空间飞行器动力学与控制第3课空间飞行器轨道动力学上
- 格式:ppt
- 大小:624.00 KB
- 文档页数:48
航天器制导与控制课后题答案(西电)1.3 航天器的基本系统组成及各部分作用?航天器基本系统一般分为有效载荷和保障系统两大类。
有效载荷:用于直接完成特定的航天飞行任务的部件、仪器或分系统。
保障系统:用于保障航天器从火箭起飞到工作寿命终止, 星上所有分系统的正常工作。
1.4 航天器轨道和姿态控制的概念、内容和相互关系各是什么?概念:轨道控制:对航天器的质心施以外力, 以有目的地改变其运动轨迹的技术; 姿态控制:对航天器绕质心施加力矩, 以保持或按需要改变其在空间的定向的技术。
内容:轨道控制包括轨道确定和轨道控制两方面的内容。
轨道确定的任务是研究如何确定航天器的位置和速度, 有时也称为空间导航, 简称导航; 轨道控制是根据航天器现有位置、速度、飞行的最终目标, 对质心施以控制力, 以改变其运动轨迹的技术, 有时也称为制导。
姿态控制包括姿态确定和姿态控制两方面内容。
姿态确定是研究航天器相对于某个基准的确定姿态方法。
姿态控制是航天器在规定或预先确定的方向( 可称为参考方向)上定向的过程, 它包括姿态稳定和姿态机动。
姿态稳定是指使姿态保持在指定方向, 而姿态机动是指航天器从一个姿态过渡到另一个姿态的再定向过程。
关系:轨道控制与姿态控制密切相关。
为实现轨道控制, 航天器姿态必须符合要求。
也就是说, 当需要对航天器进行轨道控制时, 同时也要求进行姿态控制。
在某些具体情况或某些飞行过程中,可以把姿态控制和轨道控制分开来考虑。
某些应用任务对航天器的轨道没有严格要求, 而对航天器的姿态却有要求。
1.5 阐述姿态稳定的各种方式, 比较其异同。
姿态稳定是保持已有姿态的控制, 航天器姿态稳定方式按航天器姿态运动的形式可大致分为两类。
自旋稳定:卫星等航天器绕其一轴(自旋轴) 旋转, 依靠旋转动量矩保持自旋轴在惯性空间的指向。
自旋稳定常辅以主动姿态控制, 来修正自旋轴指向误差。
三轴稳定: 依靠主动姿态控制或利用环境力矩, 保持航天器本体三条正交轴线在某一参考空间的方向。
1. 卫星轨道六要素是哪些P2-7),,,,,(p t i e a ωΩ,其中a 半长轴,e 偏心率,i 轨道倾角,Ω升交点赤经,ω近地点幅角,p t 卫星经过近地点时刻。
2.卫星发射三要素是什么P17-18),,(L t A ϕ,其中ϕ发射场L 的地心纬度,A 发射方位角,L t 发射时刻。
3.什么是太阳同步轨道P23选择轨道半长轴a 和倾角i 的组合使d /)(9856.0︒=∆Ω,则轨道进动方向和速率,与地球绕太阳周年转动的方向和速率相同(即经过365.24平太阳日,地球完成一次360°的周年运动),此特定设计的轨道称为太阳同步轨道。
4.什么是临界轨道、冻结轨道P24-25若远地点始终处在北极上空,即拱线不得转动,轨道倾角满足02sin 5.22=-i ,即︒=43.63i 或︒=57.116i 。
此值的倾角称为临界倾角,此类轨道称为临界轨道。
若选择合适的偏心率及合适的近地幅角,使0==e ω,近地点幅角ω被保持,或称被冻结在90°。
轨道的倾角和高度可以独立选择,此类轨道称作冻结轨道。
5.回归轨道的回归系数是什么P26轨道经过N 天回归一次,在回归周期内共转R 圈,每天的轨道圈数(非整数)Q 称为回归系数。
R C Q I NN==±,+表示轨迹东移,-表示轨迹西移。
I 为接近一天的轨道圈数,为正整数。
6.静止轨道的特点、三要素是什么P28 (1) 轨道的周期与地球自旋周期一致 (2) 轨道的形状为圆形,偏心率0e = (3) 轨道处在地球赤道平面上,倾角0i =7.星座轨道的全球覆盖公式相邻卫星星下点之间的角距为2b ,覆盖带宽度为2c ,轨道数为2p cπ=,每一轨道上的卫星数q bπ=,卫星总数2tan ,sin ,sin sin sin 2tan cN pq b c bcπψθθ====8.地球同步卫星群的分置模式有哪几种P36(1) 经度分置模式:各个子卫星沿轨道经度圈分布,位于星座中心定点位置的两侧,具有不同的平经度。
飞行器动力学与空气动力学飞行器动力学和空气动力学是航空航天领域中非常重要的两个学科,它们研究的是飞行器在运动中所受到的力和力的作用。
飞行器动力学主要研究飞行器如何在空中移动,而空气动力学则是研究飞行器与空气之间的相互作用。
一、飞行器动力学飞行器动力学主要研究的是飞行器的运动特性和控制方法。
飞行器在空中运动时,所受到的力主要包括重力、升力、推力和阻力。
1. 重力重力是地球对飞行器的吸引力,它的作用是使飞行器向地面运动。
飞行器在受到重力的作用下会垂直下降,所以需要通过其他力来抵消重力的作用。
2. 升力升力是垂直于飞行器机翼的力,它的作用是使飞行器能够在空中保持飞行状态。
升力的产生主要依靠机翼的气动特性,当飞行器在空中飞行时,机翼会受到空气的压力,进而产生升力。
3. 推力推力是飞行器前进或改变速度的力,它的产生主要依靠发动机。
飞行器通过发动机喷出高速气流,产生反作用力,从而推动飞行器向前运动。
推力的大小取决于发动机的喷气速度和流量。
4. 阻力阻力是飞行器在运动中所受到的阻碍力,它的作用是使飞行器在空中运动时受到阻碍。
阻力的大小主要取决于飞行器的速度和空气的粘性,对于气动外形较大的飞行器来说,阻力会更大。
在飞行器动力学中,需要对飞行器进行建模和仿真,以便预测飞行器在不同条件下的运动特性。
此外,还需进行飞行器的控制设计,以确保飞行器能够按需运动。
二、空气动力学空气动力学是研究飞行器与空气之间的相互作用的科学,它包括气动力学和气动设计两个方面。
1. 气动力学气动力学研究的是飞行器在空气中运动时所受到的力和力矩。
其中,主要涉及到的力有升力、阻力、侧向力等,力矩则包括滚转力矩、俯仰力矩和偏航力矩等。
通过对飞行器的气动力学性能进行研究,可以预测飞行器在不同姿态下的受力情况。
2. 气动设计气动设计是指根据飞行器在空中的运动要求,进行飞行器外形的设计。
在设计过程中,需要考虑飞行器的气动特性、气动性能和减阻措施等。
通过合理的气动设计,可以使飞行器在空气中运动时具有良好的气动性能和操纵特性。
飞⾏器动⼒学与控制复习要点1. 卫星轨道六要素是哪些P2-7),,,,,(p t i e a ωΩ,其中a 半长轴,e 偏⼼率,i 轨道倾⾓,Ω升交点⾚经,ω近地点幅⾓,p t 卫星经过近地点时刻。
2. 卫星发射三要素是什么P17-18),,(L t A ?,其中?发射场L 的地⼼纬度,A 发射⽅位⾓,L t 发射时刻。
3. 什么是太阳同步轨道P23选择轨道半长轴a 和倾⾓i 的组合使d /)(9856.0?=?Ω,则轨道进动⽅向和速率,与地球绕太阳周年转动的⽅向和速率相同(即经过365.24平太阳⽇,地球完成⼀次360°的周年运动),此特定设计的轨道称为太阳同步轨道。
4. 什么是临界轨道、冻结轨道P24-25若远地点始终处在北极上空,即拱线不得转动,轨道倾⾓满⾜02sin 5.22=-i ,即=43.63i 或?=57.116i 。
此值的倾⾓称为临界倾⾓,此类轨道称为临界轨道。
若选择合适的偏⼼率及合适的近地幅⾓,使0==e ω,近地点幅⾓ω被保持,或称被冻结在90°。
轨道的倾⾓和⾼度可以独⽴选择,此类轨道称作冻结轨道。
5. 回归轨道的回归系数是什么P26轨道经过N 天回归⼀次,在回归周期内共转R 圈,每天的轨道圈数(⾮整数)Q 称为回归系数。
R C Q I NN==±,+表⽰轨迹东移,-表⽰轨迹西移。
I 为接近⼀天的轨道圈数,为正整数。
6. 静⽌轨道的特点、三要素是什么P28(1)轨道的周期与地球⾃旋周期⼀致(2)轨道的形状为圆形,偏⼼率0e = (3)轨道处在地球⾚道平⾯上,倾⾓0i = 7. 星座轨道的全球覆盖公式相邻卫星星下点之间的⾓距为2b ,覆盖带宽度为2c ,轨道数为2p cπ=,每⼀轨道上的卫星数q bπ=,卫星总数2t a n,s i n ,s i n s i n s i n2t a nc N p qb c bc πψθθ====8. 地球同步卫星群的分置模式有哪⼏种P36(1)经度分置模式:各个⼦卫星沿轨道经度圈分布,位于星座中⼼定点位置的两侧,具有不同的平经度。
航空航天工程专业本科培养方案一、专业简介为适应我国航空航天技术飞速发展对高级专业人才的迫切需求,2012年设立航空航天工程本科专业,2013年开始招生。
本专业现有专职师资21人,其中教授5人,副教授10人,多是近年由国内外知名航空航天院校引进,全部具有博士学位。
本专业设有湖南省重点实验室,与航天科工集团联合建立了先进飞行器协同创新中心和空间智能飞行器协同创新中心,形成了以新概念飞行器技术和飞行器结构功能一体化材料为特色的专业方向。
二、培养目标培养具有社会主义核心价值观,品行优秀、身心健康;具备深厚的数学、物理、力学、材料、实验及信息技术基础,掌握航空航天专业扎实的基础理论、系统的专门知识以及本专业的现代分析测试手段;了解本专业的最新进展和研究动态;具备在飞行器设计、飞行器动力学与控制、飞行器结构功能一体化材料和相关领域从事科学研究的能力基础;具有解决工程实际问题和产品研发能力的复合型高级人才。
三、培养要求航空航天工程是在国民经济和国防建设中有重要地位的专业方向,是现代社会发展和科学技术进步的重要高技术领域。
该专业主要以航空器、航天器、火箭与导弹等类型的飞行器的工作原理、结构与设计、飞行动力学与控制、研制与生产、应用与维护等方面为主要学习和研究对象,学科基础涉及数学、物理学、化学、机械学、控制科学、电子信息学、力学等多个学科,具有理论与工程并重、专业性和系统性相结合、学科紧密交叉融合的特点。
根据教育部公布的航空航天类专业教学质量国家标准,结合本专业的人才培养目标和特色,本专业毕业生需要具备的基本知识、能力、素质如下:1.知识要求拥有良好的人文素质知识、学科基础知识、专业知识。
①人文素质知识掌握哲学、思想道德、政治学、法学、社会学、心理学等知识,了解相关知识的发展现状和趋势。
掌握一定的人际交流、管理、行政领导学等知识,满足工程应用中的管理和交流的需要,了解相关知识的发展现状和趋势。
②学科基础知识掌握航空航天工程技术所需的自然科学基础,包括数学、物理、化学等基础,了解相关学科的发展现状和趋势。
飞行器控制与信息工程专业考研方向概述飞行器控制与信息工程是航空航天领域的一个重要专业方向。
本文将介绍飞行器控制与信息工程专业考研方向的相关信息,包括专业背景、研究内容、就业前景等。
专业背景飞行器控制与信息工程专业是航空航天工程学科下的一个分支,旨在培养掌握飞行器控制与信息工程的基本理论和方法,具备分析和解决飞行器控制与信息工程相关问题的能力。
研究内容飞行器控制与信息工程专业的研究内容包括但不限于以下方面:1.飞行器控制系统设计与优化;2.飞行器动力学与控制;3.飞行器导航与制导;4.飞行器应用与仿真技术;5.飞行器通信与数据链路;6.飞行器传感器与信息处理;7.飞行器故障诊断与容错控制。
就业前景飞行器控制与信息工程专业毕业生可在航空航天、国防科技、航空器制造、航空航天研究院等单位从事设计、研发、制造、测试和应用等工作。
另外,随着航空航天技术的不断发展和飞行器的广泛应用,对掌握飞行器控制与信息工程知识的专业人才的需求也越来越大。
因此,飞行器控制与信息工程专业的就业前景较好。
专业要求对于想要从事飞行器控制与信息工程专业的考研学生,一般要求具备以下条件:1.数学、物理等基础学科扎实;2.具备一定的工程背景,如电子、自动化等专业;3.对飞行器与航空航天领域感兴趣;4.有较强的分析和解决问题的能力。
考研备考建议如果你有意向考研飞行器控制与信息工程专业,以下是一些建议:1.系统学习相关基础课程,如数学、物理、电子、控制等;2.关注航空航天领域的最新科研成果和技术进展;3.参加相关实践活动,如参与学校的科研项目或实验室的实习;4.刷题巩固基础,尤其是考研数学和专业课的知识;5.多参加模拟考试,熟悉考试规则和形式;6.注重个人综合素质的提高,如口语表达能力、组织协调能力等。
结语飞行器控制与信息工程专业是航空航天领域的重要方向之一,对于追求研究和应用飞行器技术的人来说,是一个不错的选择。
希望本文对考研飞行器控制与信息工程专业方向有所帮助。