磁电式传感器
- 格式:doc
- 大小:1.54 MB
- 文档页数:10
一、引言磁电式传感器(magnetic-electric sensor)是一种常见的传感器类型,广泛应用于各个领域中,包括工业自动化、交通运输、机器人、医疗设备等。
磁电式传感器利用磁力与电磁感应的原理,将磁场的变化转化为电信号,从而实现对磁场强度、方向或位置的检测。
本文将详细解释磁电式传感器的工作原理,包括其基本原理、结构、工作方式以及应用领域。
二、磁电式传感器的原理1. 电磁感应原理磁电式传感器的工作原理基于电磁感应的原理。
根据法拉第电磁感应定律,当一个导体在磁力线穿过时,会在导体中产生电动势。
这种现象可以用以下公式表示:EMF = -dΦ/dt其中EMF表示电动势,Φ表示磁场通量,dt表示时间的微小变化。
根据该定律可知,当磁场强度或磁场方向发生变化时,会在导体中产生电动势。
2. 磁电效应原理磁电式传感器的核心部件是磁电材料,如铁电材料或磁电材料。
磁电材料具有磁电效应,即在外加磁场的作用下,会产生磁感应强度与电场强度之间的线性关系。
磁电效应可以通过以下公式表示:E = k * H其中E表示电场强度,k表示磁电系数,H表示磁场强度。
根据该公式可知,当磁场强度发生变化时,磁电材料会产生相应的电场强度变化。
3. 磁电式传感器的构成磁电式传感器通常由磁电材料、电极、封装以及相关电路组成。
磁电材料:磁电材料是磁电式传感器的核心部件,它通过磁电效应将磁场的变化转化为电场的变化。
常见的磁电材料包括铁电材料和磁电材料。
电极:电极用于连接磁电材料和外部电路,将磁电材料产生的电场信号引出。
封装:封装是保护磁电材料和电极的外壳,通常采用环氧树脂或金属外壳进行封装。
相关电路:相关电路包括放大电路、滤波电路和输出电路等,用于放大和处理磁电材料产生的电场信号,提供给外部电路使用。
4. 磁电式传感器的工作原理磁电式传感器的工作原理基于磁电效应和电磁感应的原理。
当存在磁场时,磁电材料会产生相应的电场变化。
根据电磁感应原理,当磁场的强度或方向发生变化时,会在磁电材料中产生电动势。
磁电式转速传感器的原理一、引言磁电式转速传感器是一种常用的测量设备,用于测量旋转物体的转速。
它通过感应磁场的变化来测量转速,具有精度高、可靠性好等优点。
本文将详细介绍磁电式转速传感器的原理和工作机制。
二、磁电式转速传感器的结构磁电式转速传感器通常由磁电式传感器和信号处理电路两部分组成。
2.1 磁电式传感器磁电式传感器由磁敏感元件和磁场产生元件组成。
磁敏感元件通常是由铁氧体或硅钢片制成的磁致伸缩材料,具有磁致伸缩效应。
磁场产生元件通常是由永磁体或电磁线圈组成,用于产生磁场。
2.2 信号处理电路信号处理电路主要用于放大、滤波和处理磁电式传感器输出的信号。
它通常由放大器、滤波器、比较器和计数器等组成。
三、磁电式转速传感器的原理磁电式转速传感器的原理基于磁致伸缩效应和霍尔效应。
3.1 磁致伸缩效应磁致伸缩效应是指在磁场作用下,磁敏感元件的尺寸会发生微小的变化。
当转子上的齿轮通过磁电式传感器时,磁敏感元件会受到磁场的影响,发生尺寸变化,从而产生电压信号。
3.2 霍尔效应霍尔效应是指当导体中有电流通过时,垂直于电流方向的磁场会在导体两侧产生电势差。
磁电式转速传感器中的磁敏感元件通常会产生一个垂直于磁场方向的电势差,该电势差与转速成正比。
四、磁电式转速传感器的工作原理磁电式转速传感器的工作原理如下:1.磁场产生元件产生一个恒定的磁场。
2.当转子上的齿轮通过磁电式传感器时,磁致伸缩效应使磁敏感元件的尺寸发生微小变化。
3.磁致伸缩效应引起磁敏感元件两侧产生电势差,即霍尔效应。
4.信号处理电路对电势差进行放大、滤波和处理。
5.最终输出一个与转速成正比的电压信号。
五、磁电式转速传感器的应用磁电式转速传感器广泛应用于各个领域,如汽车、航空航天、工业自动化等。
它可以用于测量发动机转速、风扇转速、电机转速等。
六、总结磁电式转速传感器是一种测量旋转物体转速的重要设备。
本文详细介绍了磁电式转速传感器的原理和工作机制,包括磁致伸缩效应和霍尔效应。
磁敏式传感器中的磁电式和霍尔式原理及应用磁敏式传感器在许多电子设备中发挥着关键作用,其中磁电式和霍尔式是两种常见的类型。
这两种传感器利用磁感应原理,将磁场强度转换为电信号,从而实现对各种物理量的测量。
本篇文章将详细介绍磁电式传感器和霍尔传感器的原理、应用以及注意事项。
一、磁电式传感器原理及应用磁电式传感器基于磁感应原理,即磁场的变化能够产生电压。
当磁场穿过金属片时,金属片会发生相应的电位差,即电磁感应。
这种传感器通常用于测量速度、长度、位移等物理量。
其工作原理如下:1.结构:磁电式传感器通常由永久磁铁和金属感应片组成。
金属感应片固定在壳体上,通过连接线连接到测量电路。
2.工作原理:当磁场穿过金属感应片时,会产生电动势,其大小与磁场强度成正比。
因此,通过测量电动势,可以确定磁场强度或相应的物理量。
3.应用:磁电式传感器广泛应用于流量计、测速仪、转速表等领域,用于测量流体的流量和速度。
此外,在汽车电子控制系统如ABS防抱死系统、TCS牵引力控制系统等中也发挥着重要作用。
二、霍尔传感器原理及应用霍尔传感器是基于霍尔效应制成的传感器。
当电流通过一个置于磁场中的半导体时,会在电子层面上产生电压,即霍尔电压。
这种传感器能够将磁场强度转换为电信号,从而实现对各种物理量的测量。
1.结构:霍尔传感器通常由半导体、固定磁场和连接线组成。
半导体通常被夹在两个导电片之间,形成一个霍尔电场。
2.工作原理:当电流通过霍尔传感器时,会在霍尔电场上产生电压,即霍尔输出。
霍尔输出的大小与磁场强度成正比,因此通过测量霍尔输出,可以确定磁场强度或相应的物理量。
3.应用:霍尔传感器在各种电子设备中广泛应用,如电流检测、位置测量、转速表、安全气囊控制等。
此外,霍尔传感器还被用于汽车电子控制系统如发动机控制、ABS防抱死系统等。
三、注意事项使用磁敏式传感器时,需要注意以下几点:1.磁场强度:确保磁敏元件工作在适当的磁场强度范围内,以免损坏传感器。
磁电式传感器磁电式传感器利用电磁感应原理将输入运动速度变换成感应电势输出,是一种有源传感器。
它不需要辅助电源,就能把被测对象的机械能转换成易于测量的电信号。
并且,它具有双向转换特性,利用其逆转换效应可构成力(矩)发生器和电磁激振器等。
有时磁电式传感器也称作电动式或感应式传感器,它只适合进行动态测量。
由于它有较大的输出功率,故配用电路较简单;零位及性能稳定;工作频带一般为10~1000Hz。
磁电式传感器的构成磁电式传感器构成:磁路系统、线圈1、磁路系统由它产生恒定直流磁场。
为了减小传感器的体积,一般都采用永久磁铁;2、线圈由它运动切割磁力线产生感应电动势。
作为一个完整的磁电式传感器,除了磁路系统和线圈外,还有一些其它元件,如壳体、支承、阻尼器、接线装置等。
磁电式传感器的原理及特性(1)工作原理磁电式传感器的工作原理如图1 所示,它主要由旋转的触发轮(被等分的齿轮盘,上面有多齿或缺齿)和相对静止的感应线圈两部分组成。
当柴油机运行时,触发轮与传感器之间的间隙周期性变化,磁通量也会以同样的周期变化,从而在线圈中感应出近似正弦波的电压信号。
(2)输出特性由磁电式传感器工作原理可知,其产生的交流电压信号的频率与齿轮转速和齿数成正比。
在齿数确定的情况下,传感器线圈输出的电压频率正比于齿轮的转速,其关系为式中,n 为发动机转速,r/ s;z 为触发轮被等分的齿数;f 为磁电式传感器的输出信号频率,Hz 。
磁电式传感器的输出电压不仅与传感器和触发轮间的间隙( d )有关,而且与n 有关。
为了设计合理的磁电式传感器信号处理模块,本研究在不同的d 以及n 条件下,通过大量的试验测出传感器的输出电压特性。
图2 为不同的n 条件下,7 X 传感器输出峰值电压与d 的关系;图3 为在不同的d 条件下,7 X 传感器输出峰值电压与n 的关系。
48X 传感器输出峰值电压信号特征也如此。
从图中可看出,在同一d 条件下,传感器输出的峰值电压随n 升高而增大;在同一n 条件下,d 越小, 其输出峰值电压越高。
磁电式传感器
基本概念:磁电式传感器是利用电磁感应原理,将输入运动速度变换成感应电势输出的传感器。
它能把被测对象的机械能转换成易于测量的电信号,是一种有源传感器。
工作原理:磁电式传感器是基于电磁感应原理,通过磁电相互作用将被测量(如振动、位移、转速等)转换成感应电动势的传感器,它也被称为感应式传感器、电动式传感器。
根据电磁感应定律,N匝线圈中的感应电动势。
感应电动势的大小由磁通的变化率决定。
磁通量协的变化可以通过很多办法来实现:如磁铁与线圈之间作相对运动;磁路中磁阻变化;恒定磁场中线圈面积变化等。
因此可以制造出不同类型的磁电式传感器。
磁电式传感器是一种机一电能量变换型传感器,不需要供电电源,电路简单,性能稳定,输出信号强,输出阻抗小,具有一定的频率响应范围,适合于振动、转速、扭矩等测量。
但这种传感器的尺寸和重量都较大。
恒定磁通磁电式传感器由永久磁铁(磁钢)、线圈、弹簧、金属骨架和壳体等组成。
系统产生恒定直流磁场,磁路中工作气隙是固定不变的,因而气隙中的磁通也是恒定不变的。
它们的运动部件可以是线圈,又可分为圈式或动铁式两种结构类型。
恒磁通磁电式传感器结构原理图磁铁与传感器壳体固定,线圈和金属骨架(合称线圈组件)用柔软弹簧支承。
线圈组件与壳体固定,永久磁铁用柔软弹簧支承。
两者的阻尼都是由金属骨架和磁场发生相对运动而产生的电磁阻尼。
动圈式和动铁式的工作原理是完全相同的,当壳体随被测振动体一起振动时,由于弹簧较软,运动部件质量相对较大,因此振动频率足够高(远高于传感器的固有频率)时,运动部件的惯性很大,来不及跟随振动体一起振动,近于静止不动,振动能量几乎全被弹簧吸收,永久磁铁与线圈之间的相对运动速度接近于振动体振动速度。
线圈与磁铁间相对运动使线圈切割磁力线,产生与运动速度成正比的感应电动势,线圈处于工作气隙磁场中的匝数,称为工作匝数;工作气隙中磁感应强度;每匝线圈的平均长度。
这类传感器的基型是速度传感器,能直接测量线速度。
因为速度与位移和加速度之间有内在的联系,即它们之间存在着积分或微分关系。
因此,如果在感应电动势的测量电路中接入一积分电路,则它的输出就与位移成正比;如果在测量电路中接人一微分电路,则它的输出就与运动的加速度成正比。
这样,这类磁电式传感器就可以用来测量运动的位移或加速度。
工作特性:
磁电感应式传感器工作时不需要外加电源,可直接将被测物体的机械能转换为电量输出。
是典型的无源传感器。
输出功率大,稳定可靠,可简化二次仪表,但频率响应低。
通常在10—100HZ适合作机械振动测量、转速测量。
传感器尺寸大、重。
霍尔元件具有结构简单、体积小、动态特性好和寿命长的优点, 它不仅用于磁感应强度, 有功功率及电能参数的测量, 也在位移测量中得到广泛应用
分类情况:(狭义)1.变磁通式和恒磁通式
变磁通式:开路变磁通式和闭路变磁通式
恒磁通式:动圈式磁电传感器(角速度型和线速度型)和动铁式磁电传感器
(广义)2.一般分为两种:(1)磁电感应式(2)霍尔式
磁电感应式
磁电感应式传感器又称磁电式传感器, 是利用电磁感应原理将被测量(如振动、位移、转速等)转换成电信号的一种传感器。
它不需要辅助电源就能把被测对象的机械量转换成易于测量的电信号, 是有源传感器。
由于它输出功率大且性能稳定, 具有一定的工作带宽(10~1000 Hz), 所以得到普遍应用。
利用霍尔效应
霍尔效应是电磁效应的一种,当电流垂直于外磁场通过导体时,载流子发生偏转,垂直于电流和磁场的方向会产生一附加电场,从而在导体的两端产生电势差,这一现象就是霍尔效应,这个电势差也被称为霍尔电势差。
霍尔效应应使用左手定则判断。
技术参数
传感器测量范围(kHz)感应对象检测距离(mm)应用场合磁敏传感器0~10铁、电工钢~速度、位移磁电传感器50~5000Hz电工钢~1速度
霍尔传感器0~10磁铁1~5速度、位移光电传感器0~10自然光、红外光1~15速度、位移接近开关0~200Hz金属1~5速度、位移
如何选择
磁电式传感器直接输出感应电动势,且传感器通常具有较高的灵敏度,不需要高增益放大器。
但磁电式传感器是速度传感器,若要获取被测位移或加速度信号,则需要配用积分或微分电路。
磁电感应式传感器工作时不需要外加电源,可直接将被测物体的机械能转换为电量输出。
是典型的无源传感器。
输出功率大,稳定可靠,可简化二次仪表,但频率响应低。
传感器尺寸大、重。
霍尔元件具有结构简单、体积小、动态特性好和寿命长的优点, 它不仅用于磁感应强度, 有功功率及电能参数的测量, 也在位移测量中得到广泛应用。
实现乘法运算,构成各种非线性运算部件,输出信号的信噪比大,频率范围宽:直流~ 数百千赫兹。
安装使用
磁电感应式传感器的应用:
1. 动圈式振动速度传感器
如图是动圈式振动速度传感器结构示意图。
其结构主要由钢制圆形外壳制成, 里面用铝支架将圆柱形永久磁铁与外壳固定成一体, 永久磁铁中间有一小孔, 穿过小孔的芯轴两端架起线圈和阻尼环, 芯轴两端通过圆形膜片支撑架空且与外壳相连。
工作时, 传感器与被测物体刚性连接, 当物体振动时, 传感器外壳和永久磁铁随之振动, 而架空的芯轴、线圈和阻尼环因惯性而不随之振动。
因而, 磁路空气隙中的线圈切割磁力线而产生正比于振动速度的感应电动势, 线圈的输出通过引线输出到测量电路。
该传感器测量的是振动速度参数, 若在测量电路中接入积分电路, 则输出电势与位移成正比; 若在测量电路中接入微分电路, 则其输出与加速度成正比。
2. 磁电式扭矩传感器
如图是磁电式扭矩传感器的工作原理图。
在驱动源和负载之间的扭转轴的两侧安装有齿形圆盘, 它们旁边装有相应的两个磁电传感器。
磁电传感器的结构见图所示。
传感器的检测元件部分由永久磁场、感应线圈和铁芯组成。
永久磁铁产生的磁力线与齿形圆盘交链。
当齿形圆盘旋转时, 圆盘齿凸凹引起磁路气隙的变化, 于是磁通量也发生变化, 在线圈中感应出交流电压, 其频率等于圆盘上齿数与转数乘积。
当扭矩作用在扭转轴上时, 两个磁电传感器输出的感应电压u1和u2存在相位差。
这个相位差与扭转轴的扭转角成正比。
这样传感器就可以把扭矩引起的扭转角转换成相位差的电信号。
霍尔传感器的应用:
必须关注的问题
当传感器的工作温度发生变化或受到外界磁场干扰、机械振动或冲击时, 其灵敏度将发生变化而产生测量误差。
1.非线性误差
磁电式传感器产生非线性误差的主要原因是: 由于传感器线圈内有电流I流过时, 将产生一定的交变磁通ΦI, 此交变磁通叠加在永久磁铁所产生的工作磁通上, 使恒定的气隙磁通变化。
当传感器线圈相对于永久磁铁磁场的运动速度增大时, 将产生较大的感生电势E 和较大的电流I, 由此而产生的附加磁场方向与原工作磁场方向相反, 减弱了工作磁场的作用, 从而使得传感器的灵敏度随着被测速度的增大而降低。
为补偿上述附加磁场干扰, 可在传感器中加入补偿线圈, 如图7 - 2(a)所示。
补偿线圈通以经放大K倍的电流, 适当选择补偿线圈参数, 可使其产生的交变磁通与传感线圈本身所产生的交变磁通互相抵消, 从而达到补偿的目的。
2. 温度误差
当温度变化时, 式中右边三项都不为零, 对铜线而言每摄氏度变化量dL/L≈×10-4,
dR/R≈×10-2 , dB/B每摄氏度的变化量取决于永久磁铁的磁性材料。
对铝镍钴永久磁合金, dB/B≈×10-2, 这样由式(7 - 7)可得近似值: γt≈%)/10 ℃
3.霍尔传感器的选用注意事项
1)磁场测量。
如果被测磁场精度较高,如优于%那么通常选用砷化镓霍尔元件,其灵敏度高,约为5-10mv /100mT。
温度误差可以忽略不计,且材料性能好,可以做的体积较小。
在被测磁场精度较低,体积要求不高时,最好选用硅化锗霍尔元件。
2)电流测量。
大部分霍尔元件可以用于电流测量,要求精度较高时,选用砷化镓霍尔元件,精度不高时,可以选用砷化镓、硅、锗等霍尔元件。
3)转速和脉冲测量。
测量转速和脉冲时,通常是选用集成霍尔开关和锑化铟霍尔元件爱按。
如在录像机和摄像机中采用了锑铟霍尔元件替代电机的电刷,提高了使用寿命。
4)信号的运算和测量。
通常利用霍尔电势和控制电流、被测磁场成正比,并与被测磁场同霍尔元件表面的夹角成正弦关系的特性,制造函数发生器,利用霍尔元件输出与控制电流和被测磁场乘积成正比的特性。
制造功率表、电度表等。
5)拉力和压力测量。
选用霍尔元件支撑的传感器较其他材料支撑的传感器灵敏度和线性度更佳。