汽车专业英语 英语文献
- 格式:doc
- 大小:59.50 KB
- 文档页数:12
汽车专业英语文章近些年,中国国内汽车生产量和消费量不断攀升,引起世界的关注,并使汽车产业成为中国经济发展的主导产业。
下面是店铺带来的汽车专业英语文章,欢迎阅读!汽车专业英语文章1 The diameter of the cylinder is called the engine bore.Displacement and compression ratio are two frequently used engine specification.Displacement indicates engine size.and compression ratio compares the total cylinder volume to compression chamber volumeThe term"stoke"is used to describe the movement of the piston within the cylinder.The operating cycle may require either two or four stroke to complete. Most automobile engines operate on the four stroke cycleThis type of engine is also know as Otto cycle,after the name of its inventor, Nikolaus Otto,who first applied the principle in 1876.In the 4-stroke engine, four strokes of the piston in the cylinder are required to complete one full operating cycle. Each stroke is named after the action.It performs intake, compression,power, and exhaust in that order, shown in Fig.1-21.Intake strokeThe piston moves downward to the bottom dead center,a vacuum is created in the cylinder.The intake valve opens and air-fuel mixture comes into cylinder .To obtain the maximum filling of the cylinder the intake valve opens about 10' before t.d.c.giving 20'overlap. The inlet valve remains open until some 50'after b.d.c.to take advantage of mixture.pression strokeThe air-fuel mixture is compressed within the combustion chamber.While the pressure rise to about 1MP, depending onvarious factors including the compression ratio, throttle opening and engine speed.The spark plug is fired ignite the air-fule mixture prior to the piston being at the t.d.c..Note that both valves are closed.3.Power strokeThe air-fuel mixture expands, which creates the power to force the piston downward.The exhaust valve opens near the bottom of the stroke.4.Exhaust strokeAs the piston starts to move upward, the exhaust valve is opened.The piston moving up force the exhaust gases out of the cylinder.The intake valve usually opens just before the exhaust stroke.This 4-stroke cycle is continuously repeated in every as long as the engine remains running.汽缸体的直径成为缸径。
Automobile finance researchAbstract:The automobile industry has hundred years history in overseas oneself. The people in carefully examine, savors these 100 year historical time, often saw is the automobile industry magnificent and the wheel nationality's abundance, but has neglected in this century hundred year, billowing automobile dust behind, some unknown hero - automobile finance service station plays vital role. If did not have at that time “the carapace insect” unsolvable with Germany Volkswagenwe rk famous “five Deutsche Mark credits” emerging, does not have today “the unparalleled in the world” automobile empire and world top level German automobile industry; If does not have the Ford automobile credit company to take the lead the automobile finance service to take the impetus auto sale the release lever, standard and gets down fixedly the automobile finance service with the corporate system way, and first uses the securitization in the world the way to allow temporary credit class of the continuously fund, also does not have today automobile industry mammoth and the common people lives the convenience to be quick. In a sense, had the automobile finance service, only then had today automobile industry, today aviation industry and now weather all mechanical manufacturing industries; Also had the automobile finance service, only then had human's radius of action hundred, thousand kilometer level spanning, had the humanity to benefit in the geography space and time expands the humanities spirit sublimation which, the movement speed enhanced brings.Automobile finance researchMust understand truly the automobile industry, must first read the automobile finance; must develop the automobile industry truly, must first develop the automobile finance. Domestic and foreign historical oneself after has made clear this point. China passes for several dozens years to attempt one to leave the automobile finance continuously, the independence develops the automobile industry pathway, the result it can be imagined. Is big until now, realized only then gradually, the automobile finance is the automobile industry ox muzzle, the automobile finance starts one of important keys which the society expends.Although automobile finance expends in the finance in the overseas society,after has become continues the real estate finance the second big finance, but in China whether needs to develop also has the very great dispute. In other words, whether does the automobile finance production and develop in a disorderly way may follow?On the one hand I according to Mr. Liu Fuyuan “the national economy space and time theory”, also “national economy development phase to economical thing and economic phenomena keeping in balance with guiding function” the viewpoint embarks, “deepens and “the consumption pattern has and the change rule” the angle from the finance”, had the development national economy stage space and time characteristic to the automobile finance service to carry on the analysis, proposed “the automobile finance was th e national economy develops the financial phenomenon which under the specific stage appeared inevitably” and “the consumption pattern operating law decided the automobile finance had the development” and so on the viewpoints.On the other hand I attempt through the automobile finance service to macroscopic economical and the microscopic economical function analysis, explained the automobile finance service enhanced the automobile production, the service, the expense domain fund use efficiency, strengthened the financial service superiority, thus further emphasized the automobile finance produces rationality: The automobile finance can adjust in the national economy movement three big contradictory: “Production and expense contradiction”, “turnover of capit al contradiction”, “credit (demand) and deposit (supplies) contradiction”;The automobile finance has “the high value transferability” to the automobile industry, has “the height dependence and the catalytic nature” to the tertiary industry, has “the high placement” to the employment;The automobile finance may play “the maintenance sale system to the automobile manufacturer, the conformity sale strategy, provides the market information the role”; the automobile finance may play to the car dealer “provide s goods in stock financing”, “transport business fund allows temporary credit”, “equipment financing” the role;The automobile finance may play to the automobile user “provides the expense credit”, “rents financing”, “service financing”, “the insurance business”the role;In brief, “the automobile finance can consummate socialized, the marketability financial service system”.Under the above analysis premise, I place the research and the writing key point the automobile finance concrete operation flow in several key questions, argues vigorously establishes a relative consummation the structure system.Because at present in domestic, but also does not have one special to discuss with the literature, even is one has the depth paper, studies the automobile finance question, I only then “look for a needle in a haystack”, seeks some fragmentarily, the dispersible material from the overseas university development facility and in the automobile finance service website.The innovation aspect, belongs in the rese arch area “runs the horse stable place”, the basically entire structure is new, but also is preliminary. According to “automobile finance historical development - - research system foundation; Automobile finance profit pattern - research system core; Automobile finance credit administration - - research system inner layer; Automobile finance financing mechanism - - research system outer layer: Automobile finance product development - research system surface layer” the order launches; In the research techniq ue, has mainly used “the comparison research” the method, in the Western economic, the finance study, the insurance study, the service management science, the financial engineering, consumer economics domain extensive cultivation and so on the marketing study, compatible and gathers, uses these theories to explain diligently the automobile finance the related question, and has formed some new viewpoints, mainly has “the automobile finance increment profit pattern” in the concrete content, “the credit reimburses ability management”, “the automobile finance multi-dimensional financing structure”, “the automobile finance financial product development”, “the automobile finance product achievements marketing” and so on.First, understands the automobile finance “the development history”.Has analyzed the automobile finance service company's general evolution history process and the current several kind of main existence form, including “bigautomobile manufacture enterprise attached”, “big bank financial group attached”, “independent type”; Has analyzed the automobile finance service company newly “the compound superiority”; Also analyzed “the economical globalization” in the process the automobile finance service to start to appear “the multi-dimensional strate gy”, “the deepened strategy” and “the hypothesized service” the trend of development.Specially has also analyzed the Chinese automobile finance special development experience and the advantages in this foundation. According to “the modern effective marke t hypothesis”, has analyzed “the interest rate control” in the situation, the Chinese automobile money market non-validity, has drawn some basic conclusions: Induces and the start huge individual deposit with the automobile finance service, supports the national economy high speed to grow continually: The automobile finance service is helpful “the automobile expends the leading” in the establishment the market pattern; The automobile finance service is helpful to the elimination “the automobile demand growt h regional characteristic incline” the question; The automobile finance service is helpful in the display uses the Chinese automobile storage quantity property. Also to develop the automobile finance service existence “the human vehicle to be contradictory”, “the road vehicle is contradictory” and so on the main restriction factor to carry on the appraisal, proposed specially: The automobile finance can “the creation supplies”, be the science solution above question “the key”.After the understanding automobile finance service historical present situation, has then analyzed the automobile finance service existence “the origin of life” - - the profit pattern. This also is further is proving the automobile finance existence “the rationality” the question.After the introduction automobile finance profit pattern basic meaning, I divide into it “the basic profit pattern” and “the increment profit pattern” two kinds, and from “service management theory”, “financial service theory” the angle, proved the automobil e finance service profit pattern “not to be possible to know touches the nature”, “the indivisibility”, “the different principle” and so on the characteristics, proposed “the automobile finance service profit pattern core factor was the customer loyal degr ee of satisfaction”, “the automobile finance serviceprofit pattern secondary factor is the automobile finance service transmission quality”. Also to “the market concentration degree”, “the market entered the barrier”, “the market mechanism” and so on the market parameters has carried on the description.I the Western economic “the market analysis” the theory introduction, will also analyze and obtain “the perfect competitive market to the automobile finance service profit pattern non-serviceability”, “hav e monopolized the market completely to the automobile finance service profit pattern non-serviceability”, “the monopoly struggled the market mechanism unexpectedly to the automobile finance service profit pattern serviceability”, “the oligopoly market to t he automobile finance service profit pattern serviceability” the conclusion, and has specifically analyzed under each kind of market condition, automobile finance service profit pattern running status.In this part, my another new viewpoint is, proved the automobile finance service to rise in value fully the profit pattern necessity, the concrete method, the fund composition, the investment principle, the investment portfolio. Also introduced I apply the investment bank fundamental research development one kind of typical automobile finance service to raise in value the profit pattern - “to buy the vehicle to manage finances the profit pattern”.If the automobile finance service profit pattern is a core, then the credit administration is controls this patt ern the key. After inspects “the credit theory”, “the consumer credit theory” these theory origin, has emphatically analyzed the automobile finance service credit system function and the automobile finance service credit system specific connotation and the category, emphasized the key point is eliminates the automobile finance the information dissymmetry, according to credit rank decision financing quantity and deadline. Also “paid (deposit) toself-to restrain the mechanism”, “the joint and several liability mechanism”, “the credit system mechanism” and so on the automobile finance service credit operations machine has manufactured the description, has established the measure automobile finance service individual loan risk and the automobile finance reimburses ability management the essential method, and established the automobile finance service credit system on our country to propose thecountermeasure.The automobile finance service financing structure plays is gathering accepts the fund the role, is the support, the guarantee automobile finance profit pattern display function “the power” .It both automobile finance profit pattern control, and reaction in automobile finance profit pattern, therefore, met down has conducted the research to it. The automobile finance service company finances the structure rationale to have “the financial capital to say”, “the banking capital circulation said”, and “the transaction expense said”. The automobile finance service financing history process has experienced “endogen financing”, “extraneous source financing” and “highly effective in extraneous source financing”. Has analyzed the automobile finance service company's financing structural model and the automobile finance service company best financing structure function, as well as the influence automobile finance Service Company finances the structure primary factor. Also with emphasis introduced the automobile finance service company's several kind of main financing form, specially introduced in the automobile finance credit property securitization financing form, in the automobile finance service intangible asset capitalization financing strategy, in the automobile finance service special permission management financing strategy, in the automobile finance service project financing strategy, the automobile finance service level border financing strategy.The automobile finance service product development sells the camp is the entire system final link, it realizes the automobile finance profit pattern tool, is the automobile finance credit administration carrier, is the automobile finance financing mechanism operation goal.The automobile finance service product makes a general reference thought the automobile transaction and the use allows temporary credit the financial structure which the fund carries on (quantity, deadline, cost and so on), the financial strategy design and the corresponding legal contract arrangement, is each kind of question solution which in the reality the automobile finance service station faces, including encompassment price optimization aspect automobile finance product; Encompassment circumvention sale policy, system development automobile finance product: Revolves the automobile expends in the process to have servicelink convenience, efficient and indemnificatory development automobile finance product. The automobile finance service product characteristic by took the general use commodity the automobile and decided as the financial service contractual relationship two big factors: Has “compound”, “the accuracy”, “the risk”, “the continuous nature”, “the selectivity” and so on;The automobile finance product design is in the finance study is most difficult one of richest challenging topics. It is the automobile finance analysis inverse problem. Automobile finance product design general flow, including “goal design”, “structural design”, “product fixed price”, “risk income characteristic analysis”, “product standardization”. The automobile finance product benefit appraised the method includes: “Profit margin discount law”, “information feedback law”.The automobile finance product development innovation is the China monetary system reform intrinsic request, the interest rate marketability, is develops the Chinese automobile finance product core and the key.Had the automobile finance service product, but also must open “the direct marketing channel”, “the straight multiple marketing channel”, “on the net the marketing”, carries on “the potency to the automobile finance product sale personnel to dr ive”, and to “the potency drove” has carried on the model description.The analysis opens the Chinese automobile finance service market existence “the merger and acquisition conformity”, “the market reorganization” and so on the tendencies, proposed carries out Chinese Silver Jail to meet the spirit, the perfect automobile finance service company governs the structure, the use “the independent pattern”, “the union pattern”, “the Chinese-foreign joint venture pattern”, establishes the Chinese specialized au tomobile finance service organization, impels the automobile finance service industry moderately to grow in advance, promotes our country automobile industry, the financial service industry overall competitive power.文献来源:/Article/Automotive/index.html汽车金融研究摘要:汽车工业在国外己有百年历史。
汽车发展史英文文献The Evolutionary Journey of Automobiles: From Steam-Powered to Modern Electric Vehicles.The history of the automobile is a remarkable narrative of innovation, perseverance, and engineering genius. Spanning multiple centuries, it tells a tale of continuous progress, evolution, and revolution in transportation. From the steam-powered carriages of the 18th century to the electric and autonomous vehicles of today, the automobile industry has witnessed significant milestones that have forever altered the face of transportation.The earliest precursors of the modern automobile were steam-powered carriages. These vehicles, which first appeared in the late 18th century, were bulky, slow, and often unreliable. However, they marked the beginning of a revolution in transportation, as they provided a new mode of conveyance that was not dependent on horses or other animals.In the early 19th century, several inventors and engineers began to experiment with alternative power sources for vehicles. One such individual was Nicholas-Joseph Cugnot, a French military engineer who designed and built the first self-propelled mechanical vehicle in 1769. Dubbed the "Cugnot's Fardier," this steam-powered vehicle was used by the French army to haul artillery.However, it was the German engineer Rudolf Diesel who truly revolutionized the automobile industry. In 1897, he successfully developed the first diesel engine, which operated on the principle of compression ignition. This engine was efficient, powerful, and offered a significant advantage over the gasoline engines of the time. Diesel's invention not only found widespread application in heavy-duty vehicles and locomotives but also paved the way for the development of more efficient and powerful automobiles.The turn of the 20th century marked a period of rapid innovation and growth in the automobile industry. In 1885, Karl Benz patented the first gasoline-powered automobile,the Benz Patent Motorwagen. This vehicle, which was powered by a two-stroke engine, marked the beginning of a new erain transportation. Soon after, other manufacturers began to produce their own versions of gasoline-powered cars, andthe industry began to grow rapidly.By the early 20th century, the automobile had become a popular mode of transportation for both personal and commercial use. Automobiles were now being produced inlarge numbers, and the industry was experiencing rapid growth. However, this growth was not without its challenges. The early automobiles were noisy, smelly, and emitted large amounts of exhaust fumes, which led to concerns about their impact on public health and the environment.The 1920s and 1930s saw further innovation and improvement in automobile technology. Manufacturers beganto experiment with new materials and designs, resulting in lighter, more aerodynamic vehicles. The internal combustion engine also underwent significant improvements, becoming more efficient and powerful. Additionally, the introduction of electric starters and self-starters made it easier tooperate automobiles, and the development of better roads and infrastructure further facilitated the growth of the automobile industry.The post-World War II era marked a new phase in the evolution of the automobile. With the advent of new technologies and materials, manufacturers were able to produce safer, more comfortable, and more efficient vehicles. The introduction of disc brakes, power steering, and automatic transmissions significantly improved the driving experience, while the development of high-performance materials like fiberglass and kevlar led to lighter and stronger vehicles.In recent years, the automobile industry has been transformed by the advent of electric vehicles (EVs) and autonomous driving technology. EVs, which are powered by batteries instead of fossil fuels, offer a more environmentally friendly and cost-effective mode of transportation. Autonomous driving technology, which uses sensors and algorithms to navigate and control vehicles without human intervention, has the potential torevolutionize the way we travel.The automobile industry has come a long way since its humble beginnings as steam-powered carriages. From gasoline-powered cars to electric and autonomous vehicles, the industry has continuously evolved and adapted to meet the changing needs and demands of society. As we look towards the future, it is exciting to imagine what new technologies and innovations will further transform the face of transportation.。
外文文献原稿和译文原稿A New Type Car -- Hybrid Electric VehicleWith skyrocketing fuel prices and changes in weather patterns, many car manufacturers claimed to develop the kind of vehicles that will increase the mileage and reduce the emissions. Hybrid car is a kind of vehicle which can meet above requirements. A hybrid car features a small fuel-efficient gas engine combined with an electric motor that assists the engine.The reasons of building such a complicated machine are twofold: to reduce tailpipe emissions and to improve mileage. Firstly, hybrid cars are good for the environment. They can reduce smog by 90 percent and they use far less gasoline than conventional cars. Meanwhile, hybrid cars burn less gasoline per mile, so they release fewer greenhouse gases. Secondly, hybrid cars are economical. Hybrid cars, which run on gas and electricity, can get up to 55 to 60 miles per gallon in city driving, while a typical SUV might use three times as much gas for the same distance! There are three reasons can mainly account for that: 1) Hybrid engines are much smaller than those on conventional cars. A hybrid car engine is to accommodate the 99% of driving time when a car is not going up hills or accelerating quickly. When extra acceleration power is needed, it relies on the battery to provide additional force. 2) Hybrid gasoline engine can shut off when the car is stopped and run off their electric motor and battery.3) Hybrid cars often recover braking energy. Electric motors could take the lost kinetic energy in braking and use it to charge the battery. Furthermore, hybrids are better than all-electric cars because hybrid car batteries recharge as you drive so there is no need to plug in. Most electric cars need to be recharged every 50-100miles. Also, most electric cars cannot go faster than 50-60 mph, while hybrids can.Hybrid cars bridge the gap between electric and gasoline-powered cars by traveling further and driving faster and hybrid gas-electric cars are proving to be a feasible alternative at a time of high gas prices. So, in my opinion, hybrid cars will have a bright future.How Does Hybrid Electric Vehicle Work?You probably own a gasoline or diesel-engine car. You may have heard ofelectric vehicles too. A hybrid vehicle or hybrid electric vehicle (HEV) is a combination of both. Hybrid vehicles utilize two or more sources of energy for propulsion. In the case of HEVs, a combustion engine and an electric motor are used.How it works depends on the type of drive train it has. A hybrid vehicle can either have a parallel or series or parallel-series drive train.Parallel HybridThe parallel hybrid car has a gas tank, a combustion engine, transmission, electric motor, and batteries.A parallel hybrid is designed to run directly from either the combustion engine or the electric motor. It can run using both the engine and the motor. As a conventional vehicle, the parallel hybrid draws its power from the combustion engine which will then drive the transmission that turns the wheels. If it is using the electric motor, the car draws its power from the batteries. The energy from the batteries will then power the electric motor that drives the transmission and turns the wheel.Both the combustion engine and the electric motor are used at the same time during quick acceleration, on steep ascend, or when either the engine or the motor needs additional boost.Since the engine is directly connected to the wheels in a parallel drive train, it eliminates the inefficiency of converting mechanical energy into electrical energy and back. This makes a very effective vehicle to drive on the highway.Series HybridThe series hybrid car also has a gas tank, a combustion engine, transmission, electric motor, and batteries with the addition of the generator. The generator can be the electric motor or it can be another separate component.The series configuration is the simplest among the 3. The engine is not connected to the transmission rather it is connected to the electric motor. This means that the transmission can be driven only by the electric motor which draws its energy from the battery pack, the engine or the generator.A hybrid car with a series drive train is more suited for city driving conditions since the engine will not be subjected to the varying speed demands (stop, go, and idle) that contributes to fuel consumption.Series-Parallel HybridThe series-parallel configuration solves the individual problems of the parallel and series hybrid. By combining the 2 designs, the transmission can be directly connected to the engine or can be separated for optimum fuel consumption. The Toyota Prius and the Ford Escape Hybrid use this technology.Honda’s hybridFor those of you who have toyed with the idea of buying a hybrid but were discouraged by the price, you are not alone. In fact, despite the growing concern for the environment, not to mention the skyrocketing price of gas, hybrid cars still only represent a small percentage of global car sales, and a major reason for this is the cost.Hybrids are considered the wave of the future because they not only reduce emissions, addressing the issue of climate change, but they get great gas mileage, animportant consideration with the current price of oil. It should be noted that hybrids can also improve the power of the engine, which compromises any advantages in fuel efficiency and emissions. Whatever the application, however, the technology makes the cars more expensive.Because of this, they are the vehicle of choice for only a small niche of people who can afford them, and they currently enjoy a special status amongst the image conscious celebrity-set. For most average consumers, however, they are not an option.That may soon change.Honda Motor Corporation, one of the largest car manufacturers in the world and a leader in fuel efficient technology, has unveiled it’s plan to introduce a low-cost hybrid by 2009. If they can pull it off, they hope to make the hybrid a more mainstream car that will be more appealing to the general public, with the ultimate goal of achieving greater sales and broader appeal than their current incarnation.This, of course, is making Detroit nervous, and may signal a need for American car makers to start making greener and more fuel efficient vehicles, something they could afford to ignore in the past because hybrid cars weren’t worth their attention (due to such a small market share) while gas-guzzling SUVs have such high profit margins.Honda, meanwhile, has had to confront a growing need to compete with Toyota, which has not only grown to be the world’s largest automaker, but makes the car that has become synonymous with the hybrid movement, the Prius. Honda is therefore faced with the seemingly insurmountable task of challenging Toyota’s dominance in the market.Concurrently, Toyota is racing to lower production costs on the Prius, as well, which would hopefully result in a lower cost to the consumer. All eyes are on a potentially favorable car buyers market in 2009.In the meantime, with even adamant global warming naysayers warming up (no pun intended) to the possibilities of an ecological disaster on the horizon, maybe it’s time that we got over our need to drive huge SUVs and start moderating our fuel consumption.Then again, as gas prices hovering around $4.00 and with no ceiling in sight, we may have little choice in the matter.Engine Operating PrinciplesMost automobile dngines are internal combustion, reciprocating 4-stroke gasoline engines, but other types have been used, including the diesel, the rotary ( Wankel ) , the 2-srtoke, and stratified charge.Reciprocating means up and down or banck and forth, It is the up and down action of a piston in the cylinder blick, or engine block. The blick is an iron or aluminum casting that contains engine cylinders and passges called water jackets for coolant circulation. The top of the block is covered with the cylinder head. Which forms the combustion chanber. The bottom of the block is covered with an oil pan or oil sump.Power is produced by the linear motion of a piston in a cylinder. However, this linear motion must be changed into rotary motion to turn the wheels of cars of trucks. The piston is attached to the top of a connecting rod by a pin, called a piston pin or wrist pin. The bottom of the connecting rod is attached to the crankshaft. The connecting rod transmits the up-and-down motion of the piston to the crankshaft, which changes it into rotary motion.The connecting rod is mounted on the crankshaft with large beaings called rod bearings. Similar bearings, called main bearings, are used to mount the crankshaft in the block. Shown in Fig. 1-1The diameter of the cylinder is called the engine bore. Displacement and compression ratio are two frequently used engine specifications. Displacement indicates engine size, and compression ratio compares the total cylinder volume to compression chamber volume.The term stroke is used to describe the movement of the iston within the cylinder, as well as the distance of piston travel. Depending on the type of engine the operating cycle may require either two or four strokes to complete. The 4-stroke engine is also called Otto cycle engine, in honor of the German engineer, Dr. Nikolaus Otto, who first applied the principle in 1876. In the 4-stroke engine, four strokes of the piston in the cylinder are required to complete one full operating cycle. Each stroke is named after the action it performs intake, compression, power, and exhaust in that order, shown in Fig1-2.1、Intake strokeAs the piston moves down, the vaporized mixture of fuel and air enters the cylinder through open intake valve. To obtain the maximum filling of the cylinder the intake valve opens about 10°before t.b.c., giving 20°overlap. The inlet valve remains open until some 50°after b.d.c. to take advantage of incoming mixture.2、 Compression strokeThe piston turns up, the intake valve closes, the mixture is compressed within the combustion chamber, while the pressure rise to about 1Mpa, depending on various factors including the compression ratio, throttle opening and engine speed. Near the top of the stroke the mixture is ignited by a spark which bridges the gap of the spark plug.3、 Power strokeThe expanding gases of combustion produces a rise in pressure of the gas to some 3.5Mpa, and the piston is forced down in the cylinder. The exhaust valve opens near the bottom of the stroke.4、Exhust strokeThe piston moves back up with the exhaust valve open some 50°before b.d.d., allowing the pressure within the cylinder to fall and to reduce ‘back’pressure on the piston during the exhaust stroke, and the burned gases are pushed out to prepare for the next intake stroke.The intake valve usually opens just before the exhaust stroke. This 4-stroke cycle is continuously repeared in every as long as the engineremains running.A 2-stroke engine also goes through four actions to complete one operatingcycle.However, the intake and the compression actions are combined in one seroke, and the power and exhaust actions are combined in the other stroke. The term2-stroke cycle or 2-stroke is preferred to the term 2-cycle, which is really not accurate.In automobile engines, all pistons are attached to a single crankshaft. The more cylinders an engine has, the more power strokes produced for cach revolution. This means that an 8-cylinder engine runs more smoothly bdcause the power atrokes are closer together in time and in degrees of engine rotation.The cylinders of multi-cylinder automotive engines arranged in one of three ways. 1、Inline engines use a single block of cylinder.Most 4-cylinder and any 6-cylinder engines are of this design. The cylinders do not have to be vertical. They can be inclined either side.2、V-type engines use two equal bands of cylinders, usually inclined 60degrees or 90degrees from the cach other. Most V-type engines have 6 or 8 cylinders, although V-4 and V-12 engines have been built.3、Horizontally opposed or pancake engines have two equal banks of cylinders 180degreeas apart. These space saving engine designs are often air-cooled, and are found in the Chevrolet Carvair, Porsches, Subaus, and V olkswagens. Subaus design is liquid cooled.Late-model V olkswagen vans use a liquid-cooled version of the air cooled VWhorizontally opposed engine.译文新型汽车----混合动力汽车在油价飞涨的今天,汽车制造商被要求发展一种排放低,行驶里程长的汽车。
汽车安全外文翻译文献汽车安全外文翻译文献(文档含英文原文和中文翻译)Automotive safety systems and technology researchand analysisAs traffic tools of the modernization and absolute number increase sharply, traffic accidents are also increasing. Car accident has become severe global social i ssues. Undoubtedly, advanced auto safety facilities are the driving safet y indispensable safeguard. So, we should start, from technology to research and development of highperformance, high safety car, also want to strengthen the regular inspection in cars, so timely maintenance investigation, make cars often in good technical status, so as to improve the safety performance of the car.Here we introduced active safety technology and automobile car passive safety technology. Auto safety is according to the traffic accident happened before and after the classified. One is in a traffic accident take safety measures, especially before immediately will produce risk condition, drivers manipulate the steering wheel avoid or emergency brake to avoid traffic accide nts. In the car, drive in usually to ensure the basic manipulation stability, drivers on the surrounding environment and to ensure the visual recognition sex drive the car itself, developed the basic performance ant-lock braking s ystem (ABS), prevent slippery drive system (ASR), active suspension, power steering and four-wheel drive (4WD), four-wheel steering (4WS), lighting system, wiper, the rearview mirror, prevent from rear-end collision car alarm system and laser radar, etc. These security devices and technology, called active safet y system, can also be called preventive security system. On the other hand, in order to reduce traffic accidents and company by personnel directly suffer degree, ensure company take staff and pedestrian safety, says the secur ity for passive safety, can also be called conflict safety. When after the accident, in order to prevent disasters, including prevent the expansion of fire and make crew from traffic accident can extricate the security devices and systems, called prevent disaster expand security system.One.Automobile active security technology1. ABS braking systemAnt-lock Braking System (Braking System, lock do by ABS computers as ABS), hydraulic device, the wheel speed sensors, brakehydraulic pipeline and electrical wiring etc. Their structures are shown below.ABS tasseled for the car in various driving conditions braking performance and brake safet y particularly important, especially is emergency braking, can make full use of the peak between tire and road surface adhesion properties, improve per formance and reduce automobile fight sideslip braking distance, give full play to the braking performance, but also increase the automobile braking process control. So as to reduce the possibility of car accidents.No installation ABS car, if the driving force trample brake pedal, wheel will rapidly lower speed, and finally wheels stop turning, but body because of inertia remains forward sliding. This phenomenon was at the wheel and pavement occur between larger "slip", appear this kind of situation, the car tires of automobile lateral spreads almost disappear, so poor force will appear the following phenomena:(1) Steering stability fall: the steering wheel is ineffective, vehicle tail manipulation of curl, serious when vehicle circles or appear folding phenomenon;(2) Handling fall: manipulate the steering wheel and short of steering requirements;(3) Braking distance extended: more than general braking distance.So, we can imagine to have installed ABS system of the car safety is very important.2.the ASR drive torque control systemABS are used to prevent car braking process wheel lock, will wheel sliding rate control in ideal range, so as to shorten the braking distance, improve automobile braking direction stability and steering control, so as to improve the safet y of the car. Along with the increase of vehicle performance requirements, not only in braking processrequired to prevent wheel lock, and asked the driver to prevent drive roller skating turn in the process, making cars in the direction s tability, driving process steering control ability and acceleration performance, so are improved by the car drive torque steering system ASR (Accelerations Regulation) Slip. ASR is the perfect complement and ABS ASR, but most alone is set with ABS combined together, commonly used ABS/ASR says, called antiskid control system.ASR is mainly used to prevent car in the beginning, accelerate the wheels, guarantee slip in the car accelerated rate and improve the stability in bad pavement drive attached condition s. It makes no difference speed in the car lock ice roads and muddy road started and to improve its capacity, also can prevent high in speed by turning cars gliding pavement and rear lateral spreads phenomenon.Anyhow, prevent the wheel because ASR slip, can maximize the engine driving moment of cars had enough, ensure the longitudinal force, lateral force and manipulation of power, make cars in starting, steering and accelerate the process, in gliding and muddy road, in a mountain area downhill process ca n steadily driving, guarantees the safety, reducing tire wear and fuel consumption, and improves the car driving capability.3.VDC systemABS/ASR system successfully solves the brake and the car when driven direction stability problem, but cannot solve t he vehicle steering stability problem driving direction. For example when steering road, inevitably by lateral and longitudinal force, onl y local surface can provide full lateral and longitudinal force, the pilot can control vehicles. If the ground adhesio n ability lower lateral, will damage cars driving ability predetermined direction. Rainy days cars driving, often high-speed steering lateral sliding out, it is the ground because ofinsufficient lateral adhesion ability. To resolve the issue, and developed countries automobile industry recently in ABS/ASR system on the basis of the development of dynamic Control system (into car Dynamics Control, the abbreviation VDC Vehicle). The system of the car brake, driving, suspension, steering, engine and so on var ious main assembly control system in function, structure organic ground comprehensive together, can make cars in all kinds of bad working conditions, such as ice road pavement, commuting, river bend pavement and took evasive action moving line, braking and acceleration and the downhill for different conditions, such as bearing, different type pressure and different levels of type wear all have good direction stability, to show the best driving performance. VDC applications, in braking, acceleration and stee ring aspects of driver's fully released request, is the car of active safet y driving a new milestone.VDC of steering control system is mainly by driving for each wheel brake control and engine power output control to realize. For example, if the car turn left front wheel for steering the inadequate capacit y tend to slip out of the corner, VDC s ystem can measure imminent, just know lateral spreads left rear brake adopt appropriate measures. If at the same corner, because rear wheel tend to slip out of favor of lateral overmuch, VDC system is proper braking to front-right wheel failure, maintain the stability of the vehicle driving. In extreme cases, VDC system can also take reduce engine to reduce the power output, and to reduce the speed of the demand side adhesion ability to maintain the stability of the vehicle driving. Adopt VDC system, automobile in folio pavement or corner of pavement braking distance still can further reduce.4.CCS cars cruise control systemAuto cruise Control System (Cruiser Cont rol System, abbreviationfor CCS) is can make automobile work in engine favorable speed range, reduce driver's driving manipulate labor intensity, improve the driving comfort the automatic driving device.Car cruising s ystem (CCS) role is required by the driver: after a normally-closed switch, no speed on the accelerator pedal can automaticall y keep the speed, make the vehicle with the fixed speed. Using this device, when on the highway after a long time, the driver driving not have to control the accelera tor pedal, reduce fatigue, while reducing unnecessary speed change, can reduce save fuel.Auto cruise control system is the earliest development of the automotive electronic control system. This system USES another speed sensor, will speed signal input en gine control microcomputer, by microcomputer control vacuum system work. This system can make use of the server, speed control switch lever and brake pedal on vacuum lift switches etc, its function and basic system the same.In this system, electronic con trol device can accord change of driving resistance, automatic regulation engine throttle Angle, make the speed constant. Such not only reduce unnecessary speed change, which saves fuel, also reduced the driver's burden.Two. Automobile passive safety te chnology1. Seat beltCar seat belt is a safety device, it can in car collision or sharp turn, make crew to keep its original position as possible without mobile and rotation, avoid collision with in-car hard parts caused damage. Seat belts and airbags, as modern cars are safet y devices, but the long history of the former, popularize the scope.The seemingl y simple seat belt actually not "simple". Attention has been at the forefront of traffic safety, through the analysis of general motors after a car ac cident found: seat belt not only makespeople protect the lives, can be in more than half of the accident to reduce or even eliminate drivers, motorists are the chance of injury. Car collision or unexpected emergency braking force generated great inertia, will allow the driver and passenger and car windscreen, steering wheel, seat, collision happened objects such as secondary to drive is caused extremely easil y crew serious damage, even drive occupant seats or threw the apex, seat belts can will ride in the seat. Bondage personnel When has the accident, which can effectively prevent the collision, and its buffer role can absorbs a great deal of kinetic energy, reduce rides personnel extent of the injuries.Fasten your seat belt airbags play our role is also an important condition. Because the airbag to maximize role for the ride in the impact of the physical location, sitting instant action have extremely strict and the requirements. Otherwise, the airbag started strong instantaneous wallops to head are frag ile site, may cause serious damage, especially for children, this damage can be fatal. Even the most ordinary three belts, try a can timely in crash that lived rides the bundle, ensure the upper part of a ride in the airbag fully extended range, make the airbag most effectively play efficacy. Accordingl y, must not because the car is equipped with airbags and feel carefree seat belt fastened, only to reduce or eliminate the traffic accident happen.2. The airbagWhen the front collision happened strong, be cause inertia, who rides the body forward fast moving, then seat belts and will try to "pull" rides on person the body, absorb some of the impact energy, while the airbag with "the eyepiece trend" inflatable and completely open; Then the rides the upper bo dy will sink to airbags, gas also began from the vent air uniform escaping, and absorbed most of the impact energy; Subsequently, the ride back seat and return to the body. Abovethe whole process is almost always happens in a flash, who rides the completely in passive situation, in this case, the passive rel y on auxiliary occupant protection system is the only option. Airbags development design is based on the protection on seat belt Co., LTD; they cooperate with each other to ride the play the auxiliary p rotective effect.Seat belt usage in under the condition of the crew, balloon help reduce chest, head and facial injuries in the seriousness of the collision. When car collision happened before, the first is the car to stop motion, car under the action of inertial force crews to go forward with the original speed still sport. Not wearing a seatbelt crews will and steering dish, front windscreen together, so it can be severely hurt; Wearing a seatbelt as car stop the crew can stop moving forward movement an d gradually. If collision violent, crew forward movement of the seat belts, even faster in the complete stop before motion, still and in-car things together. If this fashion in steering the disk or within the popup balloon inflated dash, it can protect the occupant reduce the possibility of car together with things, more uniform dispersion head, chest, absorb the impact energy of movement, thus crew has added effect of seat belts.In addition to seat belts and airbags outside car passive safety technology includes car bumper, automobile safet y glass, security body, occupant head and neck protection system (WHIPS), etc. These vehicles to improve the safety performance has very important contribution汽车安全系统技术研究分析随着交通工具的现代化和绝对数量的急剧增长,车祸也不断增加。
Ignition SystemThe purpose of the ignition system is to create a spark that will ignite the fuel-air mixture in the cylinder of an engine. It must do this at exactly the right instant and do it at the rate of up to several thousand times per minute for each cylinder in the engine. If the timing of that spark is off by a small fraction of a second, the engine will run poorly or not run at all.The ignition system sends an extremely high voltage to the spark plug in each cylinder when the piston is at the top of its compression stroke. The tip of each spark plug contains a gap that the voltage must jump across in order to reach ground. That is where the spark occurs.The voltage that is available to the spark plug is somewhere between 20,000 volts and 50,000 volts or better. The job of the ignition system is to produce that high voltage from a 12 volt source and get it to each cylinder in a specific order, at exactly the right time.The ignition system has two tasks to perform. First, it must create a voltage high enough (20,000+) to across the gap of a spark plug, thus creating a spark strong enough to ignite the air/fuel mixture for combustion. Second, it must control the timing of that the spark so it occurs at the exact right time and send it to the correct cylinder.The ignition system is divided into two sections, the primary circuit and the secondary circuit. The low voltage primary circuit operates at battery voltage (12 to 14.5 volts) and is responsible for generating the signal to fire the spark plug at the exact right time and sending that signal to the ignition coil. The ignition coil is the component that converts the 12 volt signal into the high 20,000+ volt charge. Once the voltage is stepped up, it goes to the secondary circuit which then directs the charge to the correct spark plug at the right time.The BasicsBefore we begin this discussion, let’’s talk a bit about electricity in general. I know that this is Before we begin this discussion, letbasic stuff, but there was a time that you didn’’t know about this and there are people who need basic stuff, but there was a time that you didnto know the basics so that they could make sense of what follows.All automobiles work on DC (Direct Current). This means that current move in one direction, form the positive battery terminal to the negative battery terminal. In the case of the automobile, the negative battery terminal is connected by a heavy cable directly to the body and the engine block of the vehicle. The body and any metal component in contact with it is called the ground. This means that a circuit that needs to send current back to the negative side of the battery can be connected to any part of the vehicle’’s metal body or the metal engine block.be connected to any part of the vehicleA good example to see how this works is the headlight circuit. The headlight circuit consists of a wire that goes from the positive battery terminal to the headlight switch. Another wire goes from the headlight switch to one of two terminals on the headlight bulb. Finally, a third wire goes from a second terminal on the bulb to the metal body of car. When you switch the headlight on, you are connecting the wire from the battery with the wire to the headlamps allowing battery current to go directly to the headlamp bulbs. Electricity passes through the filaments inside the bulb, then out the other wire to the metal body. From there, the current goes back to the negative terminal of the battery completing the circuit. Once the current is flowing through this circuit, the filament inside the headlamp gets hot and glows brightly. Let there be light.Now, back to the ignition system, the basic principle of the electrical spark ignition system has not changed for over 75 years. What has changed is the method by which the spark is created and how it is distribute.Currently, there are three distinct types of ignition system. The mechanical ignition systemwas used prior to 1975. It was mechanical and electrical and used no electronics. By understanding these early system, it will be easier to understand the new electronic andcomputer controlled ignition system, so don’’t skip over it. The electronic ignition system started computer controlled ignition system, so donfinding its way to production vehicles during the early 70s and became popular when better control and improved reliability became important with the advent of emission controls. Finally, the distributor less ignition system became available in the mid 80s. This system was always computer controlled and contained no moving parts, so reliability was greatly improved. Most of these systems required no maintenance except replacing the spark plugs at intervals from 60,000 to over 100,000 miles.Let’’s take a detailed look at each system and see how they work.LetThe Mechanical Ignition SystemThe distributor is the nerve center of the mechanical ignition system and has two tasks to perform. First, it is responsible for triggering coil to generate a spark at the precise instant that it is required (which varies depending how fast the engine is turning and how much load it is under). Second, the distributor is responsible for directing that spark to the proper cylinder (which is why it is called a distributor).The circuit that powers the ignition system is simple and straight forward. When you insert the key in the ignition switch and turn the key to the Run position, you are sending current from the battery through a wire directly to the positive (+) side of the ignition coil. Inside the coil is a series of copper windings that loop around the coil over a hundred times before exiting out the negative (-) side of the coil. From there, a wire takes this current over to the distributor and is connected to a special on/off switch, called the points. When the points are closed, this current goes directly to ground. When current flows from the ignition switch, through the windings in the coil, then to ground, it builds a strong magnetic field inside the coil.The points are made up of a fixed contact point that is fastened to a plate inside the distributor, and a movable contact point mounted on the end of a spring loaded arm. The movable point rides on a 4, 6, or 8 lobe cam (depending on the number of cylinder in the engine) that is mounted on a rotating shaft inside the distributor. This distributor cam rotates in time with the engine, making one complete revolution for every two revolutions of the engine. As it rotates, the cam pushes the points open and closed. Every time the points open, the flow of current is interrupted through the coil, thereby collapsing the magnetic field and releasing a high voltage surge through the secondary coil windings. This voltage surge goes out the top of the coil and through the high-tension coil wire.Now, we have the voltage necessary to fire the spark plug, but we still have to get it to the correct cylinder. The coil wire goes from the coil directly to the distributor cap. Under the cap is a rotor that is mounted on top of the rotating shaft. The rotor has a metal strip on the top that is in constant contact with the center terminal of the distributor cap. It receives the high voltage surge from the coil wire and sends it to the other end of the rotor which rotates past each spark plug terminal inside the cap. As the rotor turns on the shaft, it sends the voltage to the correct spark plug wire, which in turn sends it to the spark plug. The voltage enters the spark plug at the terminal at the top and travels down the core until it reaches the tip. It then jumps across the tip of the spark plug, creating a spark suitable to ignite the fuel-air mixture inside that cylinder. The description I just provided is the simplified version, but should be helpful to visualize the process, but we left out a few things that make up this type of ignition system. For instance, we didn’’t talk about the condenser that is connected to the point, nor did we talk about the system didnto advance the timing. Let’’s take a look at each section and explore it in more detail.to advance the timing. LetThe Ignition SwitchThere are two separate circuits that go from the ignition switch to the coil. One circuit runs through a resistor in order to step down the voltage about 15% in order to protect the points from premature wear. The other circuit sends full battery voltage to the coil. The only time this circuit is used is during cranking. Since the starter draws a considerable amount of current to crank the engine, additional voltage is needed to power the coil. So when the key is turned to the spring-loaded start position, full battery voltage is used. As soon as the engine is running, the driver releases the key to the run position which directs current through the primary resistor to the coil.On some vehicles, the primary resistor is mounted on the firewall and is easy to replace if it fails. On other vehicles, most notably vehicles manufactured by GM, the primary resister is a special resister wire and is bundled in the wiring harness with other wires, making it more difficult to replace, but also more durable.The DistributorWhen you remove the distributor cap from the top of the distributor, you will see the points and condenser. The condenser is a simple capacitor that can store a small amount of current. When the points begin to open the current, flowing through the points looks for an alternative path to ground. If the condenser were not there, it would try to jump across the gap of the point as they begin to open. If this were allowed to happen, the points would quickly burn up and you would hear heavy static on the car radio. To prevent this, the condenser acts like a path to ground. It really is not, but by the time the condenser is saturated, the points are too far apart for the small amount of voltage to jump across the wide point gap. Since the arcing across the opening points is eliminated, the points last longer and there is no static on the radio from point arcing.The points require periodic adjustments in order to keep the engine running at peek efficiency. This is because there is a rubbing block on the points that is in contact with the cam and this rubbing block wears out over time changing he point gap. There are two ways that the points can be measured to see if they need an adjustment. One way is by measuring the gap between the open points when the rubbing block is on the high point of the cam. The other way is by measuring the dwell electrically. The dwell is the amount, in degrees of cam rotation that the points stay closed.On some vehicles, points are adjusted with the engine off and the distributor cap removed. A mechanic will loosen the fixed point and move it slightly, then retighten it in the correct position using a feeler gauge to measure the gap. On other vehicles, most notably GM cars, there is a window in the distributor where a mechanic can insert a tool and adjust the points using a dwell meter while the engine is running. Measuring dwell is much more accurate than setting the points with a feeler gauge.Points have a life expectancy of about 10,000 miles at which time have to be replaced. This is done during a routine major tune up, points, condenser, and the spark plugs are replaced, the timing is set and the carburetor is adjusted. In some cases, to keep the engine running efficiently, a minor tune up would be performed at 5,000 mile increments to adjust the point and reset the timing.Ignition CoilThe ignition coil is nothing more that an electrical transformer. It contains both primary and secondary winding circuit. The coil primary winding contains 100 to 150 turns of heavy copper wire. This wire must be insulated so that the voltage does not jump from loop to loop, shortingit out. If this happened, it could not create the primary magnetic field that is required. The primary circuit wire goes into the coil through the positive terminal, loops around the primary windings, then exits through the negative terminal.The coil secondary winding circuit contains 15,000 to 30,000 turns of fine copper wire, which also must be insulated from each other. The secondary windings sit inside the loops of the primary windings. To further increase the coils magnetic field the windings are wrapped around a soft iron core. To withstand the heat of the current flow, the coil is filled with oil which helps keep it cool.The ignition coil is the heart of the ignition system. As current flows through the coil a strong magnetic field is build up. When the current is shut off, the collapse of this magnetic field to the secondary windings induces a high voltage which is released through the large center terminal. This voltage is then directed to the spark plugs through the distributor.Ignition Timing The timing is set by loosening a hold-down screw and rotating the body of the distributor. Since the spark is triggered at the exact instant that the points begin to open, rotating the distributor body (which the point are mounted on) will change the relationship between the position and the position of the distributor cam, which is on the shaft that is geared to the engine rotation.While setting the initial or base timing is important, for an engine to run properly, the timing needs to change depending on the speed of the engine and the load that it is under. If we can move the plate that the points are mounted on, or we could change the position of the distributor cam in relation to the gear that drives it, we can alter the timing dynamically to suit the needs of the engine.Ignition Wires These cables are designed to handle 20,000 to more than 50,000 volts, enough voltage to toss you across the room if you were to be exposed to it. The job of the spark plug wires is to get that enormous power to the spark plug without leaking out. Spark plug wires have to endure the heat of a running engine as well as the extreme changes in the weather. In order to do their job, spark plug wires are fairly thick, with most of that thickness devoted to insulation with a very thin conductor running down the center. Eventually, the insulation will succumb to the elements and the heat of the engine and begins to harden, crack, dry out, or otherwise break down. When that happens, they will not be able to deliver the necessary voltage to the spark plug and a misfire will occur. That is what is meant by “Not running on all cylinders cylinders””. To correct this problem, the spark plug wires would have to be replaced.Spark plug wires are routed around the engine very carefully. Plastic clips are often used to keep the wires separated so that they do not touch together. This is not always necessary, especially when the wires are new, but as they age, they can begin to leak and crossfire on damp days causing hard starting or a rough running engine.Spark plug wires go from the distributor cap to the spark plugs in a very specific order. This is called the is called the ““firing order firing order”” and is part of the engine design. Each spark plug must only fire at the end of the compression stroke. Each cylinder has a compression stroke at a different time, so it is important for the individual spark plug wire to be routed to the correct cylinder.For instance, a popular V8 engine firing order is 1, 8, 4, 3, 6, 5, 7, 2. The cylinders are numbered from the front to the rear with cylinder #1 on the front-left of the engine. So the cylinders on the left side of the engine are numbered 1, 3, 5, 7while the right side are numbered 2, 4, 6, 8. On some engine, the right bank is 1, 2, 3, 4 while the left bank is 5, 6, 7, 8. A repairmanual will tell you the correct firing order and cylinder layout for a particular engine.The next thing we need to know is what direction the distributor is rotating in, clockwise or counter-clockwise, and which terminal on the distributor caps that #1 cylinder is located. Once we have this information, we can begin routing the spark plug wires.If the wires are installed incorrectly, the engine may backfire, or at the very least, not run on all cylinders. It is very important that the wires are installed correctly.Spark PlugsThe ignition system system’’s sole reason for being is to service the spark plug. It must provide sufficient voltage to jump the gap at the tip of the spark plug and do it at the exact right time, reliably on the order of thousands of times per minute for each spark plug in the engine.The modern spark plug is designed to last many thousands of miles before it requires replacement. These electrical wonders come in many configurations and heat ranges to work properly in a given engine. The heat range of a spark plug dictates whether it will be hot enough to burn off any residue that collects on the tip, but not so hot that it will cause pre-ignition in the engine. Pre-ignition is caused when a spark plug is so hot, that it begins to glow and ignite the fuel-air mixture prematurely, before the spark. Most spark plugs contain a resistor to suppress radio interference. The gap on a spark plug is also important and must be set before the spark plug is installed in the engine. If the gap is too wide, there may not be enough voltage to jump the gap, causing a misfire. If the gap is too small, the spark may be inadequate to ignite a lean fuel-air mixture also causing a misfire.The Electronic Ignition SystemThis section will describe the main differences between the early point & condenser systems and the newer electronic systems. If you are not familiar with the way an ignition system works in general, I strongly recommend that you first read the previous section The Mechanical Ignition System.In the electronic ignition system, the points and condenser were replaced by electronics. On these systems, there were several methods used to replace the points and condenser in order to trigger the coil to fire. One method used a metal wheel with teeth, usually one for each cylinder. This is called an armature. A magnetic pickup coil senses when a tooth passes and sends a signal to the control module to fire the coil.Other systems used an electric eye with a shutter wheel to send a signal to the electronics that it was time to trigger the coil to fire. These systems still need to have the initial timing adjusted by rotating the distributor housing.The advantage of this system, aside from the fact that it is maintenance free, is that the control module can handle much higher primary voltage than the mechanical point. V control module can handle much higher primary voltage than the mechanical point. Voltage can oltage can even be stepped up before sending it to the coil, so the coil can create a much hotter spark, on the order of 50,000 volts that is common with the mechanical systems. These systems only have a single wire from the ignition switch to the coil since a primary resistor is not longer needed. On some vehicles, this control module was mounted inside the distributor where the points used to be mounted. On other designs, the control module was mounted outside the distributor with external wiring to connect it to the pickup coil. On many General Motors engines, the control module was inside the distributor and the coil was mounted on top of the distributor for a one piece unitized ignition system. GM called it high energy ignition or HEI for short.The higher voltages that these systems provided allow the use of a much wider gap on the spark plugs for a longer, fatter spark. This larger sparks also allowed a leaner mixture for betterfuel economy and still insure a smooth running engine.The early electronic systems had limited or no computing power, so timing still a centrifugal and vacuum advance built into the distributor.On some of the later systems, the inside of the distributor is empty and all triggering is performed by a sensor that watches a notched wheel connected to either the crankshaft or the camshaft. These devices are called crankshaft position sensor or camshaft position sensor. In these systems, the job of the distributor is solely to distribute the spark to the correct cylinder through the distributor cap and rotor. The computer handles the timing and any timing advance necessary for the smooth running of the engine.The Distributor Ignition SystemNewer automobiles have evolved from a mechanical system (distributor) to a completely solid state electronic system with no moving parts. These systems are completely controlled by the on-board computer. In place of the distributor, there are multiple coils that each serves one or two spark plugs. A typical 6 cylinder engine has 3 coils that are mounted together in a coil pack””. A spark plug wire comes out of each side of the individual coil and goes to the “packappropriate spark plug. The coil fires both spark plugs at the same time. One spark plug fires on the compression stroke igniting the fuel-air mixture to produce power while the other spark plug fires on the exhaust stroke and does nothing. On some vehicles, there is an individual coil for each cylinder mounted directly on top of the spark plug. This design completely eliminates the high tension spark plug wires for even better reliability. Most of these systems use spark plugs that are designed to last over 100,000 miles, which cuts down on maintenance costs.参考文献:[1] 王欲进,张红伟汽车专业英语[M]. 北京:北京大学出版社,中国林业出版社,2007.8,55—67点火系统点火系统的作用是产生点燃发动机气缸里可燃混合物的火花。
外文文献翻译附录A(英文原文)Adaptive Clutch Engaging Process Control Automatic Mechanical Transmission LIU Hai’ou(刘海鸥),CHEN HUI’yan(陈慧岩),DING Hua’rong(丁华荣),HE Zhong’bo(何忠波) Abstract: Based on detail analysis of cluch engaging process control targets and adaptive demands,a control strategy which is based on speed signal,different from that of based on main clutch displacement signal,is put forward.It considers both jerk and slipping work which are the most commonly used quality evaluating indexes of vehicle starting phase.The adaptive control system and its reference model are discussed profoundly.Taking the adaptability to different starting gears and different road conditions as examples,some proving field test records are shown to illusrate the main clutch adaptive control strategy at starting phase.Proving field test gives acceptable results. Key words: automatic mechanical transmission(AMT); transmission technology; adaptive control; main clutch engagement The engaging process control strategy of friction main clutch,whether wet or dry,is the focus in vehicle technology field.Some of the control strategies are based on main clutch displacement signal.An adaptive control strategy has been developed, which is based on main clutch out put shaft speed signal grounded on our research work.It is proved to have extensive adaptability. 1 Control Targets and Adaptive Demands The most commonly used quality evaluating indexes of vehicle starting phase are jerk and slipping work. Jerk—As an index evaluating the smoothness in vehicle starting phase, the jerk is the rate of vehicle longitudinal acceleration.According to this definition,the expression of jerk is given as j=da/dt=d2v/dt2 (1) where j is the jerk;v and a are the vehicle running speed and acceleration respectively. According to vehicle dynamics,the vehicle-run-ning speed is determined by the balance between engine traction force and running resistance and can be expressed as t v D e g gd Gd v A C f G T r i i 2 015 . 21 ) sin ( (2) Where e T is the engine out put torque;G is the vehicle total weight; r is the driving wheel radius; f and are the road resistance coefficient and ram p way angle respectively; D C is the air resistance coefficient. The function of a mechanism is to transform motion from one rigid body to another as part of the action of a machine,There are three types of common mechanical device that can be used as basic elements of a mechanism. 1.—Gear system,in which toothed members in contact transmit motion between rotating shafts. 2.Cam system,where a uniform motion of an input member I converted into a nonunifirm motion of the output member. 3.Plane and spatial linkages are also useful in creating mechanical motions for a point or rigid body. Mechanisms form thee basic geometrical element of many mechanical devices including automatic machinery,typewriters,mechanical toys,textile machinery,and others.A mechanism typically is designed to create a desired motion of a rigid body relative to a reference member.Kinematic design,or kinematic syntheses,of mechanisms often is the first step in the design of a complete machine.When forces are considered,the additional problems of dynamics,bearing loads,stresses,lubrication,and the like are introduced,aad the larger problem become one of machine design. Gear are machine elements that transmit motion by means of successively engaging teeth,Gears transmit motion from one ratating shaft to another, or to a rack that translates. Numerous applications exist in which a constant angular velocity ratio(or constant torque ratio)must be transmitted between shafts, Based on the variety of gear types available, there is no restriction that the input and the output shafts need be either in-line or parallel.Nonlinear angular velocity tratios are also available by using noncircccuar gear,In order to maintain a constant angular velocity,the individual tooth prifle must obey the fundamental law of gearing:for a pair of gears to transmit a constant angular velocity ratio,the shape of theircontacting profiles must be such that the common normal passes through a fixed point on the line of the centers. There are several standard gear types.For applications with parallel shafts,straight spur gear,parallel helical,or herringbone gears are usually used,In the case of intersecting shafts,straight bevel or spiral bevel gears are employed.For nonintersecting and nonparallel shafts,crossed helical,worm,face,skew bevel or hypoid gears would be acceptable choices.For spur gears,the pirch circles of mating gears are tangent to wach other.They roll on one another without sliding.The addendum is the height by which a tooth projects beyond the pitch circle(also the tadial distance between the pitch circle and the addendum circle).The clearance is the amount by which the dedendum (tooth height below the pitch circle)in a given gear exceeds the addendum of its mating gear,The tooth thickness is the distance across the tooth along the are of the pitch circle while the tooth space is the distance between adjacent teeth along the are of the pitch circle.TRhe backlash is the amount by which the width of the tooth space exceeds the thickness of the engaging tooth at the pitchi circle. Helical gears are used to transmit motion between parallel shafts.The helix angle I the same on each gear,but one gear must have a right-hand helix and the other a left-hand helix.The shape of the tooth is the angular edge of the paper becomes a helix.If wo unwind this paper,eachpoint on the angulaaar edge genetares an involute curve,The surface obtained when every point on the edge generates an involute is called an involute helicoids.in helical gears,the line is diagonal across the face of the tooth,It is this gradual engagement of the teeth and the smooth transfer of load from one tooth to another,which give helical gears the ability to transmit heavy loads at high soeeds,Helical gears subject the shaft bearings to both radial and thrust loads.When the thrust loads become high or are objectionable for other reasons,it may be desirable to use double helical gears.A doublehelical gear(herringbone)is equivalent to two helical gears of opposite hand,mounted side by side on he same shaft.They develop opposite thrust reactions and thus cancel at the thrust load.when two or more single helcal gears are mounted on the same shaft,the hand of the gears should be selected so as to produce the minimum thrust load. Straight bevel gears are easy to design and simple to manufacture and give very good results in service if they are mounted accurately and positively.As in the case of spur gears,however,they become noisy at higher values of the pitch-line velocity.In shese cases it is often good design practice to go to the spiral bevel gear,which is the bevel counterpart of the helical gear.As in the case of helicaal gears,spiral bevel bears give a much smoother tooth action than strain bevel gears,and hence are useful where high speed are encountered.It is frequently desirable,as in the case of automotive differential applications,to have gearing similar to bevel gears but with the shaft offset.Such gears are called hyoid gears because their pitch surfaces are hyperboloids of revolution,The tooth action between such gears is a combination of rolling and slidin along a straight line and has much in common with that of worm gears. A shaft is a rotating or stationary ually of circular cross section,having mounted power-transmission lements.Shafmay subjected to bending,tension,compression,or torsional loads,acting singly or in combination with one another,When they are combined,one may expect to find both static and fatigue strength to be important design considerations,since a single shaft may be subjected too static stresses,completely reversed,and repeated stresses,aii acting at the same time. The word “shaft” cover numerous variationgs,such as axles and spindles.An axle is a shaft,either stationary or rotating,not subjected to torsion load.A short rotating shaft is often called a spindle. When either the lateral or the torsional deflection of a shaft must be held to close limits,the shaft must besized on the basis of deflection,before analyzing the stresses,The reason for this is that,if the shaft is made stiff enough so that the deflection is not too large,it is probable that the resulting stresses will be safe,But by no means should the designer assume that they are safe;it is almost always necessary to calculate them so that he knows they are within acceptable limits.Whenever possible,the power-transmission elements,such as gears or pulleys ,should be located close to the supporting bearings.This reduces the bending moment,and hence the deflection and bending stress. According to the discussion of vehicle dynamics, the control of jerk and slipping work is related to the change rate of main clutch transmitting torque. However, the torque transducer cannot be installed in the control system,so the transient torque signal cannot be obtained directly.A method that some investigators use is to control the output torque through controlling main clutch engaging displacement.But the displacement can only reflect torque change indirectly. Their corresponding relationship is affected by many factors. And once the installed position changes or the signal drifts,it will be difficult to control the transmitting torque value accurately. The main clutch adaptive control strategy based on the speed signal adjusts the transmitting torque based on the jerk and the slipping work known from the change of rotating speed signal. 2 Conclusions ①The key technique of adaptive control strategy based on speed signal is the reference model. Different from the strategy based on main clutch displacement signal, it can reflect vehicle dynamics during engaging process and so can satisfy the engaging demands well. ②The reference model based on speed signal can be illustrated by the speed change course curve. Set the parameters for each sector correctly according to smooth and fast engaging demands, and the adaptive control target can be realized through adopting PWM/PFM control method. ③A large amount of tests that were conducted for along time show that thecontrol strategy based on speed signal has good adaptability and can adapt to different gears, road conditions, load, main clutch parameters(temperature, attrition wear and friction material) and driving styles. References: [1] Horn J,Bamberger J,Michan P,et al.Flatness-based clutch control for automated manual transmission[J]. Control Engineering Practice,2003(11):1353-1359.[2] Toshimichi Minowa,Tatsuya Ochi,Hiroshi Kuroiwa, et al. Smooth gear shift control technology for clutch-to-clutch shifting[R].SAE199120121054,1991. [3] Xi Jun qiang.Research on brushless electric motor driven automatic main clutch and its control strategy[D].Beijing:School of Vehicular and Transportation, Beijing Institute of Technology, 2001.(inChinese) [4] Lei Yu long, Ge An lin, Li Yong jun. Main clutch control strategy at vehicle starting phase[J]. Automotive Engineering,2000(4):266-269. (inChinese) [5] Andrew Szadkowski. Shiftability and Shift Quality Issues in Clutch Transmission Systems[R]. SAE 912697,1991. 附录B(译文)适应性离合器在机械自动传动中的加工控制刘海鸥,陈慧岩,丁华荣,何忠波(机械和车辆工程学校,北京技术学院,北京100081,中国)摘要:依靠对离合器运行过程的详细分析控制目标和适应的要求,一个主要依靠速度信号而不是那些依靠离合器的移动信号的控制策略被迅速发展。
汽车专业英语 pdfThe automotive industry is a vast and ever-evolving field that encompasses the design, manufacture, and maintenance of vehicles. As the industry continues to grow and become more technologically advanced, the need for specialized knowledge and communication skills in the automotive field has become increasingly important. One crucial aspect of this is the understanding and mastery of automotive English, which is the focus of this essay.Automotive English refers to the specific vocabulary, terminology, and language used in the automotive industry. This includes terms related to vehicle components, systems, and technologies, as well as the processes and procedures involved in the design, production, and repair of vehicles. Proficiency in automotive English is essential for a wide range of professionals working in the industry, from engineers and technicians to sales and customer service personnel.One of the primary reasons for the importance of automotive English is the global nature of the automotive industry. Vehicles are manufactured, sold, and serviced around the world, and the industryrelies on effective communication and collaboration across international borders. Automotive English serves as a common language that allows professionals from different countries and backgrounds to effectively communicate and share information.Another key reason for the significance of automotive English is the rapid technological advancements in the industry. As vehicles become more complex and incorporate advanced features and technologies, the language used to describe and discuss these developments has become increasingly specialized and technical. Mastering automotive English is essential for staying up-to-date with the latest trends and developments in the industry.In addition to the technical language, automotive English also encompasses a range of other communication skills that are essential for professionals in the industry. This includes the ability to effectively present technical information to non-technical audiences, such as customers or management, as well as the ability to write clear and concise technical reports and documentation.One of the primary ways that professionals in the automotive industry can develop their proficiency in automotive English is through the use of specialized educational resources, such as textbooks, online courses, and industry-specific training programs. These resources provide a comprehensive overview of theterminology, concepts, and communication skills that are essential for success in the automotive field.For example, many automotive engineering programs at universities and technical schools offer courses that focus specifically on automotive English, covering topics such as vehicle systems, repair procedures, and technical writing. These courses often include hands-on activities and simulations that allow students to apply their knowledge in real-world scenarios.In addition to formal educational programs, there are also a variety of other resources available for professionals looking to improve their automotive English skills. This includes industry-specific publications, such as trade magazines and technical journals, as well as online forums and discussion groups where automotive professionals can share knowledge and best practices.One particularly useful resource for developing proficiency in automotive English is the use of automotive English PDF documents. These documents, which are widely available online, provide a comprehensive overview of the terminology, concepts, and communication skills that are essential for success in the automotive industry. They often include detailed explanations of key terms and concepts, as well as exercises and practice activities to help reinforce the material.Overall, the importance of automotive English cannot be overstated. As the automotive industry continues to evolve and become more globally interconnected, the ability to effectively communicate in the specialized language of the field has become a critical skill for professionals at all levels. Whether you are an engineer, technician, or sales representative, mastering automotive English can open up a world of opportunities and help you to excel in your chosen career.。
关于汽车工业的经典前沿英文文献Classic and Cutting-Edge English Literature on the Automobile Industry.The automobile industry has undergone remarkable transformations over the years, evolving from a mere mode of transportation to a global economic juggernaut. The industry's growth and influence are well-documented in numerous classic and contemporary English literature. This article aims to explore some of the most influential and cutting-edge English articles on the automotive sector.One of the earliest and most influential works on the automotive industry is "The Internal Combustion Engine in Theory and Practice" by Nikolaus August Otto. Published in 1876, this book provides a detailed overview of the principles and operation of the internal combustion engine, which became the backbone of the automotive industry.Otto's work not only revolutionized the automotive sector but also laid the foundation for future advancements inengine technology.Another notable contribution is "The Car: Its Design, Construction, and Operation" by Henry Austin. Published in 1901, this book offers a comprehensive guide to the design, construction, and operation of automobiles. Austin's work provides a detailed understanding of the mechanical and engineering principles behind automotive technology, making it a valuable resource for both professionals and enthusiasts.More recently, "Automotive Engineering" by John Heywood has become a staple in the automotive literature. Published in 2011, this book covers a wide range of topics, including vehicle design, engine technology, fuel and emissions, and control systems. Heywood's work provides a comprehensive overview of the modern automotive industry, incorporating the latest advancements in technology and environmental sustainability.In addition to these classic works, numerous contemporary articles and studies have emerged to addressthe latest trends and developments in the automotive sector. For instance, "The Future of the Automotive Industry: Electric, Autonomous, and Connected Vehicles" by Michael Ramsey and David Cole offers an insightful analysis of the upcoming changes in the automotive landscape. This article explores the impact of electric vehicles, autonomous driving, and connected car technologies on the industry's future.Similarly, "The Electric Vehicle Revolution: A Global Perspective" by Jeremy Rifkin and Mark L. Schneider examines the growing trend of electric vehicles and its potential to transform the automotive industry. Thisarticle highlights the environmental and economic benefitsof electric vehicles, as well as the challenges and opportunities facing the industry in the transition to sustainable transportation.Another important article is "Autonomous Vehicles: The Next Revolution in Transportation" by Chris Urmson and Sebastian Thrun. This article discusses the potentialimpact of autonomous vehicles on transportation systems,safety, and the environment. It also explores the technological challenges and ethical considerationsinvolved in the development and deployment of autonomous vehicles.In conclusion, the automotive industry has a rich and diverse literature that spans from classic works on engine technology and vehicle design to contemporary articles addressing the latest trends and developments. Thesearticles provide valuable insights into the industry's past, present, and future, offering both professionals and enthusiasts a comprehensive understanding of the automotive sector's evolution and transformation.。
Automotive safety systems and technologyresearch and analysisAbstract: auto parts of good and bad will directly affect the safety of the car, are directly related to the people's life safety and security in wealth. This article mainly from the car's active safety technology and passive safety technology two aspects elaborated the importance of car parts, and how to improve the safety of the car.Key words: automobile, active safety technology, passive safety technologyAs traffic tools of the modernization and absolute number increase sharply, traffic accidents are also increasing. Car accident has become severe global social issues. Undoubtedly, advanced auto safety facilities are the driving safety indispensable safeguard. So, we should start, from technology to research and development of high performance, high safety car, also want to strengthen the regular inspection in cars, so timely maintenance investigation, make cars often in good technical status, so as to improve the safety performance of the car.Here we introduced active safety technology and automobile car passive safety technology. Auto safety is according to the traffic accident happened before and after the classified. One is in a traffic accident take safety measures, especially before immediately will produce risk condition, drivers manipulate the steering wheel avoid or emergency brake to avoid traffic accidents. In the car, drive in usually to ensure the basic manipulation stability, drivers on the surrounding environment and to ensure the visual recognition sex drive the car itself, developed the basic performance ant-lock braking system (ABS), prevent slippery drive system (ASR), active suspension, power steering and four-wheel drive (4WD), four-wheel steering (4WS), lighting system, wiper, the rearview mirror, prevent from rear-end collision car alarm system and laser radar, etc. These security devices and technology, called active safety system, can also be called preventivesecurity system. On the other hand, in order to reduce traffic accidents and company by personnel directly suffer degree, ensure company take staff and pedestrian safety, says the security for passive safety, can also be called conflict safety. When after the accident, in order to prevent disasters, including prevent the expansion of fire and make crew from traffic accident can extricate the security devices and systems, called prevent disaster expand security system.One.Automobile active security technology1. ABS braking systemAnt-lock Braking System (Braking System, lock do by ABS computers as ABS), hydraulic device, the wheel speed sensors, brake hydraulic pipeline and electrical wiring etc. Their structures are shown below.ABS tasseled for the car in various driving conditions braking performance and brake safety particularly important, especially is emergency braking, can make full use of the peak between tire and road surface adhesion properties, improve performance and reduce automobile fight sideslip braking distance, give full play to the braking performance, but also increase the automobile braking process control. So as to reduce the possibility of car accidents.No installation ABS car, if the driving force trample brake pedal, wheel will rapidly lower speed, and finally wheels stop turning, but body because of inertia remains forward sliding. This phenomenon was at the wheel and pavement occur between larger "slip", appear this kind of situation, the car tires of automobile lateral spreads almost disappear, so poor force will appear the following phenomena:(1) Steering stability fall: the steering wheel is ineffective, vehicle tail manipulation of curl, serious when vehicle circles or appear folding phenomenon;(2) Handling fall: manipulate the steering wheel and short of steering requirements;(3) Braking distance extended: more than general braking distance.So, we can imagine to have installed ABS system of the car safety is very important.2.the ASR drive torque control systemABS are used to prevent car braking process wheel lock, will wheel sliding rate control in ideal range, so as to shorten the braking distance, improve automobile braking direction stability and steering control, so as to improve the safety of the car. Along with the increase of vehicle performance requirements, not only in braking process required to prevent wheel lock, and asked the driver to prevent drive roller skating turn in the process, making cars in the direction stability, driving process steering control ability and acceleration performance, so are improved by the car drive torque steering system ASR (Accelerations Regulation) Slip. ASR is the perfect complement and ABS ASR, but most alone is set with ABS combined together, commonly used ABS/ASR says, called antiskid control system.ASR is mainly used to prevent car in the beginning, accelerate the wheels, guarantee slip in the car accelerated rate and improve the stability in bad pavement drive attached conditions. It makes no difference speed in the car lock ice roads and muddy road started and to improve its capacity, also can prevent high in speed by turning cars gliding pavement and rear lateral spreads phenomenon.Anyhow, prevent the wheel because ASR slip, can maximize the engine driving moment of cars had enough, ensure the longitudinal force, lateral force and manipulation of power, make cars in starting, steering and accelerate the process, in gliding and muddy road, in a mountain area downhill process can steadily driving, guarantees the safety, reducing tire wear and fuel consumption, and improves the car driving capability.3.VDC systemABS/ASR system successfully solves the brake and the car when driven direction stability problem, but cannot solve the vehicle steering stability problem driving direction. For example when steering road, inevitably by lateral and longitudinal force, only local surface can provide full lateral and longitudinal force, the pilot can control vehicles. If the ground adhesion ability lower lateral, will damage cars driving ability predetermined direction. Rainy days cars driving, oftenhigh-speed steering lateral sliding out, it is the ground because of insufficient lateral adhesion ability. To resolve the issue, and developed countries automobile industry recently in ABS/ASR system on the basis of the development of dynamic Control system (into car Dynamics Control, the abbreviation VDC Vehicle). The system of the car brake, driving, suspension, steering, engine and so on various main assembly control system in function, structure organic ground comprehensive together, can make cars in all kinds of bad working conditions, such as ice road pavement, commuting, river bend pavement and took evasive action moving line, braking and acceleration and the downhill for different conditions, such as bearing, different type pressure and different levels of type wear all have good direction stability, to show the best driving performance. VDC applications, in braking, acceleration and steering aspects of driver's fully released request, is the car of active safety driving a new milestone.VDC of steering control system is mainly by driving for each wheel brake control and engine power output control to realize. For example, if the car turn left front wheel for steering the inadequate capacity tend to slip out of the corner, VDC system can measure imminent, just know lateral spreads left rear brake adopt appropriate measures. If at the same corner, because rear wheel tend to slip out of favor of lateral overmuch, VDC system is proper braking to front-right wheel failure, maintain the stability of the vehicle driving. In extreme cases, VDC system can also take reduce engine to reduce the power output, and to reduce the speed of the demand side adhesion ability to maintain the stability of the vehicle driving. Adopt VDC system, automobile in folio pavement or corner of pavement braking distance still can further reduce.4.CCS cars cruise control systemAuto cruise Control System (Cruiser Control System, abbreviation for CCS) is can make automobile work in engine favorable speed range, reduce driver's driving manipulate labor intensity, improve the driving comfort the automatic driving device.Car cruising system (CCS) role is required by the driver: after a normally-closed switch, no speed on the accelerator pedal can automatically keepthe speed, make the vehicle with the fixed speed. Using this device, when on the highway after a long time, the driver driving not have to control the accelerator pedal, reduce fatigue, while reducing unnecessary speed change, can reduce save fuel.Auto cruise control system is the earliest development of the automotive electronic control system. This system USES another speed sensor, will speed signal input engine control microcomputer, by microcomputer control vacuum system work. This system can make use of the server, speed control switch lever and brake pedal on vacuum lift switches etc, its function and basic system the same.In this system, electronic control device can accord change of driving resistance, automatic regulation engine throttle Angle, make the speed constant. Such not only reduce unnecessary speed change, which saves fuel, also reduced the driver's burden. The electronic cruise control system which is shown in figure 2.Two. Automobile passive safety technology1. Seat beltCar seat belt is a safety device, it can in car collision or sharp turn, make crew to keep its original position as possible without mobile and rotation, avoid collision with in-car hard parts caused damage. Seat belts and airbags, as modern cars are safety devices, but the long history of the former, popularize the scope.The seemingly simple seat belt actually not "simple". Attention has been at the forefront of traffic safety, through the analysis of general motors after a car accident found: seat belt not only makes people protect the lives, can be in more than half of the accident to reduce or even eliminate drivers, motorists are the chance of injury. Car collision or unexpected emergency braking force generated great inertia, will allow the driver and passenger and car windscreen, steering wheel, seat, collision happened objects such as secondary to drive is caused extremely easily crew serious damage, even drive occupant seats or threw the apex, seat belts can will ride in the seat. Bondage personnel When has the accident, which can effectively prevent the collision, and its buffer role can absorbs a greatdeal of kinetic energy, reduce rides personnel extent of the injuries.Fasten your seat belt airbags play our role is also an important condition. Because the airbag to maximize role for the ride in the impact of the physical location, sitting instant action have extremely strict and the requirements. Otherwise, the airbag started strong instantaneous wallops to head are fragile site, may cause serious damage, especially for children, this damage can be fatal. Even the most ordinary three belts, try a can timely in crash that lived rides the bundle, ensure the upper part of a ride in the airbag fully extended range, make the airbag most effectively play efficacy. Accordingly, must not because the car is equipped with airbags and feel carefree seat belt fastened, only to reduce or eliminate the traffic accident happen.2. The airbagWhen the front collision happened strong, because inertia, who rides the body forward fast moving, then seat belts and will try to "pull" rides on person the body, absorb some of the impact energy, while the airbag with "the eyepiece trend" inflatable and completely open; Then the rides the upper body will sink to airbags, gas also began from the vent air uniform escaping, and absorbed most of the impact energy; Subsequently, the ride back seat and return to the body. Above the whole process is almost always happens in a flash, who rides the completely in passive situation, in this case, the passive rely on auxiliary occupant protection system is the only option. Airbags development design is based on the protection on seat belt Co., LTD; they cooperate with each other to ride the play the auxiliary protective effect.Seat belt usage in under the condition of the crew, balloon help reduce chest, head and facial injuries in the seriousness of the collision. When car collision happened before, the first is the car to stop motion, car under the action of inertial force crews to go forward with the original speed still sport. Not wearing a seatbelt crews will and steering dish, front windscreen together, so it can be severely hurt; Wearing a seatbelt as car stop the crew can stop moving forward movement and gradually. If collision violent, crew forward movement of the seat belts, even faster in the complete stop before motion, still and in-car things together. If this fashionin steering the disk or within the popup balloon inflated dash, it can protect the occupant reduce the possibility of car together with things, more uniform dispersion head, chest, absorb the impact energy of movement, thus crew has added effect of seat belts.In addition to seat belts and airbags outside car passive safety technology includes car bumper, automobile safety glass, security body, occupant head and neck protection system (WHIPS), etc. These vehicles to improve the safety performance has very important contributionThree. Automobile active safety new technology1. Eye Car skillsEye Car technology can make each driver eyes in the same relative height, guarantee of pavement and the surrounding a six-lane unimpeded sight and best visibility. This technology can also offer a specific driving environment.Eye Car through the use of first-class motor mobile automatic will different figure driver's eyes tuned to the same height to solve the problem, meanwhile, visibility of steering dish, brake and accelerate pedals and floor and the central adjustment to constitute console to their respective driving conditions. Meanwhile to the former pillar design, will it again from drivers sights removed. Because the bus driver received the most crucial information generally have 90% from outside, acquired through the eyes observe. So, this improvement for vehicle safety is of great significance.2. Cam Car technologyCam Car technology aims to help improve the driver of perception. The technical features are:(1) Installed in the car to camera system on both sides before to make drivers can bypass the large vehicle behind a car or see ahead of pedestrians. In a typical driving situation in the crowded traffic, the pilot of the centre-left cornering could more easily view the opposite of vehicles.(2) Side after buy video camera provides broader visual profile of vision. The camera coverage than traditional rearview mirror wants wide, especially for theadjacent driveway.(3) Installed in a car, the four miniatures sectored form to decorate after a camera can obtain the car panoramic perspective. Image via electronic synthesis, has the zoom and 160 ° wide-angle ability.(4) "night eye" (Night Eye) camera can be in low illumination conditions, when the car is in reverse gear, even in a dark cases can also provide car close range after small images.Four. Automobile passive safety new technology1. Future airbags(1) It cans inflatable screen system. This is a new safety design; its basic principle is to protect in-car occupant's head, when that happens it will carry on the air, air after the tent shape is swelling.(2) Tubular inflatable structure head air sac. This system for supplement current side protection system, still stopover in protecting the chest and abdomen, brachial ministry, to head protection were insufficient. It with rigid body structure, the door body protective just beams, side air sac, can form a complete side safe defend net, this will be the future security protection trend.(3) Head support system. Head support system generally called the headrest, vehicles which the headrest, with seats, not just for comfortable fact is more important to safety. Vehicle if in an emergency brake, the body will have strong to and fro, because the principle of inertia occupant body swinging, especially neck must follow. If no head support buffer headrest, neck injury caused by damage is very surprising.(4) The external airbags.2. Adaptive constraint technology system (ARTS)New adaptive constraint technology system (ARTS) use a series of sensors to monitor the driver seat, seat belt use, in front of the occupant take quality and location and intensity of the collision of the collisions and collision force direction, then according to the specific information such as the collision of each front airbag characteristics of the crew on regulated. The system can further reduce due toimproper airbag for crew on the damage, especially for smaller front row figure crew.3. Automobile energy-absorbing direction columnAuto absorbing in automobile direction tubing through collisions of redistribution to steering wheel wallop, would wallop path to deliver shunt quickly, making the minimum of load on the steering wheel. The steering column by hollow tubes and steering bearings form. Traditional hollow tubes and the steering column steering bearings is integral, steering shaft top and steering connections, the connecting with direction below. And suck can direction string of characteristic is will the steering column in two, divided into unblock steering column and the steering column under two parts; Inside of the steering shaft also divided into two sections, with outgoing quarter agencies between them connected. Once a collision make direction, outgoing quarter mechanism has displacement bottom tailor-made steering shaft will fold, under the steering column move on the steering column, to achieve "indented within" and thus expand space reduce damage.Five. The tire pressure monitoring systemIn a car's tyros high-speed process, all drivers fault is the most worry and the most difficult to prevent, is also sudden traffic accident happened important reasons. According to statistics, China highway in the traffic accident is caused due to 70% of a flat tire, and in the U.S. this ratio is as high as 80%. How to prevent a blowout has become an important task of safe driving. According to the national quality supervise center of rubber tires in the expert analysis, maintain the standard tire pressure driving and the timely discovery tire is to prevent leakage of key blowout. Tire Pressure and Monitoring System (TPMS) - car Tire Pressure Monitoring System will no doubt is the ideal tool. The system is mainly used in automobile driving to tire pressure real-time automatic monitoring; to a flat tire and depression are the police, in order to ensure safety.Drivers from the monitors can know each tire pressure value, when tire pressure below the club set pressure limit, monitor will automatically alarm.Anyhow, car active safety technology and passive safety technology for thesafety of automobile driving is very important, and besides, such as environmental factor, artificial factor of the vehicle safety is also very important. Therefore, we must be prepared to all aspects of requirements and technology, to ensure the safety of vehicle driving.汽车安全系统技术研究分析摘要:汽车各部件的好与坏将直接影响汽车行驶的安全性,直接关系着人们的生命安全和产财安全。
外文文献原稿和译文原稿A New Type Car -- Hybrid Electric VehicleWith skyrocketing fuel prices and changes in weather patterns, many car manufacturers claimed to develop the kind of vehicles that will increase the mileage and reduce the emissions. Hybrid car is a kind of vehicle which can meet above requirements. A hybrid car features a small fuel-efficient gas engine combined with an electric motor that assists the engine.The reasons of building such a complicated machine are twofold: to reduce tailpipe emissions and to improve mileage. Firstly, hybrid cars are good for the environment. They can reduce smog by 90 percent and they use far less gasoline than conventional cars. Meanwhile, hybrid cars burn less gasoline per mile, so they release fewer greenhouse gases. Secondly, hybrid cars are economical. Hybrid cars, which run on gas and electricity, can get up to 55 to 60 miles per gallon in city driving, while a typical SUV might use three times as much gas for the same distance! There are three reasons can mainly account for that: 1) Hybrid engines are much smaller than those on conventional cars. A hybrid car engine is to accommodate the 99% of driving time when a car is not going up hills or accelerating quickly. When extra acceleration power is needed, it relies on the battery to provide additional force. 2) Hybrid gasoline engine can shut off when the car is stopped and run off their electric motor and battery.3) Hybrid cars often recover braking energy. Electric motors could take the lost kinetic energy in braking and use it to charge the battery. Furthermore, hybrids are better than all-electric cars because hybrid car batteries recharge as you drive so there is no need to plug in. Most electric cars need to be recharged every 50-100miles. Also, most electric cars cannot go faster than 50-60 mph, while hybrids can.Hybrid cars bridge the gap between electric and gasoline-powered cars by traveling further and driving faster and hybrid gas-electric cars are proving to be a feasible alternative at a time of high gas prices. So, in my opinion, hybrid cars will have a bright future.How Does Hybrid Electric Vehicle Work?You probably own a gasoline or diesel-engine car. You may have heard of electric vehicles too. A hybrid vehicle or hybrid electric vehicle (HEV) is a combination of both. Hybrid vehicles utilize two or more sources of energy for propulsion. In the case of HEVs, a combustion engine and an electric motor are used.How it works depends on the type of drive train it has. A hybrid vehicle can either have a parallel or series or parallel-series drive train.Parallel HybridThe parallel hybrid car has a gas tank, a combustion engine, transmission,electric motor, and batteries.A parallel hybrid is designed to run directly from either the combustion engine or the electric motor. It can run using both the engine and the motor. As a conventional vehicle, the parallel hybrid draws its power from the combustion engine which will then drive the transmission that turns the wheels. If it is using the electric motor, the car draws its power from the batteries. The energy from the batteries will then power the electric motor that drives the transmission and turns the wheel.Both the combustion engine and the electric motor are used at the same time during quick acceleration, on steep ascend, or when either the engine or the motor needs additional boost.Since the engine is directly connected to the wheels in a parallel drive train, it eliminates the inefficiency of converting mechanical energy into electrical energy and back. This makes a very effective vehicle to drive on the highway.Series HybridThe series hybrid car also has a gas tank, a combustion engine, transmission, electric motor, and batteries with the addition of the generator. The generator can be the electric motor or it can be another separate component.The series configuration is the simplest among the 3. The engine is not connected to the transmission rather it is connected to the electric motor. This means that the transmission can be driven only by the electric motor which draws its energy from the battery pack, the engine or the generator.A hybrid car with a series drive train is more suited for city driving conditions since the engine will not be subjected to the varying speed demands (stop, go, and idle) that contributes to fuel consumption.Series-Parallel HybridThe series-parallel configuration solves the individual problems of the parallel and series hybrid. By combining the 2 designs, the transmission can be directly connected to the engine or can be separated for optimum fuel consumption. The Toyota Prius and the Ford Escape Hybrid use this technology.Honda’s hybridFor those of you who have toyed with the idea of buying a hybrid but were discouraged by the price, you are not alone. In fact, despite the growing concern for the environment, not to mention the skyrocketing price of gas, hybrid cars still only represent a small percentage of global car sales, and a major reason for this is the cost.Hybrids are considered the wave of the future because they not only reduce emissions, addressing the issue of climate change, but they get great gas mileage, an important consideration with the current price of oil. It should be noted that hybrids can also improve the power of the engine, which compromises any advantages in fuel efficiency and emissions. Whatever the application, however, the technology makes the cars more expensive.Because of this, they are the vehicle of choice for only a small niche of people who can afford them, and they currently enjoy a special status amongst the image conscious celebrity-set. For most average consumers, however, they are not an option.That may soon change.Honda Motor Corporation, one of the largest car manufacturers in the world and a leader in fuel efficient technology, has unveiled it’s plan to introduce a low-cost hybrid by 2009. If they can pull it off, they hope to make the hybrid a more mainstream car that will be more appealing to the general public, with the ultimate goal of achieving greater sales and broader appeal than their current incarnation.This, of course, is making Detroit nervous, and may signal a need for American car makers to start making greener and more fuel efficient vehicles, something they could afford to ignore in the past because hybrid cars weren’t worth their attention (due to such a small market share) while gas-guzzling SUVs have such high profit margins.Honda, meanwhile, has had to confront a growing need to compete with Toyota, which has not only grown to be the world’s largest automaker, but makes the car that has become synonymous with the hybrid movement, the Prius. Honda is therefore faced with the seemingly insurmountable task of challenging Toyota’s dominance in the market.Concurrently, Toyota is racing to lower production costs on the Prius, as well, which would hopefully result in a lower cost to the consumer. All eyes are on a potentially favorable car buyers market in 2009.In the meantime, with even adamant global warming naysayers warming up (no pun intended) to the possibilities of an ecological disaster on the horizon, maybe it’s time that we got over our need to drive huge SUVs and start moderating our fuel consumption.Then again, as gas prices hovering around $4.00 and with no ceiling in sight, we may have little choice in the matter.Engine Operating PrinciplesMost automobile dngines are internal combustion, reciprocating 4-stroke gasoline engines, but other types have been used, including the diesel, the rotary ( Wankel ) , the 2-srtoke, and stratified charge.Reciprocating means up and down or banck and forth, It is the up and down action of a piston in the cylinder blick, or engine block. The blick is an iron or aluminum casting that contains engine cylinders and passges called water jackets for coolant circulation. The top of the block is covered with the cylinder head. Which forms the combustion chanber. The bottom of the block is covered with an oil pan or oil sump.Power is produced by the linear motion of a piston in a cylinder. However, this linear motion must be changed into rotary motion to turn the wheels of cars of trucks. The piston is attached to the top of a connecting rod by a pin, called a piston pin or wrist pin. The bottom of the connecting rod is attached to the crankshaft. The connecting rod transmits the up-and-down motion of the piston to the crankshaft, which changes it into rotary motion.The connecting rod is mounted on the crankshaft with large beaings called rodbearings. Similar bearings, called main bearings, are used to mount the crankshaft in the block. Shown in Fig. 1-1The diameter of the cylinder is called the engine bore. Displacement and compression ratio are two frequently used engine specifications. Displacement indicates engine size, and compression ratio compares the total cylinder volume to compression chamber volume.The term stroke is used to describe the movement of the iston within the cylinder, as well as the distance of piston travel. Depending on the type of engine the operating cycle may require either two or four strokes to complete. The 4-stroke engine is also called Otto cycle engine, in honor of the German engineer, Dr. Nikolaus Otto, who first applied the principle in 1876. In the 4-stroke engine, four strokes of the piston in the cylinder are required to complete one full operating cycle. Each stroke is named after the action it performs intake, compression, power, and exhaust in that order, shown in Fig1-2.1、Intake strokeAs the piston moves down, the vaporized mixture of fuel and air enters the cylinder through open intake valve. To obtain the maximum filling of the cylinder the intake valve opens about 10°before t.b.c., giving 20°overlap. The inlet valve remains open until some 50°after b.d.c. to take advantage of incoming mixture.2、 Compression strokeThe piston turns up, the intake valve closes, the mixture is compressed within the combustion chamber, while the pressure rise to about 1Mpa, depending on various factors including the compression ratio, throttle opening and engine speed. Near the top of the stroke the mixture is ignited by a spark which bridges the gap of the spark plug.3、 Power strokeThe expanding gases of combustion produces a rise in pressure of the gas to some 3.5Mpa, and the piston is forced down in the cylinder. The exhaust valve opens near the bottom of the stroke.4、Exhust strokeThe piston moves back up with the exhaust valve open some 50°before b.d.d., allowing the pressure within the cylinder to fall and to reduce ‘back’pressure on the piston during the exhaust stroke, and the burned gases are pushed out to prepare for the next intake stroke.The intake valve usually opens just before the exhaust stroke. This 4-stroke cycle is continuously repeared in every as long as the engineremains running.A 2-stroke engine also goes through four actions to complete one operating cycle.However, the intake and the compression actions are combined in one seroke, and the power and exhaust actions are combined in the other stroke. The term2-stroke cycle or 2-stroke is preferred to the term 2-cycle, which is really not accurate.In automobile engines, all pistons are attached to a single crankshaft. The more cylinders an engine has, the more power strokes produced for cach revolution. This means that an 8-cylinder engine runs more smoothly bdcause the power atrokes arecloser together in time and in degrees of engine rotation.The cylinders of multi-cylinder automotive engines arranged in one of three ways. 1、Inline engines use a single block of cylinder.Most 4-cylinder and any 6-cylinder engines are of this design. The cylinders do not have to be vertical. They can be inclined either side.2、V-type engines use two equal bands of cylinders, usually inclined 60degrees or 90degrees from the cach other. Most V-type engines have 6 or 8 cylinders, although V-4 and V-12 engines have been built.3、Horizontally opposed or pancake engines have two equal banks of cylinders 180degreeas apart. These space saving engine designs are often air-cooled, and are found in the Chevrolet Carvair, Porsches, Subaus, and V olkswagens. Subaus design is liquid cooled.Late-model V olkswagen vans use a liquid-cooled version of the air cooled VWhorizontally opposed engine.译文新型汽车----混合动力汽车在油价飞涨的今天,汽车制造商被要求发展一种排放低,行驶里程长的汽车。
外文文献(一)外文原文Front axle general is in the front of the bus, also known as steering axle or drive bridge. Automobile front axle is the last important assemblies, including the steering knuckle kingpin, steering, front beam and other components. Front axle through the suspension and frame, used to support the ground and the frame between the vertical load, but also bear the braking force and lateral force and the force of torque, and ensure that the steering rotation right movement. The axle is connected with the frame through the suspension, support most of the weight of vehicle, and wheel traction or braking force, as well as the lateral force after suspension to frame. In the car used in the steering bridge, the stress condition is more complex, so it should have enough strength. In order to ensure the wheel turns to the correct positioning of angle, make manipulation of light and reduce tire wear, steering bridge should have enough stiffness. In addition, should also try to reduce the weight of the bridge. In short, because of the automobile in the running process of the front axle, the abominable working environment, complicated working condition, the load is alternating load, thus the parts easy to fatigue cracking and even rupture phenomenon. This requires that the structural design must have enough strength, stiffness and resistance to fatigue failure of the ability.The front axle is the main load-bearing parts: the front axle, my company has a tubular and forging type two structural forms, but mainly to forging type mainly. The front ends of each with a fist shape bold part as the kingpin of the site installation. In both sides of the spring support for partial surface, used for the installation of steel plate spring and accessories. Need note here is: U type bolt passes through the front mounting holes need matter beneath the back nut in, often can appear with the front axle sleeve back band interference problem. Why can appear such problem? Design is a problem, because the front dorsal ribs affects front axle load, therefore must have a certain size requirements, and if both before and after the U bolt distance design is too small, not enough gap assembly will appear above problem. Two technical problems, technical problems in two cases. The first is the front dorsal rib symmetry is not good or mounting hole symmetrical degree andeasy to cause the problem; the second is that some host plant in order to avoid the vulnerable, without taking into account the reality of the product and blind to the sleeve outer diameter. Kingpin: is the impact of vehicle performance of main parts. Kingpin has stop groove, pin lock bolt through the stop groove masterPin fixed on the front axle kingpin bore, so that it can't move can not move axially. Knuckle pin machining accuracy is very high, my company is one of the parts of key control. Steering knuckle: steering knuckle is the main steering part of front axle. It uses the main pin and the front axle is hinged by a pair of axle bearing supporting hub combination, to achieve the function of turning. Brake assembly: is the realization of the wheel brake main component, a brake oil and gas brake two forms. Implemented in the vehicle brake command, brake friction plate through the expansion and brake drum machining surface contact friction realization of vehicle brake. Front axle brake option is very critical, if the choice is undeserved, can appear before and after the brake force is not a match, the braking force is not up to the requirements of many problems. Hub combination : by two rolling bearings mounted on the steering knuckle, drive the rotation of the wheels. At the same time with the friction plate to form a friction pair, to realize the brake wheel. Arm: straight rod arm, tie rod arm, respectively, and a straight rod assembly and the tie rod assembly. Formed a steering mechanism and a steering trapezoidal mechanism. The steering mechanism to complete the vehicle steering, steering trapezoid determines the vehicle inside and outside corner is reasonable. The tie rod assembly: is to adjust the beam before the main parts. The rod body is made of seamless steel tube manufacturing, both ends of the spherical hinge joint structure is the joint assembly, by a thread after the installation of the tie rod arm, the rod body is adjustable, so as to adjust the toe. Front axle under the front of the car weight, the car forward thrust from the frame to the wheel, and with the steering device arranged on parts make joint type connection, the implementation of the automobile steering. The front axle is the use of both ends of it through the main pin and the steering knuckle is connected to the steering knuckle, swing to realize vehicle direction.In order to make the running vehicle has good linear driving ability, front axle should meet the following requirements: in order to make the running vehicle has good linear driving ability, front axle should meet the following requirements:1sufficient strength,in order to ensure the reliable bearing wheel and frame ( or monocoque ) between the work force. 2 correct positioning of the wheels, so that the steering wheel movement stability, convenient operation and reduce tire wear. Front wheel positioning includes kingpin inclination, caster, camber and toe-in. 3sufficient rigidity, the force deformation small, ensure the main pin and a steering wheel positioned right angle remains constant. 4knuckle and master pin, steering and front axle between the friction should be as small as possible, to ensure that the steering operation for portability, and has sufficient abrasion resistance. 5 steering wheel shimmy should be as small as possible, in order to ensure the vehicle normal, stable exercise. 6 front axle quality should be as small as possible, in order to reduce unsprung mass, improve vehicle ride comfort.1mini car front axle 1mini car front mini car front suspension generally adopt the independent suspension structure. Front axle load is relatively small, the structure is simple. Mini car front axle usually disconnected movable joint structure, which is composed of a front axle body, strengthen the transverse swing arm, arm etc.. 2 car front axle2 car front axle front axle suspension with Mcpherson car. It bears the driving and steering functions, the suspension is connected with the vehicle body, and the lower end of the wheel bearing housing connected, wheel camber is through the suspension and the bearing shell of the connecting bolt to adjust, auxiliary frame through the elastic part by controlling the arm, ball hinge connected with suspension, improve the driving stability and ride comfort. 3off-road vehicle front axle3off-road vehicle front axle Off-road vehicle steering and driving front axle has two tasks, it is known as the steering driving axle. And it generally drive the movable bridge, with a main driver, differential and the axle shaft. The difference is, due to the need, half shaft is divided into two segments, and by a universal joint, while the main pin are made under paragraph two. The 4truck front axle 4truck front axle truck front axle with I-shaped cross section is mainly used to improve the front bending strength. The upper two plus wide plane, to support the steel plate spring. The front ends each having a fist shape portion, which has a through hole, as a kingpin only. Main pin and left steering knuckle hinge, with a threaded wedge pin crossed with the main pin hole of vertical through holes on the lock pin wedge surface, the main pin is fixed in the axle hole, so that it cannot rotate.In general, common material needed to define the material properties including: elastic modulus, Poisson's ratio, density, specific heat, thermal expansion coefficient. The front axle is mainly composed of two parts, material composition, i.e., front axle and steering knuckle such as zero Department of materials. The front axle is adopted as the material of45 steel, steering knuckle materials using 40Cr.Torsion bar of automobile front independent suspension is the key component, is a slender rod, the induction quenching process is the manufacturing process difficult point, this paper introduces the torsion bar quenching inductor and its process test results, determined using half ring type inductor continuous quenching technology, this method can meet the technical requirements and the quantities of torsion bar production.The forging forging molding, not only greater deformation, but also requires a certain deformation force,Therefore the selection of J53series double disc friction press comparative economics, this series press combined slipping flywheel, combined slipping flywheel can provide highly deformed large forgings with enough to form, and can provide for forgings will required deformation capacity, and not to overload, the series press equipment investment, the cost of the mold and forging cost than die forging hammer and the forging crank press cheap cheap host. At present, the domestic automobile front axle machining process are the following: (1) of two plane milling plate spring seat; the drill two spring seat plane ten holes; the rough milling of two main pin hole of upper and lower end surfaces; the fine mill main pin hole of upper and lower end surfaces; the drilling and reaming main pin hole; the broaching the main pin hole; the main pin hole on the lower end of the countersink reaming pin holes;. In this scheme, the following questionQuestions:1 adopting main pin hole positioning countersink on the lower end, and the end surface of the main pin hole verticality can not be guaranteed, the main pin hole size height can not be guaranteed to the main pin hole; the positioning of the drill pin hole, drill through the cross intersection holes, easy cutting phenomenon, students offset, causing the main pin hole and the locking pin hole center distance can not be guaranteed. (2) of two plane milling plate spring seat; the drill two spring seat plane ten holes; the drilling and reaming pin holes on the rough milling of a main pin hole on upper end; the fine mill main pin hole of upperand lower end surfaces; the drilling and reaming main pin hole. In this scheme, there are the following problems: the process is used to drill the locking pin hole after the drill main pin hole, and the pin - fL: fL size and position size is the key size, kingpin is difficult to ensure the accuracy of the first; fine mill main pin hole of the upper and lower ends after processing the main pin hole, end relative to the main pin hole verticality is difficult to guarantee. (3) of two plane milling plate spring seat; the drill two spring seat plane ten holes; the drilling and reaming pin holes; the rough milling kingpin on upper end; the drilling and reaming main pin hole; the fine mill main pin hole on the lower end surface. In this scheme, there are the following problems : the main pin hole and the pin hole cross intersecting hole size tolerance of0.1mm is not easy to maintain; to adopt the reaming main pin hole, the dimensional tolerances are not easy to be ensured; the final finish milling main pin hole on the lower end surface. The main pin hole and upper and lower end verticality is not easy to guarantee; the main pin hole size can not be guaranteed.Along with our country transportation enterprise rapid development, auto transport carrying capacity and running speed are continually increasing with. So people to the safe operation of the automobile is more and more attention, so the automobile axle design also raised taller requirement. As a result of foreign automobile development starts early, technical inputs, thus technically far ahead of China market, but also there are many insufficient places, still need to improve, technology also needs a breakthrough. Steam car industry as our focus on the development of pillar industries, its prospect is very wide. At present, auto parts production has certain potential, but most enterprises in product research, development and other aspects of the defect, especially lack of less product independent development capacity, can not adapt to the system support, delivery of modules, to participate in international division of labor. Because of this, in the future development, Chinese enterprises should actively absorb the international advanced automotive technology, and constantly improve the self body lines, such as braking systems, steering systems, expand the industry of product variety, improve the integral technology level, increase the strong technological development capability, urges the enterprise faster development, adapt to the trend of globalization of automobile industry.100 years ago, the car was just beginning, the steering is modelled on the carriageand bicycle steering mode, using a joystick or a handle to make the front wheel deflection, thus realizes the steering. Due to the manipulation of effort and unreliable, so often fatal accident. The first horseless pull four wheel vehicle comes out, have a front axle and a front wheel assembly, the assembly being mounted on the crankshaft, front axle center around a point of rotation, using a rod connecting the front axle, focus, through the floor and extends upward, the wheel is fastened on the rod end, in order to manipulate the car. This device in a vehicle speed not exceeding the speed, or very good, but when the vehicle speed is increased, the driver asks to improve steering accuracy, in order to reduce tire wear, prolong the service life of tyre. In 1817, the Germans Lincoln Spang Jay presented similar to the modern automobile, the front wheel with knuckle and beam connection, he developed a kind of automobile front wheel on the main shaft to allow independent rotary structure, which is connected with the steering wheel, steering knuckle and a rotatable pin and front axle, thereby the invention of modern steering trapezoidal mechanism.Since China's reform and opening up, execute in the country the household contract responsibility system reform, make the rural economy is all-time and active. Rural freight traffic and population flow increased dramatically, speeding up the transportation mechanization into rural classicsEconomic development urgent need, it is also the needs of the market that has Chinese distinguishing feature of transport machinery -- emerge as the times require small truck. It has solved the countryside transportation need, fill the villages, townships, towns and urban transportation network is blank, active rural economics, for the surplus rural labor force to find a way out, so that tens of thousands of farmers to be on comparatively well-off road.Small truck manufacturing process is simple, cheap, purchase a car farmers generally in a year or so we can recover the cost. In addition, the highway construction has promoted the rapid development of small truck, the98% villages are on the road, so that the small truck with play.We want to develop a small truck to optimize the design, to make new products, diversification of varieties to meet a variety of needs. In a small truck design, how the complex road conditions to ensure the smooth running of the car quickly, is a serious problem. Then there is the subject of research and design.Automobile front axle driving system important constituent, it is connected with the frame through the suspension, steering wheel mounted at both ends, used to support frame and transmission wheel and frame between a variety of force, and drives the steering knuckle swing to realize vehicle steering. Using the hinge device causes the wheel to deflect a certain angle, so as to realize the steering of a vehicle axle called steering bridge, general vehicle used for steering bridge bridge, the front for steering bridge. Steering bridge not only can make the left and right wheels arranged at the front end to deflect a certain angle to realize the steering, should also be able to bear vertical load and by the road, the brake force is exerted on the longitudinal force and lateral force and the force formed by the moment. Therefore, the steering bridge must have sufficient strength and rigidity. Wheel steering process of internal friction between the pieces should be as small as possible, and to keep the vehicle steering light and the direction stability.Steering axle is generally composed of front axle, steering knuckle, steering knuckle arm, steering knuckle pin and the hub.Front axle general is in the front of the bus, also known as steering axle or drive bridge. The suspension is connected with the frame, used to support the ground and the frame between the vertical load, but also bear the braking force and lateral force and the force moment, and ensure that the steering rotation right movement. In the car used in the steering bridge, stress is more complex, so it should have enough strength. In order to ensure the correct positioning of the steering wheel angle, make the manipulation of light and reduce tire wear, steering bridge should have enough stiffness. In addition, should also try to reduce the weight of the bridge.Front axle under the front of the car weight, the car forward thrust from the frame to the wheel, and the steering device on parts make joint type connection, the implementation of the automobile steering. The cross-country vehicle front axle but also bear and rear axle the same driving task. General cargo vehicle with front engine rear drive arrangement, the front for steering bridge.Automobile front axle design should ensure adequate design strength, to ensure reliable bear acting force between wheel and frame; ensure the adequate rigidity, so that the wheel positioning parameters constant; ensure that the steering wheel have thecorrect localization angle, so that the steering wheel movement stability, convenient operation and reduce the tire friction; steering bridge quality as small as possible, in order to reduce non spring quality, improve the ride comfort of vehicles.译文前桥一般位于汽车的前部,也称转向桥或从动桥。
外文翻译:Electric automobile air conditioning system trend ofdevelopment1. electric automobile air conditioning systemGlobal warming, air pollution and higher energy costs and other problems have become more severe, as environmental pollution and energy consumption is one of the major sources of energy saving and emission reduction, the problem is more and more extensive attention, governments and automobile enterprises will be energy saving and environmental protection as the future of automotive technology development direction of energy saving and environmental protection, such as the electric emerge as the times require. Electric vehicle is set car technology, electronic and computer technology, electrochemical technology, energy and new materials technology in one of the high-tech products, and common internal combustion engine vehicles, has the advantages of no pollution, low noise and save petroleum resource characteristics. Based on the above electric vehicle characteristics, it is very likely to become the human a new generation of clean environmentally friendly transportation, its popularization has the inestimable significance.Electric vehicle emerged for electric automobile air-conditioning research and development offerred new task and challenge. Automotive air conditioning function is put inside the temperature, humidity, air cleanliness and air flow is maintained in a comfortable state. In various climate conditions, electric car should maintain the comfortable state, to provide a comfortable driving and riding environment. In addition, a set of energy-saving and efficient air conditioning system on electric vehicle market also plays an important role. Therefore, in the development of electric vehicles at the same time, necessary to support the air conditioning system development and research.For the traditional fuel automobile air-conditioning systems, refrigeration mainly uses the engine driven steam compression refrigeration system for cooling and heating, using waste heat from fuel engine. But for the electric automobile in the pure electric vehicles and fuel cell vehicles, no air conditioning compressor engine as power source, also cannot provide as automotive air conditioning heating using heat source in winter, so it cannot be directly using conventional automotive air conditioning system solutions; for hybrid cars, the engine control means diversity, so the air conditioning compressor also cannot use the engine directly driving scheme. Integrated the above reasons, the electric vehicle development process, must study for electric vehicle using a new type of air conditioning system. For electric car,the car has a high voltage DC power supply, therefore, the use of electric heat pump type air conditioning system, compressor with motor direct drive electric vehicle, become feasible solution.2.the characteristics of electric vehicle air conditioningElectric automobile air conditioner and common air conditioning device, electric vehicle air conditioning device and car environment has the following characteristics:①automotive air conditioning system mounted on a moving vehicle, to withstand the severe and frequent vibration and shock, requirements of electric vehicle air conditioning device structure in the various components should have sufficient resistance to vibration and impact strength and good sealing performance of the system;②electric car mostly short distance walking, riding in a relatively short time, plus electric car occupant space ratio, the heat generated is relatively high, relatively large heat load of air conditioning, refrigeration, heating and has the advantages of fast speed ability;③electric automobile air conditioning is the use of the car battery to provide DC power, the working efficiency of the compressor is high, control of high reliability, convenient maintenance;④automobile body heat insulation layer is thin, and doors and windows, large glass area, insulation performance is poor, electric car is no exception, resulting in serious car heat leakage;⑤ inside the facilities is rugged and seat, air distribution organization is difficult, difficult to achieve uniform airflow distribution.3.domestic and international current situation of the development of electric vehicle air conditioning① domestic electric car air-conditioning development statusThe early domestic electric car due to battery capacity constraints, in order not to affect electric vehicle mileage, most electric cars are not equipped with air conditioning system.With the domestic electric car gradually industrialization, marketization, electric vehicles must be equipped with air conditioning system. Due to the unique effects of electric vehicles to electric vehicles, the pure electric vehicles and fuel cell vehicles, no air conditioning compressor engine as power source, also cannot provide as automotive air conditioning heating using heat source in winter, domestic car manufacturers from the traditional fuel automobile air conditioner based onpartial replacement of design, will fuel the engine to drive the the compressor is replaced by a DC motor direct drive compressors, control corresponding change, to complete the refrigeration function, the replacement design effect to resolve the basic problem of electric automobile air-conditioning refrigeration, but the cooling efficiency to be improved. Due to the lack of fuel to the engine waste heat generated by heating, domestic manufacturers mainly use PTC heating and electric heating pipe, the heating mode can meet the heating effect, but these heating mode is hard on the consumption of electric vehicle battery power, the heating efficiency is relatively low, affect electric vehicle mileage.Air conditioning in the selection of the main parts, the current domestic electric car in addition to the compressor and control mode, the other main parts or the use of fuel automotive air conditioning parts, condensing equipment is mainly used to parallel flow condenser, evaporator is mainly used to laminated evaporator, throttle device is still a thermostatic expansion valve, a refrigerant is still R134a.According to the incomplete understanding, the domestic in developing electric vehicle manufacturers such as Chery, BYD,FAW, SAIC, JAC.the current electric vehicle air conditioning facilities basically similar, is in the development present situation.②current situation of the development of foreign electric vehicle air conditioningForeign electric automobile air conditioner development relative to domestic abroad is relatively mature, there is no lack of electric automobile air conditioner with domestic similar patterns, but in the heat pump electric automobile air conditioning already had certain foundation, Japan Honda pure electric cars use electric driven heat pump type air conditioning system, system has a built-in Reverse Converter Control compression pump. In addition, in very cold areas, some type of customers can be optional a fuel heater heating system.Japan electric ( DENSO ) company a few years earlier developed using R134a refrigerant electric car air-conditioning heat pump system, the heat pump system used in the car inside air condenser and evaporator structure. Electric ( DENSO ) Company in 2003also developed as a result of natural refrigerant COgood thermal physical2properties, Denso Japan company for electric car develops a set of COheat pump air2conditioning system, also used in the air duct system is arranged in the2heat exchanger, and R134a system is different when the system for refrigeration mode when the refrigerant flows through the condenser, and internal and external condenser.In order to reduce the air conditioning on battery power consumption, the UnitedStates of America Amerigon company developed air-conditioning seat, the chair is provided with a thermoelectric heat pump, heat pump action is through the need to regulate the temperature in space outside the water tank to transfer heat, thereby realizing the need to regulate the temperature of space refrigeration or heating. This kind of air conditioning seat in addition to energy saving but also can improve the driving, riding comfort, in electric vehicle supporting the use of suitable.Therefore, the foreign electric automobile air conditioner from energy efficient and practical breakthrough, domestic electric car air-conditioning industry should actively to study overseas advanced technology, draw lessons from, and on the basis of innovation breakthrough.4.the development trend of electric vehicle air conditioningElectric automobile driving energy from the battery, which is different from the traditional fuel automobile, made it to the air conditioning system also differed from the fuel of automobile air conditioner, as a drive source of energy for the limited battery capacity, the energy consumption of air conditioning system on electric vehicle mileage has bigger effect. Compared with cars, car air conditioning system energy saving and high efficiency raised taller requirement. At the same time, the electric car air-conditioning refrigeration, heating to solve two problems. According to the electric car special properties, the electric automobile air conditioner using thermoelectric ( I ) air conditioning system and electric heat pump type air conditioning system.1).a thermoelectric ( I ) electric vehicle air conditioning systemThe technology has many suitable for electric vehicles use characteristics, and with the traditional mechanical compression type air conditioning system compared, thermoelectric air conditioning has the following characteristics:① thermoelectric elements work to DC power supply;②change the direction of the current to generate refrigeration, heating the converse effect;③thermoelectric refrigeration piece of thermal inertia is small, cooling time is very short, the hot end heat well cold end load cases, energized in less than a minute, the refrigeration sheet can achieve the maximum temperature difference;④ component for regulating current size can adjust refrigeration speed and temperature, the temperature control precision can reach 0.001℃, and can easily realize the continuous regulating energy;⑤in the correct design and application conditions, the refrigerationefficiency can reach above 90%, and the heating efficiency is greater than 1;⑥ has the advantages of small volume, light weight, compact structure, reduces the electric vehicle kerb mass; high reliability, long service life and convenient maintenance; no moving components, therefore, no vibration, no friction, no noise and impact resistance.2).the heat pump type air conditioning system for electric automobileThe heat pump type air conditioning system on the original fuel car to be improved, the compressor is composed of permanent magnet brushless DC motor for direct drive, the system and the ordinary heat pump air conditioning system have no essential difference, as in electric vehicles, compressor and other major components has its particularity. And foreign heat pump technology has had certain foundation, the biggest advantage is that the refrigeration, heating efficiency is high, relevant enterprise development of full closed electric scroll compressor, is composed of a DC brushless motor drive, through the refrigerant return air cooling, with low noise, small vibration, compact structure, light weight etc.. In the test conditions for the environmental temperature of 40 degrees Celsius, the temperature inside the car is27℃,50% relative humidity conditions, when the system is stable it to1kW energy2.9kW refrigeration quantity; when the environmental temperature is - l0C, the temperature inside the car to25 DEG C,1kW can get the 2.3kW heating energy consumption. In the - l0℃to 40 ℃ under ambient temperature, both with high efficiency for electric vehicles to provide a comfortable driving environment. If the component technology is improved, the corresponding efficiency can also be improved.Based on the above mentioned, from air conditioning technology is mature and the sources of energy to use efficiency comparison, for thermoelectric ( I ) electric vehicle air conditioning system, the existence of thermoelectric materials, figure of merit is low, performance is not ideal, and the thermopile output by constitute a thermoelectric element element yield limit hoof. Does not have the electric automobile air-conditioning energy efficiency requirements. This makes the electric automobile air conditioner are more inclined to use energy efficient heat pump type air conditioner, the technical scheme for different types of motor vehicle has good commonality, and the vehicle structural change is small, is the future development trend of electric vehicle air conditioning.The heat pump type electric automobile air conditioner biggest weakness is the low temperature heating problems, especially in the northeast region, which is also the future of the industry research problem. In order to make the heat pump type electric automobile air conditioner more energy efficient, can from the followingaspects to solve:① to develop more efficient DC scroll compressor;②development control is more accurate, more energy-efficient silicon electronic expansion valve;③ using an efficient parallel flow condenser;④ improve microchannel evaporator structure, so that the refrigerant evaporates more uniform.In addition, the number of electric car door open and in driving by speed, light, speed and other factors, air conditioning heat load. The compressor and the air conditioning system to adapt to the change of condition factors, so the heat pump type air conditioning system for electric automobile variational design is particularly important.电动汽车空调系统发展趋势一、电动汽车空调系统全球气候变暖、大气污染以及能源成本高涨等问题日趋严峻,汽车作为环境污染和能源消耗的主要来源之一,其节能减排问题受到了越来越广泛的重视,各国政府和汽车企业均将节能环保当作未来汽车技术发展的指导方向,这样节能环保的电动也就应运而生。
汽车设计外文文献翻译、中英文翻译、外文翻译Automobile Design-Frame DesignsThe vehicle frame is the basic platform to which all suspension and steering linkage parts attach. A vehicle will neither steer nor handle well if the frame is too flexible. A rigid frame structure may pass unnecessary vibrations into the passenger compartment. The frame and suspension design will affect the ride quality, handling, and durability, as well as the levels of both noise and vibration.Manufacturers use several different types of construction on their vehicles. Of these, separate body and frame construction was the most common through the 1970's. It is still used in large vans, pickups, and trucks. In this type of construction, the engine, drive line, running gear, and body mount to the frame through insulators. Insulators are synthetic rubber pads that keep road and engine noise and vibration from going into the passenger compartment.A second type of construction is the unitized body. This, design is by far the most popular in modern vehicles. The unitized design has a lightweight structure with the required strength. Tn this type of construction, the frame is welded into the body as part of the body structure. Body panels add strength to the frame pieces. The running gear and drive line are mounted to the unitized body through large, soft synthetic rubber insulators. The insulators minimize the transfer of noise and vibration. If the insulators are too soft, they will allow too much running gear and drive line movement. This movement, called compliance, affects vehicle handling and control. If the insulators are too hard, they will not insulate noise and vibration as they should. Themanufacturer carefully designs the insulators and puts them where they will be in a vehicle with low noise and vibration transmission that still has proper handling and feel. Insulator properties change with age, changing original characteristics as the vehicle becomes older.A third type of construction combines the features of the first and second types. It uses a stub frame from the bulkhead forward and a unitized body from the bulkhead back. The unitized part is very rigid, while the stub frame provides a place for good insulation.Manufacturers select the type of construction .that is most economical to build,' while providing the noise, vibration, and ride and handling characteristics they want in the vehicle. Large older vehicles, vans, and trucks generally use separate body and frame construction. The newer, smaller' vehicles generally use unitized construction.The machine piston connecting rod setThe piston connecting rod set is composed of the piston, piston wreath, piston pin, connecting rod, connecting rod axle bush, etc.effect: The effect of the piston is to bear the air pressure, and pass to connecting rod to drive the bent axle to revolve through connecting rod axle bush, the piston coping is still a part of the burning room. The work condition: Piston works under the condition of heat, high pressure, high speed, and bad lubrication .Piston directly contacts with the heat air. The temperature can amount to above 2500 Ks in a moment .The piston is heated severely, but the condition of spreading the hot is bad .So while the piston works, the temperature is very high and the coping is up to the 600-700 Ks: And the temperaturedistributes asymmetrically; The piston coping bears great air pressure, especially the pressure is greatest in the route of doing efficacy. The gasoline machine is up to the 3-5MPas, the diesel engine is up to the6-9MPas.This makes the piston produce pound, and bear the function of the side pressure. Therefore, the piston should have enough heat-proof, try to decrease the heating area,, strengthen the cooling of the piston, to make the highest temperature of the coping descend .The piston moves at very high speed(8-12 ms/ s) back and forth in the air cylinder, and speed changes constantly, This produces very great inertial dint, making the piston bear great additional load working under such bad condition, the piston will become deformed heating power. At the same time ,it slitters the chemical corrosive power of the burning gas .In order to descend the inertial dint of back and forth, we must ease the weight of the piston as possible .Piston works under the condition of the heat, high pressure, high speed(the average speed can amount to the 101115 m/ s), and its lubricant condition is bad and the frication between the piston and the air cylinder wall is very great. In order to descend the friction, the surface of the piston surface must be wear-resistant..Request:1) To have enough rigidity and strength, and the reliable dint;2) Transmit heat well, bear the high pressure, bear the heat and bear to wear away;3) the quantity is small, the weight is light, descend the inertial dint of back and forth as possibleThe aluminum metal alloy material satisfies the top requests basically, therefore, the piston generally adopts the high strength aluminum metal alloy, but some low speed diesel engines adopthigh class iron casting or heat-proof steelstructure: The piston can be divided into three parts, piston coping, the piston head and piston skirt departments.1. The piston copingThe piston coping bears the air pressure, it is a part of the burnable room .Its shape, position, size are relevant to the concrete from of the burnable room. They are made to satisfy the combustible hybrid spirit formation and burnable requests. Its coping shape can be divided into four major types, a flat coping piston, a convex coping piston, a concave coping piston and model piston.A convex coping piston is usually used on the two blunt distance I.C. engines, It is good to improve the process exchanging the gas .Modern four blunt the distance gasoline machine also adopts the convex coping piston in order to strengthen the effect of pushing the gas or extend the ratio of compressing .Convex of a piston coping presents a form of ball, its coping strength is high, having an effect of leading, being advantageous to improve the process of exchanging the gas, two route of travel gasoline machines often adopt the convex coping pistonA piston coping presents the hollow form, the shape and positions of the cave pit must be advantageous to the combustion of the combustible and hybrid gas, having a pair of eddies concave pit ball, concave pit, U concave pit, and so on.2. Piston headThe piston refers to the first piston wreath to the part above the piston pin.It has several wreath slots, which are used to install the piston wreath and have an effect of sealing completely. It is also called the leak proof department .The diesel engine’scompress ratio is high, and generally have four wreath slots, The three upper wreaths are used to install, the lower part installs the oil wreath. The gasoline machine has three wreath slots generally, which are two jet of gas wreath slots and an oil wreath slots. At the bottom of oil wreath slot many paths toward eyelet are drilled to make the quilt oil wreath flow from the air cylinder wall to the oil bottom hull through these eyelets. The working condition of the wreath slot is the worst and should leave the coping generally a little farther.Above the gas wreath, a narrow insulating slot is usually set to cut off the heat flow which is spread from the piston coping to the first gas wreath and make parts of calories from a piston wreath spread, thus easing the hot burden of the first gas wreath. On some engines small wreathe slots are often made between the coping head and the first gas wreathe, sometimes till a few more wreath. This kind of small wreath can adsorb the lubricant because it accumulates the carbon. It can keep piston and the air cylinder walls from biting to match when it work in the condition of losing oil, so it is called accumulating the carbon slot.The calories that the piston coping absorbs also mainly passes the air cylinder wall through the piston wreath to leak proof department, again spread by the cool water.In a word, the function of the piston head is in addition to install the piston wreath, still seal completely function and transmit heat function, sealing completely the air cylinder together with the piston wreath, keeping combustible admixture spirit from leak crankcase, at the same time pass the(70-80)%calories to the air cylinder wall through the piston wreath.3. Piston skirt departmentThe piston skirt department refers to the parts from thebottom of the oil wreathe slot. It includes the pin which is used to pack the piston. The piston skirt department exercises to rise to lead to the function to the piston in the back and forth in the air cylinder, and bear the side pressure. The length of the skirt department is decided by the size and the piston diameter of the side pressure. The so-called side pressure mean in the compression route of travel and make route of travel of efficacy .The level component of the gas pressure which take effect on the piston coping presses the piston to the air cylinder wall. Compress the route of travel and make the side pressure direction of the efficacy route of travel air exactly the opposite, because of the combustion pressure consumedly high in compress the pressure, so, make the side in the route of travel of efficacy pressure also consumedly high in compress the side in the route of travel pressure.Two on the sides that bear the side pressure of the piston skirt department be called to push the dint to face, they be placed in to sell the mutually perpendicular direction of the stalk line with piston up.Drive LinesThe drive line includes all the parts from the and final drive carry the torque from the engine, the other. The engine torque during acceleration and the torque during braking place loads on the suspension parts.During suspension repair, it may be essary to disassemble parts of the drive line. Noises produced when the suspension moves may originate from drive line parts. A basic understanding of different drive line assemblies is presented here to give you a working knowledge so that you can do suspension repair.Drive lines with front-wheel drive often combine the transmission and the final drive into one assembly. This is alsotrue of mid-and rear-engine vehicles. The assembly is called a transaxle, Short half-shafts with universal joints at each end connect between the transaxle and the wheels. These shafts carry power from the final drive to the wheels even when the suspension moves and steers.A differential in the final drive splits incoming power, sending half to each drive wheel. This allows the drive wheels to turn at different speeds while rounding corners. The transmission Other parts form the link from one part to while cornering.In front-engine, rear-wheel drive vehicles, the transmission is located under the front floor of the passenger compartment. A drive shaft is used to carry engine power to the rear axle. The drive shaft has a universal joint at each end. It carries power through the changing drive line angles as the suspension moves.A vehicle with independent suspension at the drive wheels has the final drive attached rigidly to the vehicle frame or the engine. This drive arrangement produces forces, without any torques, on the suspension parts during acceleration. If the brakes are mounted inboard so the caliper mounts to a frame piece and not to a suspension, the brake will also not produce a torque on the suspension. A suspension designed to handle only acceleration and braking torques can be designed differently than one that must handle both suspension forces and torques.Suspension SystemsThe suspension includes springs, shock absorbers, and control linkages. It must be strong enough to support the vehicle body and load. The suspension must also resist engine and brake reactions. The most important job of the suspension is to keep the tires in contact with the road as much of the time as possible. This is done while supporting the vehicle and its load, even whiletraveling over rough roads. The four tire footprints are the only place the vehicle touches the road. All of the engine power, steering, and braking forces operate through the tire-to-road footprints. Control of the vehicle ( power, steering and braking) is reduced or lost any time a tire does not stay on the road or when skidding begins.The vehicle body is supported by springs. The springs can be of the coil, leaf, torsion bar, or pneumatic type. Coil springs are the most popular design used in the modern automobile. Coil, torsion bar, and pneumatic springs all require links and arms to hold the wheel in position. Leaf springs provide lateral and longitudinal control to prevent unwanted wheel motions. They are commonly found on vans and trucks.Suspension systems have been changed and refined as the passenger automobile has developed. Design objectives differ between luxury sedans, performance vehicles, small compact vehicles, and light trucks. Tire improvements, along with improvements in shock absorbers, steering systems, and suspension control devices, have continually upgraded vehicle handling characteristics.5Tire-to-road contact is needed for safe, positive vehicle control under all operating condi-tions. Keep in mind that all four tires must stay in contact with the road at all times for maxi-mum vehicle control. Compromises are made in handling response, tire wear, driver comfort, and ride harshness to achieve positive vehicle control.Suspension systems are divided into front suspension and rear suspension.Front suspension designs have developed from relatively rugged solid-axle designs to the modern lightweight, high-strength , strut-type independent designs. These have been upgraded with added linkage. Suspension design improvements have followed improvements in roadways and driver expectations.Most front-engine, rear-wheel-drive vehicles use a simple dependent rear suspension .Rear-wheel-drive independent suspension is much more complex and expensive. As aresult, it is only used on a few passenger vehicles.To front-engine, front-wheel-drive vehicles by moving the drive train to the front, only ride control and braking reactions are controlled by the rear suspension. This has led to the use of simplified dependent suspension , semi-independent suspension and independent rear suspension. The latter is used in a larger number of new vehicle designs.Steering SystemsThe driver controls the direction of the front wheels of the vehicle through the steering gear. Modern steering gears have two major units* a steering column and a gear unit. Tin-steering column has a supported shaft that connects the driver's steering wheel to the gem unit. The gear unit multiplies the driver's steering effort to move the steering linkage.The front wheels of rear-wheel-drive vehicles rotate on a spindle. The spindle is part ol the steering knuckle . The knuckle is connected to the front suspension members with ball joints. The ball joints allow for steering as the suspension moves up and down. The wheel hubs on front-wheel-drive vehicles rotate on hollow axle stub shafts inside bearings within the steering knuckles.The steering wheel controls the steering gear assembly. This,in turn, moves the knuckle through the steering linkage. Two steering gear designs are in use today, the rack and pinion and recirculating ball.vehicles are designed with responsive steering. As a result, more effort is needed to steer the vehicle when it is moving slowly. Power steering supplies this effort on many vehicles.With power steering doing most of the work, steering ratios are decreased so that the ve-hicle can be steered with small steering wheel movements. The power steering gear is similar to the standard steering gear. It includes surfaces upon which fluid pressure is applied to aid the driver's steering effort. Both rack and pinion and recirculating ball gears may have power assist.Power for the steering gear is provided by an engine-driven pump. The pump forces power steering fluid through a system controlled by a valve. This control valve can sense the driver's steering effort. It puts fluid pressure against a pressure surface in the steering system. This fluid pressure takes over some of the effort needed to steer the vehicle.The steering column in the modern vehicle has many parts. It is designed to collapse or fold in a vehicle collision to protect the driver. In some installations, it may be tilted and tele-scoped to adjust the position of the steering wheel for the comfort of the driver. To reduce the chance of theft, it also has a steering gear lock. On many vehicles, it has a transmission lock. Because it is within easy reach of the driver, the steering column may carry the transmission shift control lever, turn signal switch, headlight and dimmer switches, wiper switch, emer-gency flasher switch, and speed control.Brake SystemsService brakes must be able to stop the vehicle, preventexcess speed when coasting, and hold the vehicle in position while it is stopped on grades. They are designed so the driver can adjust the braking effort to maintain vehicle control. Vehicle control is influenced by brakes as well as the suspension and steering systems. Faults in the brake system can lead to wheel pull during braking. To repair suspension systems, parts of the brake system may require disassembly. For these reasons, the brake system will be discussed briefly in this text.The brake system must provide smooth stopping power that can be controlled by thedriver. The force required on the brake pedal must not be so high that the wheels cannot be locked. To meet these braking requirements, minimum braking standards have been set for vehicle brakes.The driver controls the braking force through mechanical, vacuum, and hydraulic mecha-nisms. The amount of braking increases as more force is placed on the brake pedal. This force is transferred through the brake system to push stationary brake linings against the rotating brake surface. This slows the vehicle as it turns kinetic energy (energy of motion) into thermal energy (heat). Maximum braking occurs just before the wheels lock to cause the tires to slide on the road surface. Maximum braking, therefore, depends on the adhesion between the tire and the road surface. When the tire slides on the road, braking effect is reduced and direction-al control of the vehicle may be lost.The stationary parts of the front brake assemblies are mounted on the steering knuckle of the front suspension. In the rear, they are mounted on the axle housing or the rear spindle assembly. The cast-iron brake drum or disc rotates with the wheel .Disc Brake. Disc brakes have discs that rotate with the wheel . The brake disc is usually called a brake rotor. A hydraulically operated piston in a stationary caliper is used to force the lining of the brake pad against the braking surface of the rotor. The friction between the lining and rotor is used to slow or stop wheel rotation. The stationary caliper housing keeps the pads from rotating when they are being forced against the rotating brake disc.Disc brake pads move perpendicular to the face of the brake rotor. In this way, they clamp on the rotor to slow the vehicle motion. The clamping force is proportional to the force the driver puts on the brake pedal.Drum Brakes. Drum brakes use stationary, internal expanding brake shoes with linings. They are mounted inside a rotating brake drum. The brake drum is fastened between the wheel-tire assembly and the hub assembly or the axle flange. The brake shoes slow drum rotation when the diameter of the shoes is expanded to bring the lining in contact with the brake surface. This is done by a hydraulically operated wheel cylinder. Fluid pressure from the master cylinder is forced into the wheel cylinders, expanding them. The expansion of the wheel cylinder moves the brake shoe through mechanical linkage to press the-linings against the rotating brake drum. This provides braking action as it slows the rotation of the drum.汽车设计车架设计车架是汽车最基本的台架,所有的悬架和转向连接部件都安装在车架上面。
车辆工程专业——外文文献翻译(中英文翻译)附录Ⅰ(原文)Modern cars is not a simple means of delivery, it is already "people, cars and the environment," the combination. As a car seat directly support the user's device, the car has no small importance of the components. The main function of car seats for the driver to provide ease of manipulation, comfortable, safe and easy fatigue of the driver seat. Seat design should also meet the following five basic requirements: the seat of the rational arrangement; Second, the seat shape to meet the body's physiological function; Third, the seat should have the regulatory agencies; Fourth, the vibration characteristics of a good seat; Five seats to be very safe and reliable; eat size of the installation location is important, it directly affects the user's convenience and comfort. Seating layout should reflect the requirements of ergonomics. Driver's seat is the most crucial seats. Its basic requirement is a reasonable layout and simple operation, that is, when the drivers take on the steering wheel, joystick and pedals for good accessibility. Because differences in European, American and Asian body in some countries is very wide car seat, car seat in some countries is relatively small. As the crowd the same area, there are differences between men and women, the tall and the small differences in driver's seatmust have regulatory agencies to meet most people's body. "Most people" concept, the car body design used a two-dimensional model, which according to the height of its total population is divided into different groups: Seat size of the installation location is important, it directly affects the user's convenience and comfort. Seating layout should reflect the requirements of ergonomics. Driver's seat is the most crucial seats. Its basic requirement is a reasonable layout and simple operation, that is, when the drivers take on the steering wheel, joystick and pedals for good accessibility. Because differences in European, American and Asian body in some countries is very wide car seat, car seat in some countries is relatively small. As the crowd the same area, there are differences between men and women, the tall and the small differences in driver's seat must have regulatory agencies to meet most people's body. "Most people" concept, the car body design used a two-dimensional model, which according to the height of its total population is divided into different groups: 5[%] (all 5[%] of drivers in the short stature than or equal to this size, the remaining 95[%] taller large); 95[%] (all 95[%] of drivers in the short stature than or equal to the size of the remaining 5[%] taller large). Applied in the automotive industry in the total range of between 5[%] and 95[%], that is, including the 90[%] crowd. For example, adjustable seats and pedals designed distance between the drivers as much as possible to adapt body, where women generally take 5[%] and 95[%] of male body model.Driver's seat on the steering wheel, joystick and pedals to take the body and determines the position, posture, seating arrangement by the position and shape of the design of the decision. Drivers to take the posture is not ideal or even lead to fatigue and strain. Therefore, Japan and major European and American design of the depot location has the basic drivers seat position, head, shoulders, arms, abdomen, legs and other reference data space, can not be arbitraryCar seats from the seat, back, dorsal support, headrests and other components, they have a surface shape, seat surface and backrest should be with the body shape curve of the back curve of a relaxed state match, after the seat occupant seated surface shape and the body pressure distribution in the muscles of the crew to make the most relaxed state, to support the lumbar spine, not because of poor circulation caused numbness, fatigue easily take a long time. Through the front seat up and down, backrest angle, head up and down positions, such as the limited front and rear adjustment, can make most people are comfortable. The spring seat seat vibration performance constitute the key. Tests show that vehicle is in motion even though the floor vibration, but the action of the spring seat, the seat is still possible to get good comfort, good performance if the spring, the comfort of the car will be relatively poor. At present, most holistic seat cushion foam urethane, which uses S-shaped coil springor springs from being buried in urethane foam, has a simple structure, low cost, noise-free advantages. Low-back seats for the car, the head is an attachment on the seat. As the speed increases, its growing importance of personal safety. Car in the event of rear-end collision, the impact of cars by the force behind the rapid moment forward, the inertia occupant's head is suddenly thrown back, cervical spine to withstand the acceleration forces to the large and easily hurt. With the head supporting and reduce the space of free movement of the head can reduce the impact of the cervical spine. 1998 Volvo (Volvo) car assembly WHIPS (Whiplash Protection System) rear-end collision occurs when the headrest and backrest can be made after the occupants moved at the same time effectively prevent cervical spine injury. The current car seat has seat belts, airbags together constitute the security of the crew. The strength of their own car seat, the reliability of the connection on the body, back strength and testing requirements are the industry standard, not just to do an installation up to the line. With modern technology, car seats are equipped pneumatic devices, air pump from the engine compartment is provided inside the seat back pressure chamber 4, respectively, to achieve the protection of the Ministry of the lumbar spine. Are divided into two parts back, the angle can be adjusted to make the waist and shoulder the same time close to the back, play a security role. Have built in the back of a computer-controlled electronic oscillator, and massage healtheffects.附录Ⅱ(译文)现代轿车已经不是一个单纯的运载工具,它已经是“人、汽车与环境”的组合体。
P rocedia Earth and Planetary Science 2 ( 2011 ) 133 – 1381878–5220 © 2011 Published by Elsevier Ltd.doi: 10.1016/j.proeps.2011.09.022Available online at The article mainly studies the YJ3128-type dump truck ÿs sub-frames, for the fatigue crack occurred in the Sub-frame witch has worked in bad condition for 3 to 5 months, the truck ÿs working conditions and the load features are researched, and ANSYS is used to analyze the stress of the sub-frame. According the deferent stress, the reason of the fatigue cracks ÿ occurring is researched too. At last an improvement and optimization to the structures of the frame is provided. For the stress of YJ3128-type dump truck there is no improved research methods and theoretical support, so the analysis in this paper and the proposed improvement scheme has important reference value.© 2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of Society for Resources, Environment and EngineeringKeywords: dump truck, sub-frame, finite element analysis, fatigue crack134C hen Yanhong and Zhu Feng / P rocedia Earth and Planetary Science 2( 2011 )133 – 1380 IntroductionAs the state’s infrastructure investment increased year by year, the demand for heavy-duty trucks are also multiplying, China's annual demand of heavy-duty trucks is 95 million or more, and its annual growth rate is 15% or 20%. YJ3128-type dump truck is a Transport vehicles designed and manufactured by Inner Mongolia First Machinery Group Corporation and China North Mercedes-Benz Co., Ltd. It is formed by the main-frame, sub-frame, Cab, cargo box, the hydraulic lifting mechanism, engine, and gears. The sub-frame connected the main frame and the container, and increased strength and stiffness of the main frame, and lead to the main frame ‘s distributed load force. Therefore, the designing of the sub-frame has the important influence to the main frame’s quality and service life. YJ3128-type dump truck’s sub-frame is researched by the Co. itself, but after been used for 3-5 months, there will be cracking at the right side of the square beams and the turning point of the left stringer.Figure 1 the fatigue crack of the sub-frame1 The FEM model of the sub-frame1.1 The structure of the sub-frameThe YJ3128-type dump truck’s frame is formed by the main-frame and the sub one, and they are all edge beam type. The vertical beam of the sub-frame is right up the main-frames’, and they are connected by the U-bolts. The sub-frame of the truck is developed by the Co., and it’s length is 4.7m, forth-width is 0.901m, and the back-width is 0.761m. The 8mm thick V-beam is trough, all its section is the same. There is a trough auxiliary beam flipping In it. There are six beams in the sub-frame, that are a cylindrical beam at the back of it, a square beam in the middle, and four trough beams, Which are showed in figure 2.Figure 2 structure of the sub-frameC hen Yanhong and Zhu Feng / P rocedia Earth and Planetary Science 2( 2011 )133 – 138 1351.2 Material properties of the sub-frameThe sub-frame material is 16 MnL, the physical properties are: modulus E=210GPa, Poissonratioμ=0.3, and density ȡ=7.8X10-3gˋmm3 ; its mechanical properties are: minimum yield strength345MPa, minimum tensile strength 510MPa, and max tensile strength 610MPa. For the poor working environments, 1.2 is taken to be the safety factor, and the material allowable stress can be inferred to be287.5MPa. The Pro / E geometric model is imported into the ANSYS for meshing, and the grid size is setto 30 according to Vice-frame’s size and analysis precision.1.3 The load case’s size and analysisThe YJ3128-type dump truck is the transport vehicle using in the field operation place such as miningetc., and Figure 3 shows the actual situation. The road is uneven, and there are many big stone on it. Thiswill result in vehicles’ one or more tires driving up and down. That is the main cause of the sub-frames’fatigue failure. So the lifting height of the frame is set for 20mm and 50mm, and the Analysis of bending moment and torque are conducted[1][2].Figure 3 the conditions of the mining roadThe load of the sub-frame is shown in the table 1.Table 1 the load and the force point of the frameName Weight˄kg˅Distance betweenfocus to front axle˄mm˅NameWeight˄kg˅Distance betweenfocus to front axle˄mm˅Assembly of front shock absorber 200 21Assembly of middleshock absorber1100 3800Assembly of front brake720 0 Assembly of rear brake1100 5250Assembly of engine 1200 -200 Assembly of rearsuspension350 4525Water tank 110 -1000 Oil tank 350 3000136C hen Yanhong and Zhu Feng / P rocedia Earth and Planetary Science 2 ( 2011 ) 133 – 138 2 The finite element static analysis of the sub-frame2.1 The up-rising of tire is 20mmAs is shown in figure 4, in this case, there were three relatively large stress: firstly, the maximum Von-Mises stress occurs in the final end of frame, it is 331MPa, exceeding the allowable stress of the material. So cracks would appear, and especially it may break at the welding place. Secondly, the stress is about 184MPa, at the right side of the square beams which is near the elevated rear wheel. Thirdly, the stress is about 184MPa, at the turning point of the left stringer. These two stress values are less than the allowable stress [4].Figure 4 the equivalent stress contours for 20mm Figure 5 the equivalent stress contours for 50mm2.2 The up-rising of tire is 50mmAs is shown in figure 5, in this case, there were three relatively large stress: firstly, the maximum Von-Mises stress occurs in the final end of frame, it is 954MPa, exceeding the allowable tensile strength of the material. The cause shall be the frames’ irrational structures. Secondly, the stress is about 424MPa, at the right side of the square beams which is near the elevated rear wheel, and the value is also excessive. Thirdly, the stress is about 530MPa, at the turning point of the left stringer. There are also prone to be crack and even break, especially in the welds, the welding is prone to be open, leading to frame’s failure.2.3 Stress analysisBased on the above results of the sub-frames’ analysis, under the joint load, the stress concentration is the greatest at the right side of the square beams and the turning point of the left stringer, and that is the main cause of the frames’ fatigue failure. By analyzing, the following conclusions are drawn: The number of the beams the in front of the frames is small, and the one of the beams at end of the frames is large. The Assembly of cab2800 -40 Battery 180 1700 Lift cylinder 150 4400 Spare tire 250 1200load 16000 4000C hen Yanhong and Zhu Feng / P rocedia Earth and Planetary Science 2( 2011 )133 – 138 137 large torsional stiffness causes the uncoordinated deformation. And the stress concentration appeared inthe middle frame, and the two key points obtained by the above analysis are just in the neighborhood.They impede the generation of deformation, so the stress concentration deteriorate further. In short, theabove mainly due to the frames’ lack of torsional.3 The sub-frames’structural improvements and finite element analysis3.1 The improved structure of sub-framesFor the main reason of the crack is the lack of the sub-frame’s torsional stiffness, a beam is added tothe front of the sub-frame, as is shown in figure 6. And the upper surface of the block slope on both sidesof the circular beam is turned into inclined plane, then it and the upper surface of the longitudinal are notin the same plane[5].Figure 6 the improved sub-frame Figure 6 the equivalent stress contours for improved one3.2 The finite element static analysis of the improved frameFor the frame is damaged in the condition that it is raised 50mm, the analyzing results for the improved frame working in this condition are provided, as is shown in figure 7. Then the max Von-Misesstress is 200MPa, which is under the allowable stress of the material, and it occurs at the front beams. Thestress at the right side of the square beams and the turning point of the left stringer is also reduced greatly,and it is only 50% of allowable stress. Therefore, there is no big turning transform in the improved frames,and the torsional stiffness is enhanced. No excessive stress concentration exists, and the bearing capacityis greatly improved. Thus it meet the design and use requirements.The above analysis results show that the proposed changes to the program is reasonable. In order to verifythe reliability of the actual for the improved frame, the method is feedback to the Co., and the method is accepted.4 ConclusionsHeavy trucks is commonly used transport vehicles in the site, mining and other places, their working conditions are bad, and dynamic load is great. For the frame is their important load component, thequality of the frame is directly related to the performance of heavy trucks. In this article, the sub-frame is analyzed by ANSYS, and the reason for the cracking of the frame is found, and the improving method is138C hen Yanhong and Zhu Feng / P rocedia Earth and Planetary Science 2( 2011 )133 – 138 shown for the Company. A theoretical basis is provided for the improvement of the frames’ designing, and an important reference is provided to improve the truck frame’s design methods.References[1] Zhao Feng, Static and Dynamic Finite Element Analysis and Structure Improvement of BJ3043-type dump truck’s frame [J], Shan Dong University, 2004, P4.[2] Deng Zhaoxiang, Automotive Design and Dynamic Analysis of Automotive Structures [J],Yearbook of the Institute of Automotive Engineering of Chongqing(1996-1997).[3] Li Hui, Li Wanqiong, Equal Load Simplifying of Truck’s Frame [J], Automotive Engineering, 1994(16):310̚314.[4] Zhou Zhige, Wang Jingang, Analysis of Abnormal Cracking For the Light Truck’s Frame [J], Automotive Engineering,2004(2):229̚232.[5] Liu Weixin, car design, Bei Jing: Tsinghua University Press [M]ˈ2001: 4̚11.。
A high speed tri-vision system for automotive applicationsMarc Anthony Azzopardi & Ivan Grech & Jacques LeconteAbstractPurpose Cameras are excellent ways of non-invasively monitoring the interior and exterior of vehicles. In particular,high speed stereovision and multivision systems are important for transport applications such as driver eye tracking or collision avoidance。
This paper addresses the synchronisation problem which arises when multivision camera systems are used to capture the high speed motion common in such applications. Methods An experimental,high—speed tri-vision camera system intended for real-time driver eye—blink and saccade measurement was designed,developed,implemented and tested using prototype,ultra—high dynamic range, automotive— grade image sensors specifically developed by E2V (formerly Atmel) Grenoble SA as part of the European FP6 project – SENSATION (advanced sensor development for attention stress, vigilance and sleep/wakefulness monitoring)。
汽车⼯程客运车辆中英⽂对照外⽂翻译⽂献(⽂档含英⽂原⽂和中⽂翻译)中英⽂翻译Passenger vehicles in the United StatesFrom Wikipedia, the free encyclopediaThe neutrality of this article is disputed. Please see the discussion on the talk page. Please do not remove this message until the dispute is resolved. (December 2007)Note: this article adopts the U.S. Department of Transportation'sdefinition of a passenger vehicle, to mean a car or truck, used for passengers, excluding buses and trains.The United States is home to the largest passenger vehicle market of any country in the world.[1]Overall, there were an estimated 254.4 million registered passenger vehicles in the United States according to a 2007 DOT study.[2] This number, along with the average age of vehicles, has increased steadily since 1960, indicating a growing number of vehicles per capita. The United States is also home to three large vehicle manufacturers: General Motors, Ford Motor Company and Chrysler, which have historically been referred to as the "Big Three." Chrysler however is no longer among the top three; but is number five, behind Toyota and Honda. The motor car though has clearly become an integral part of American life, with vehicles outnumbering licensed drivers.[2] StatisticsThe United States Department of Transportation's Federal Highway Administration as well as the National Automobile Dealers Association have published data in regard to the total number of vehicles, growth trends, and ratios between licensed drivers, the general population, and the increasing number of vehicles on American roads. Overall passenger vehicles have been outnumbering licensed drivers since 1972 at an ever increasing rate, while light trucks and vehicles manufactured by foreign marques have gained a larger share of the automotive market in theUnited States. In 2001, 70% of Americans drove to work in cars.[3] New York City is the only locality in the country where more than half of all households do not own a car (the figure is even higher in Manhattan, over 75%; nationally, the rate is 8%).[3]Total number of vehiclesAccording to the US Bureau of Transportation Statistics for 2009 there are 254,212,610 registered passenger vehicles. Of these, 193,979,654 were classified as "Light duty vehicle, short wheel base, while another 40,488,025 were listed as "Light duty vehicle, long wheel base." Yet another 8,356,097 were classified as vehicles with 2 axles and 6 tires and 2,617,118 were classified as "Truck, combination." There were approximately 7,929,724 motorcycles in the US in 2009. [4] According to cumulative data[1]by the Federal Highway Administration (FHW A) the number of motor vehicles has also increased steadily since 1960, only stagnating once in 1997 and declining from 1990 to 1991. Otherwise the number of motor vehicles has been rising by an estimated 3.69 million each year since 1960 with the largest annual growth between 1998 and 1999 as well as between 2000 and 2001 when the number of motor vehicles in the United States increased by eight million.[1]Since the study by the FHA the number of vehicles has increased by approximately eleven million, one of the largest recorded increases. The largest percentage increase was between the years of 1972and 1973 when the number of cars increased by 5.88%.Age of vehicles in operationIn the year 2001, the National Automobile Dealers Association conducted a study revealing the average age of vehicles in operation in the US. The study found that of vehicles in operation in the US, 38.3% were older than ten years, 22.3% were between seven and ten years old, 25.8% were between three and six years old and 13.5% were less than two years old. According to this study the majority of vehicles, 60.6%, of vehicles were older than seven years in 2001.[5] This relatively high age of automobiles in the US might be explained by unaffordable prices for comparable new replacement vehicles and a corresponding gradual decline in sales figures since 1998.[6] Also, many Americans own three or more vehicles. The low marginal cost of registering and insuring additional older vehicles means many vehicles that are rarely used are still given full weight in the statistics.The median and mean age of automobiles has steadily increased since 1969. In 2007 the overall median age for automobiles was 9.4 years, a significant increase over 1990 when the median age of vehicles in operation in the US was 6.5 years and 1969 when the mean age for automobiles was 5.1 years.[7] Of all body styles, pick-up trucks had the highest meanage in 2001 (9.4 years), followed by cars with a mean age of 8.4 years and van with a mean age of 7.0 years. As SUVs are part of arelatively new consumer trend originating mostly in the 1990s, SUVs had the lowest mean age of any body style in the US (6.1 years). The average recreational vehicle was even older with a mean age of 12.5. For all body styles the mean vehicle age increased fairly steadily from 1969 to 2001.[7] In March 2009, RL Polk released a study conducted between 2007 to 2008 which indicated that the median age of passenger cars in operation in the US increased to 9.4 years, and that the median age for light trucks increased from 7.1 years in 2007 to 7.5 years in 2008.SalesIn the year 2009, about 5.5 million new passenger cars were sold in the United States[6] according to the U.S. Department of Transportation. This figure “Includes domestic and impor ted vehicles." (Department of Transportation) The number of vehicles sold in the US has been decreasing at a gradual yet continuous rate since 1999, when nearly 8.7 million vehicles were sold in the US. Looking back at history however, reveals that such decline is only part of normal market trends and most likely only a temporary affair. Overall, 1985 was a record year with cars sales totaling just over eleven million.[6] While imports have been gaining ground in terms of units sold during the 2000s and have regained roughly the same market share they held in 1992, the sales of domestic vehicles are still more than double those of imported vehicles. It should be noted, however that the US Bureau of Transportation Statistics "Includes carsproduced in Canada and Mexico" as domestic vehicles as both countries are part of the North American Free Trade Agreement (NAFTA), thus including many cars by Asian and European manufacturers - many V olkswagens are made in Mexico, Toyotas in Canada, also. In 2006 the sales of vehicles made in NAFTA states totaled 5.5 million, while the sale of imported vehicles totaled 2.2 million. 923,000 vehicles were imported from Japan, making it the greatest exporter of vehicles to the US. Germany was the second largest exporter of vehicles to the US, with 534,000 units exported to the US in 2006. Imports from all other nations, except Germany and Japan, totaled 729,000.[8]美国的客运车辆From Wikipedia, the free encyclopedia这篇⽂章的中⽴性是有争议的。
天津科技大学TIANJIN UNIVERSITY OF SCIENCE AND TECHNOLOGY外文资料翻译专业:机械设计制造及其自动化(汽车工程)*****学号:********指导教师姓名:贺丽娟How Car Steering WorksYou know that when you turn the steering wheel in your car, the wheels turn. Cause and effect, right? But a lot of interesting stuff goes on between the steering wheel and the tires to make this happen.In this article, we'll see how the two most common types of car steering systems work: rack-and-pinion and recirculating-ball steering. Then we'll examine power steering and find out about some interesting future developments in steering systems, driven mostly by the need to increase the fuel efficiency of cars. But first, let's see what you have to do turn a car. It's not quite as simple as you might think!Turning the CarYou might be surprised to learn that when you turn your car, your front wheels are not pointing in the same direction.For a car to turn smoothly, each wheel must follow a different circle. Since the inside wheel is following a circle with a smaller radius, it is actually making a tighter turn than the outside wheel. If you draw a line perpendicular to each wheel, the lines will intersect at the center point of the turn. The geometry of the steering linkage makes the inside wheel turn more than the outside wheel. There are a couple different types of steering gears. The most common are rack-and-pinion and recirculating ball.Rack-and-pinion SteeringRack-and-pinion steering is quickly becoming the most common type of steering on cars, small trucks and SUVs. It is actually a pretty simplemechanism. A rack-and-pinion gearset is enclosed in a metal tube, with each end of the rack protruding from the tube. A rod, called a tie rod, connects to each end of the rack.The pinion gear is attached to the steering shaft. When you turn the steering wheel, the gear spins, moving the rack. The tie rod at each end of the rack connects to the steering arm on the spindle.The rack-and-pinion gearset does two things:It converts the rotational motion of the steering wheel into the linear motion needed to turn the wheels.It provides a gear reduction, making it easier to turn the wheels.On most cars, it takes three to four complete revolutions of the steering wheel to make the wheels turn from lock to lock (from far left to far right).The steering ratio is the ratio of how far you turn the steering wheel to how far the wheels turn. For instance, if one complete revolution (360 degrees) of the steering wheel results in the wheels of the car turning 20 degrees, then the steering ratio is 360 divided by 20, or 18:1. A higher ratio means that you have to turn the steering wheel more to get the wheels to turn a given distance. However, less effort is required because of the higher gear ratio.Generally, lighter, sportier cars have lower steering ratios than larger cars and trucks. The lower ratio gives the steering a quicker response -- you don't have to turn the steering wheel as much to get the wheels to turn a given distance -- which is a desirable trait in sports cars. These smaller cars are light enough that even with the lower ratio, the effort required to turn the steering wheel is not excessive.Some cars have variable-ratio steering, which uses a rack-and-pinion gearset that has a different tooth pitch (number of teeth per inch) in the center than ithas on the outside. This makes the car respond quickly when starting a turn (the rack is near the center), and also reduces effort near the wheel's turning limits.Power Rack-and pinionWhen the rack-and-pinion is in a power-steering system, the rack has a slightly different design.Part of the rack contains a cylinder with a piston in the middle. The piston is connected to the rack. There are two fluid ports, one on either side of the piston. Supplying higher-pressure fluid to one side of the piston forces the piston to move, which in turn moves the rack, providing the power assist.We'll check out the components that provide the high-pressure fluid, as well as decide which side of the rack to supply it to, later in the article. First, let's take a look at another type of steering.Recirculating-ball SteeringRecirculating-ball steering is used on many trucks and SUVs today. The linkage that turns the wheels is slightly different than on a rack-and-pinion system.The recirculating-ball steering gear contains a worm gear. You can image the gear in two parts. The first part is a block of metal with a threaded hole in it. This block has gear teeth cut into the outside of it, which engage a gear that moves the pitman arm. The steering wheel connects to a threaded rod, similar to a bolt, that sticks into the hole in the block. When the steering wheel turns, it turns the bolt. Instead of twisting further into the block the way a regular boltwould, this bolt is held fixed so that when it spins, it moves the block, which moves the gear that turns the wheels.Instead of the bolt directly engaging the threads in the block, all of the threads are filled with ball bearings that recirculate through the gear as it turns. The balls actually serve two purposes: First, they reduce friction and wear in the gear; second, they reduce slop in the gear. Slop would be felt when you change the direction of the steering wheel -- without the balls in the steering gear, the teeth would come out of contact with each other for a moment, making the steering wheel feel loose.The recirculating ball mechanism has the advantage of a much greater mechanical advantage, so that it was found on larger, heavier vehicles while the rack and pinion was originally limited to smaller and lighter ones; due to the almost universal adoption of power steering, however, this is no longer an important advantage, leading to the increasing use of rack and pinion on newer cars. The recirculating ball design also has a perceptible lash, or "dead spot" on center, where a minute turn of the steering wheel in either direction does not move the steering apparatus; this is easily adjustable via a screw on the end of the steering box to account for wear, but it cannot be entirely eliminated because it will create excessive internal forces at other positions and the mechanism will wear very rapidly. This design is still in use in trucks and other large vehicles, where rapidity of steering and direct feel are less important than robustness, maintainability, and mechanical advantage.Power steering in a recirculating-ball system works similarly to arack-and-pinion system. Assist is provided by supplying higher-pressure fluid to one side of the block.Power SteeringPower steering helps drivers steer vehicles by augmenting steering effort of the steering wheel. Hydraulic or electric actuators add controlled energy to the steering mechanism, so the driver needs to provide only modest effort regardless of conditions. Power steering helps considerably when a vehicle is stopped or moving slowly. Also, power steering provides some feedback of forces acting on the front wheels to give an ongoing sense of how the wheels are interacting with the road; this i s typically called "rοad feel".Representative power steering systems for cars augment steering effort via an actuator, a hydraulic cylinder, which is part of a servo system. These systems have a direct mechanical connection between the steering wheel and the linkage that steers the wheels. This means that power-steering system failure (to augment effort) still permits the vehicle to be steered using manual effort alone.Other power steering systems (such as those in the largest off-road construction vehicles) have no direct mechanical connection to the steering linkage; they require power. Systems of this kind, with no mechanical connection, are sometimes called "drive by wire" or "steer by wire", by analogy with aviation's "fly-by-wire". In this context, "wire" refers to electrical cables that carry power and data, not thin-wire-rope mechanical control cables.In other power steering systems, electric motors provide the assistance instead of hydraulic systems. As with hydraulic types, power to the actuator (motor, in this case) is controlled by the rest of the power-steering system.Some construction vehicles have a two-part frame with a rugged hinge in the middle; this hinge allows the front and rear axles to become non-parallel to steer the vehicle. Opposing hydraulic cylinders move the halves of the frame relative to each other to steer.Most power steering systems work by using a hydraulic system to steer the vehicle's wheels. The hydraulic pressure typically comes from a gerotor or rotary vane pump driven by the vehicle's engine. A double-acting hydraulic cylinder applies a force to the steering gear, which in turn steers the roadwheels. The steering wheel operates valves to control flow to the cylinder. The more torque the driver applies to the steering wheel and column, the more fluid the valves allow through to the cylinder, and so the more force is applied to steer the wheels.Since the hydraulic pumps are positive-displacement type, the flow rate they deliver is directly proportional to the speed of the engine. This means that at high engine speeds the steering would naturally operate faster than at low engine speeds. Because this would be undesirable, a restricting orifice and flow-control valve direct some of the pump's output back to the hydraulic reservoir at high engine speeds. A pressure relief valve prevents a dangerous build-up of pressure when the hydraulic cylinder's piston reaches the end of its stroke.Some modern systems also include an electronic control valve to reduce the hydraulic supply pressure as the vehicle's speed increases; this isvariable-assist power steering.The steering booster is arranged so that should the booster fail, the steering will continue to work (although the wheel will feel heavier). Loss of power steering can significantly affect the handling of a vehicle. Each vehicle owner's manual gives instructions for inspection of fluid levels and regular maintenance of the power steering system.The working liquid, also called "hydraulic fluid" or "oil", is the medium by which pressure is transmitted. Common working liquids are based on mineral oil.Now let's take a look at the other components that make up a power-steering system.There are a couple of key components in power steering in addition to the rack-and-pinion or recirculating-ball mechanism.PumpThe hydraulic power for the steering is provided by a rotary-vane pump (see diagram below). This pump is driven by the car's engine via a belt and pulley. It contains a set of retractable vanes that spin inside an oval chamber.As the vanes spin, they pull hydraulic fluid from the return line at low pressure and force it into the outlet at high pressure. The amount of flow provided by the pump depends on the car's engine speed. The pump must be designed to provide adequate flow when the engine is idling. As a result, the pump moves much more fluid than necessary when the engine is running at faster speeds.The pump contains a pressure-relief valve to make sure that the pressure does not get too high, especially at high engine speeds when so much fluid is being pumped.Rotary ValveA power-steering system should assist the driver only when he is exerting force on the steering wheel (such as when starting a turn). When the driver is not exerting force (such as when driving in a straight line), the system shouldn't provide any assist. The device that senses the force on the steering wheel is called the rotary valve.The key to the rotary valve is a torsion bar. The torsion bar is a thin rod of metal that twists when torque is applied to it. The top of the bar is connected tothe steering wheel, and the bottom of the bar is connected to the pinion or worm gear (which turns the wheels), so the amount of torque in the torsion bar is equal to the amount of torque the driver is using to turn the wheels. The more torque the driver uses to turn the wheels, the more the bar twists.The input from the steering shaft forms the inner part of a spool-valve assembly. It also connects to the top end of the torsion bar. The bottom of the torsion bar connects to the outer part of the spool valve. The torsion bar also turns the output of the steering gear, connecting to either the pinion gear or the worm gear depending on which type of steering the car has.Animation showing what happens inside the rotary valve when you first start to turn the steering wheelAs the bar twists, it rotates the inside of the spool valve relative to the outside. Since the inner part of the spool valve is also connected to the steering shaft (and therefore to the steering wheel), the amount of rotation between the inner and outer parts of the spool valve depends on how much torque the driver applies to the steering wheel.When the steering wheel is not being turned, both hydraulic lines provide the same amount of pressure to the steering gear. But if the spool valve is turned one way or the other, ports open up to provide high-pressure fluid to the appropriate line.It turns out that this type of power-steering system is pretty inefficient. Let's take a look at some advances we'll see in coming years that will help improve efficiency.Electric power steeringElectric power steering (EPS or EPAS) uses an electric motor to assist the driver of a vehicle. Sensors detect the position and torque of the steeringcolumn, and a computer module applies assistive torque via the motor, which connects to either the steering gear or steering column. This allows varying amounts of assistance to be applied depending on driving conditions. Engineers can therefore tailor steering-gear response to variable-rate and variable-damping suspension systems, optimizing ride, handling, and steering for each vehicle. On Fiat group cars the amount of assistance can be regulated using a button named "CITY" that switches between two different assist curves, while most other EPS systems have variable assist. These give more assistance as the vehicle slows down, and less at faster speeds. In the event of component failure that fails to provide assistance, a mechanical linkage such as a rack and pinion serves as a back-up in a manner similar to that of hydraulic systems.Electric systems have an advantage in fuel efficiency because there is nobelt-driven hydraulic pump constantly running, whether assistance is required or not, and this is a major reason for their introduction. Another major advantage is the elimination of a belt-driven engine accessory, and several high-pressure hydraulic hoses between the hydraulic pump, mounted on the engine, and the steering gear, mounted on the chassis. This greatly simplifies manufacturing and maintenance. By incorporating electronic stability control electric power steering systems can instantly vary torque assist levels to aid the driver in corrective maneuvers. The first electric power steering system appeared on the Suzuki Cervo in 1988. Today a number of manufacturers use electric power steering.Electrically variable gear ratio systemsIn 2000, Honda launched the S2000 Type V equipped with the world's first electric power variable gear ratio steering (VGS) system. In 2003, Toyota introduced their own "Variable Gear Ratio Steering (VGRS)" system introduced on the Lexus LX 470 and Landcruiser Cygnus, and alsoincorporated the electronic stability control system to alter steering gear ratios and steering assist levels. In 2003, BMW introduced their "Active Steering" system on the 5-series.This system should not be confused with variable assist power steering, which varies steering assist torque, not steering ratios, nor with systems where the gear ratio is only varied as a function of steering angle. These last are more accurately called non-linear types; a plot of steering-wheel position versus axle steering angle is progressively curved (and symmetrical).Automobile safetyFor safety reasons all modern cars feature a collapsible steering column (energy absorbing steering column) which will collapse in the event of a heavy frontal impact to avoid excessive injuries to the driver. Airbags are also generally fitted as standard. Non-collapsible steering columns fitted to older vehicles very often impaled drivers in frontal crashes, particularly when the steering box or rack was mounted in front of the front axle line, at the front of the crumple zone. This was particularly a problem on vehicles that had a rigid separate chassis frame, with no crumple zone. Most modern vehicle steering boxes/racks are mounted behind the front axle on the front bulkhead, at the rear of the front crumple zone.Collapsible steering columns were invented by Bela Barenyi and were introduced in the 1959 Mercedes-Benz W111 Fintail, along with crumple zones. This safety feature first appeared on cars built by General Motors after an extensive and very public lobbying campaign enacted by Ralph Nader. Ford started to install collapsible steering columns in 1968.Audi used a retractable steering wheel and seat belt tensioning system called procon-ten, but it has since been discontinued in favor of airbags and pyrotechnic seat belt pre-tensioners.The Future of Power SteeringSince the power-steering pump on most cars today runs constantly, pumping fluid all the time, it wastes horsepower. This wasted power translates into wasted fuel.You can expect to see several innovations that will improve fuel economy. One of the coolest ideas on the drawing board is the "steer-by-wire" or"drive-by-wire" system. These systems would completely eliminate the mechanical connection between the steering wheel and the steering, replacing it with a purely electronic control system. Essentially, the steering wheel would work like the one you can buy for your home computer to play games. It would contain sensors that tell the car what the driver is doing with the wheel, and have some motors in it to provide the driver with feedback on what the car is doing. The output of these sensors would be used to control a motorized steering system. This would free up space in the engine compartment by eliminating the steering shaft. It would also reduce vibration inside the car.General Motors has introduced a concept car, the Hy-wire, that features this type of driving system. One of the most exciting things about the drive-by-wire system in the GM Hy-wire is that you can fine-tune vehicle handling without changing anything in the car's mechanical components -- all it takes to adjust the steering is some new computer software. In future drive-by-wire vehicles, you will most likely be able to configure the controls exactly to your liking by pressing a few buttons, just like you might adjust the seat position in a car today. It would also be possible in this sort of system to store distinct control preferences for each driver in the family.In the past fifty years, car steering systems haven't changed much. But in the next decade, we'll see advances in car steering that will result in more efficient cars and a more comfortable ride.。