北师大版五年级数学上册《因数、质数》课件
- 格式:pptx
- 大小:3.38 MB
- 文档页数:25
分解质因数知识精讲1.质因数和分解质因数每个合数都可以写成几个质数相乘的形式,这几个质数就是这个合数的质因数。
如30=2×3×5,2,3,5就是30的质因数。
把一个合数分解成若干个质数相乘的形式,这个过程就叫作分解质因数。
2.分解质因数的方法(1)分解法不断把这个合数分解成一个质数和另一个数相乘的形式,一直到最后都是质数为止,以把24分解质因数为例。
242 × 122 × 62 × 3上面第一步是把合数24分解成2×12,接着再把12分解成2×6,再把6分解成2×3,最后整理可得:24=2×2×2×3。
(2)短除法短除法是指不按一般的除法竖式格式书写,而是在被除数的左边写除数、在被除数的下面直接写出商的方法。
用短除法分解质因数时,从最小的质数除起,如果得到的商是质数,就把除数和商写成相乘的形式;如果得到的商是合数,就继续除,直到所得商是质数为止,最后把所有除数和最后的商写成连乘的形式。
如: 2 242 122 63因此,24=2×2×2×3。
易错易误点1.质因数分解不完全分解质因数时,容易出现分解的最后结果中仍有合数的情况。
如将36分解质因数的结果写成36=2×3×6。
这里,6是合数,不是质数,这是错误的,最后结果必须分解为全是质数的形式。
因此需要继续将6分解质因数,最后得到的结果应该是36=2×2×3×3。
2.用短除法分解质因数时除数不是质数如: 4 482 122 63所以48=4×2×2×3。
这里错在第一个除数4不是质数,所以这个分解质因数的结果是错误的,正确结果应该是48=2×2×2×2×3。
典型例题例1 请把56分解质因数。
解析:可以用分解法进行,即用分解的形式把56一步一步用整数乘法分解,直到全部分解为质数相乘的形式为止。
一、教材依据:九年义务教育六年制小学数学北师大版五年级上册第三章“找质数”。
二、设计思路:本节教材按前一节“找因数”的编写思路编写而成,用小正方形拼长方形的方法,引导学生认识质数和合数。
教材用“12个小正方形拼长方形”作为示范,引导学生继续拼长方形,找出2到12各个数的全部因数,并填入表中进行观察和分析。
引导学生发现有的只能拼一种长方形,这样的数只有1和它本身两个因数,有的能拼两种或以上长方形,这样的数有两个以上因数。
在讨论交流的基础上,将这些数分为两类,以揭示质数和合数的意义,进而认识1既不是质数也不是合数。
三、本节课是在学生已经掌握了2、3、5的倍数的特征、熟练找一个数的因数的方法和初步掌握了合作交流的学习方法的基础上进行教学的。
质数和合数的意义比较抽象,找质数不象找奇数、偶数和找因数那样规律性强,因此学生接受起来会很困难,因此在教学时要注重找质数的方法的多样性和灵活性。
本节课我本着以人的发展为本的教学理念,着眼于学生的可持续发展,注重教学目标的多元化,在价值目标取向上不仅仅局限于学生获得一般的解决问题技能,更重要的是让学生在数学学习过程中感受到数学自身的魅力,获得数学的基本思想,了解数学的价值,体验问题解决的过程。
三、教学目标:1、在用小正方形拼长方形的活动中,经历探索质数和合数的过程,理解质数和合数的意义,并能判断一个数是质数还是合数,会把非0自然数按因数的个数进行分类。
2、培养学生自主探索,独立思考、合作交流的能力。
3、在研究质数的过程中丰富对数学发展的认识,培养学生敢于探索科学之谜的精神,充分展示数学文化的魅力。
四、教学重点:经历探索质数和合数的过程,理解质数和合数的意义。
五、教学难点:判断一个数是质数还是合数的方法。
六、教学准备:多媒体课件。
七、教学过程:以著名的“哥德巴赫猜想”引入。
同学们,你们听说过“哥德巴赫猜想”吗?有人把“哥德巴赫猜想”比作数学王冠上的一颗明珠。
你们想知道“哥德巴赫猜想”吗?点击课件出示:每一个大于2的偶数都可以写成两个质数之和。
五年级上册数学素材质数和合数的概念|北师大版【基础知识】质数:一个数,如果只有1和它本身两个因数,这样的数叫做质数〔或素数〕合数:一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。
1不是质数也不是合数,自然数除了1外,不是质数就是合数。
如果把自然数按其因数的个数的不同分类,可分为质数〔两个因数〕、合数〔大于两个因数〕和1〔1个因数〕。
100百以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
共25个。
除1除1以外任意两个质数的和都是偶数最小的质数是2,最小的合数是4质数×质数=合数合数×合数=合数质数×合数=合数【随堂练习】像2、3、5、7这样的数都是〔〕,像10、6、30、15这样的数都是〔〕。
20以内的质数有〔〕,合数有〔〕。
自然数〔〕除外,按因数的个数可以分为〔〕、〔〕和〔〕。
在16、23、169、31、27、54、102、111、97、121这些数中,〔〕是质数,〔〕是合数。
用A表示一个大于1的自然数,A2必定是〔〕。
A+A必定是〔〕。
一个四位数,个位上的数是最小的质数,十位上是最小的自然数,百位上是最大的一位数,最高位上是最小的合数,这个数是〔〕。
两个连续的质数是〔〕和〔〕;两个连续的合数是〔〕和〔〕〔8〕两个质数的和是12,积是35,这两个质数是〔〕A. 3和8B. 2和9C. 5和7〔9〕判断并改正:一个自然数不是质数就是合数。
〔〕所有偶数都是合数。
〔〕一个合数的因数的个数比一个质数的因数的个数多。
〔〕所有质数都是奇数。
〔〕两个不同质数的和一定是偶数。
〔〕三个连续自然数中,至少有一个合数。
〔〕大于2的两个质数的积是合数。
〔〕7的倍数都是合数。
〔〕20以内最大的质数乘以10以内最大的奇数,积是171。
〔〕2是偶数也是合数。
〔〕1是最小的自然数,也是最小的质数。