),B (6,0).以原点O 为位似中心,相似比为31,把线段AB 缩小.观察对应点之间坐标的变化,你有什么发现? (2)如图,△ABC 三个顶点坐标分别为A(2,3),B(2,1),C(6,2),以点O 为位似中心,相似比为2,将△ABC 放大,观察对应顶点坐标的变化,你有什么发现?【归纳】 位似变换中对应点的坐标的变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标的比等于k 或-k三 例题讲解例1、在平面直角坐标系中, 有两点(6,3),B(6,0),以原点O 为位似中心,相似比为31,把线段AB 缩小,观察对应点之间坐标的变化,你有什么发现?答:)02(),12()0,2(),1,2(,,或-''--''''B A B A例2、将⊿ABC 三个顶点的坐标A(2,3),B(2,1),C(6,2),以点O 为位似中心,相似比为2,将三角形⊿ABC 放大,观察对应点的坐标的变化,你有什么发现? 答:)4,12(),24(),64()4,12(),2,4(),6,4(--''--''--''''C B A C B A ,,或练习巩固: P62练习四、当堂训练1、如图,E )(2,4-、F ),(11--,以O 为位似中心,按位似比1:2,把⊿EOF 缩小,则点E 的对应点E ′的坐标为( )A ))或(,(1,212--B ))或(,(4,848--C ),(12-D ),(48-2、如图,⊿AOB 的三个顶点的坐标分别是A )(0,3、B )(2,3、O )(0,0,若⊿AOB 与⊿A ′OB ′为位似图形,且位似比为3:2,则A ′的坐标为 ,B ′的坐标为 。
人教版数学九年级下册27.3《位似(2)》教学设计一. 教材分析人教版数学九年级下册27.3《位似(2)》是位似变换这一章节的延续,主要介绍了位似变换的概念、性质及其在实际问题中的应用。
本节课的内容对于学生来说是一个重要的拓展,它不仅要求学生掌握位似变换的基本性质,还要求学生能够将位似变换应用到实际问题中,提高他们解决问题的能力。
二. 学情分析九年级的学生已经掌握了相似变换的基础知识,对于变换的概念和性质有一定的理解。
但是,对于位似变换在实际问题中的应用,他们可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高他们的应用能力。
三. 教学目标1.知识与技能目标:使学生掌握位似变换的概念、性质及其在实际问题中的应用。
2.过程与方法目标:通过观察、分析、归纳等方法,培养学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养他们解决问题的能力。
四. 教学重难点1.重点:位似变换的概念、性质及其在实际问题中的应用。
2.难点:如何将位似变换应用到实际问题中,提高解决问题的能力。
五. 教学方法1.引导法:教师通过提问、引导,激发学生的思考,帮助他们理解位似变换的概念和性质。
2.实例分析法:教师通过具体的实例,让学生了解位似变换在实际问题中的应用。
3.小组讨论法:学生分组讨论,共同解决问题,提高他们的合作能力。
六. 教学准备1.教具:多媒体课件、黑板、粉笔。
2.学具:教材、练习题、笔记本。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾相似变换的知识,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过多媒体课件展示位似变换的定义和性质,让学生初步了解位似变换。
3.操练(10分钟)教师提出一些实际问题,让学生运用位似变换的知识进行解决。
教师引导学生分组讨论,共同解决问题。
4.巩固(5分钟)教师针对学生解决问题的过程进行讲评,纠正错误,巩固位似变换的知识。