Hill密码的加密、解密与破译
- 格式:ppt
- 大小:173.00 KB
- 文档页数:13
Hill 密码的加密、解密和破译 实验报告吴林柱 5100309888实验任务2、利用所介绍的Hill 密码体制原理,根据所给定的26个英文字母的乱序表值(见表),设计与Hill 4密码体制的加密、解密与破译框图并建立必要的计算机程序。
设英文26个字母以下的乱序表与Z 26中的整数对应: A B C D E F G H I J K L M 5 23 2 20 10 15 8 4 18 25 0 16 13 N O P Q R S T U V W X Y Z 731196122421171422119(1)设⎪⎪⎪⎪⎪⎭⎫⎝⎛=4116109485105965968A ,验证矩阵A 能否作为Hill 4,用框图画出你的验算过程,并编写相应的计算机程序。
(2)设明文为HILL CRYPTOGRAPHIC SYSTEM IS TRADITIONAL 。
利用上面的表值与加密矩阵给此明文加密,并将得到的密文解密。
画出加密与解密过程的框图并编写相应的计算机程序。
(3)已知在上述给定值下的一段密文为JCOWZLVBDVLEQMXC ,对应的明文为DELAY OPERATIONSU 。
能否确定对应的加密矩阵?给出你的判断过程。
4、如下的密文据表10.1以Hill 加密,密文为VIKYNOTCLKYRJQETIRECVUZLNOJTUYDI MHRFITQ 。
已获知其中相邻字母LK 表示字母KE ,试破译这份密文。
5、找出元素属于Z 26的所有可能的Hill 密码加密矩阵。
若截获了如下一段密文UTCQCVFOYQUVMGMGULFOLEYHDUDOPEASWXTIFBAMWT 且知他是根据表10.1按Hill 密码 体制加密的,能否破译?实验解答2、(1)由定义可知,元素属于Z m 的方阵A 模m 可逆的充要条件是,m 和det A 没有公共素因子。
因此,框图如下:求矩阵A 的行列式 det A 若det A 与26没有公共素因子,则A 可用。
Hill密码本⽂为转载他⼈⽂章这⾥主要介绍的是:古典密码之 hill密码加密解密过程的编程实现。
⾸先,请看对我对hill密码做的简单介绍。
hill密码是古典密码中多表代换密码部分的重要⼀环,以下的介绍节选⾃百度,想要深⼊了解的请查阅书籍补充相关知识。
原理:希尔密码(Hill Password)是运⽤基本矩阵论原理的替换密码,由Lester S. Hill在1929年发明。
每个字母当作26数字:A=0, B=1, C=2...⼀串字母当成n维向量,跟⼀个n×n的矩阵相乘,再将得出的结果模26。
注意⽤作加密的矩阵(即密匙)在\mathbb_^n必须是可逆的,否则就不可能译码。
只有矩阵的和26,才是可逆的。
需要的知识储备:1)线性代数基础知识.2) 基础知识.约定:1)希尔密码常使⽤Z26字母表,在此贴中,我们也以Z26最为字母表进⾏讲解.在附带源码中有两种字母表选择.2) ⼤家都知道最⼩的质数是2,1 既不是质数也不是合数. 在此我们定义1对任何质数的模逆为其本⾝.因为对于任意质数n,有: 1*1 % n = 1 的. 也应该是很好理解的.过程:1)加密:密⽂=明⽂*密钥矩阵(注:明⽂要被分割成与密钥维数相同的⼀维⾏列式)2)解密:明⽂=密⽂*密钥矩阵的逆(注:要求与加密过程相同)加密解密过程如下图:例:加密过程:解密:对上述过程进⾏编程,主要的函数声明如下:12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25/*** 头⽂件名称:hillcrypto.h* 实现⽂件名称:hillcrypto.cpp* 项⽬名称:多表代换密码之hill密码* 作者:邹明* 完成时间:2016.3.14**/#ifndef __HILLCRTPTO_H__#define __HILLCRTPTO_H__#include<iostream>using namespace std;#include<assert.h>#include <iomanip>#define ROW 4 //密钥⾏数为4#define COV 4 //密钥列数为4void InputKeys(float keys[ROW][COV]); //输⼊密钥void InputWords(char*words); //输⼊明⽂void InputObwords(char*words); //输⼊密⽂void PopKeys(float keys[ROW][COV]); //输出密钥void Encryption(float keys[ROW][COV], char*words, char*crypto); //明⽂加密2526 27 28 29 30 31 32 33void Encryption(float keys[ROW][COV], char*words, char*crypto); //明⽂加密void Decode(float keys[ROW][COV], char*words, char*crypto); //密⽂解密bool Gauss(float A[ROW][COV], float B[ROW][COV], int n); //⾼斯消去法求逆矩阵void ObMatrix(float a[ROW][COV], float b[ROW][COV], int n); //求密钥逆矩阵void menu(); //菜单#endif函数实现过程中的主函数实现以及菜单函数实现如下:12345 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56/* 实现⽂件名称:hillcrypto.cpp */#include"hillcrypto.h"int main(){menu(); //菜单+选择system("pause");return0;}void menu(){float keys[ROW][COV] = { 8, 6, 9, 5, 6, 9, 5, 10, 5, 8, 4, 9, 10, 6, 11, 4 }; //加密矩阵(默认密钥) float obkeys[ROW][COV] = { 0 }; //解密矩阵(密钥逆矩阵)char words[100] = { 0 };char crypto[100] = { 0 };char obwords[100] = { 0 };bool flag = true; //菜单选择bool chose = false; //密钥选择char cn = 0;while(flag){int n = 0;cout << endl;cout << "\t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"<< endl;cout << "\t\t\t1.输⼊密钥"<< endl;cout << "\t\t\t2.明⽂加密"<< endl;cout << "\t\t\t3.密⽂解密"<< endl;cout << "\t\t\t4.退出"<< endl << endl;cout << "\t~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"<< endl;cout << "请选择->:";cin >> n;switch(n){case1:system("cls");cout << "默认密钥为:";PopKeys(keys);cout << "请问您要重新输⼊密钥? y/n"<< endl << "请选择->:";cin >> cn;if((cn == 'y') || (cn == 'Y')){InputKeys(keys); //输⼊密钥}else if((cn == 'n') || (cn == 'N')){cout << "感谢您选择使⽤默认密钥!"<< endl;}elsecout << "输⼊有误,请重新选择!"<< endl;system("pause");break;case2:system("cls");InputWords(words); //输⼊明⽂Encryption(keys, words, crypto); //加密cout << "密⽂是->:"<< crypto << endl;56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 cout << "密⽂是->:"<< crypto << endl;system("pause");break;case3:system("cls");InputObwords(crypto); //输⼊密⽂ObMatrix(keys, obkeys, COV); //计算解密矩阵 Decode(obkeys, obwords, crypto); //解密cout << "明⽂是->:"<< obwords << endl;system("pause");break;case4:system("cls");cout << endl << endl << endl;cout << setw(15) << "谢谢使⽤!"<< endl;flag = false;system("pause");break;default:cout << "选择有误,请重新选择!"<< endl;system("pause");break;}}}输⼊明⽂函数和输⼊密⽂函数:123456 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40void InputWords(char*words) //输⼊明⽂{assert(words);cout << "请输⼊明⽂:";char*start = words;int flag = 1;getchar();while(flag){*words = getchar();words++;if(*(words - 1) == '\n'){*words = '\0';flag = 0;}}words = start;while(*start){if(('A'<= *start) && (*start <= 'Z')){*words = *start;words++;}else if(('a'<= *start) && (*start <= 'z')) {*words = *start - 32;words++;}start++;}*words = '\0';cout << "输⼊成功!"<< endl;}void InputObwords(char*words) //输⼊密⽂{assert(words);cout << "请输⼊密⽂:";char*start = words;40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 char*start = words;int flag = 1;getchar();while(flag){*words = getchar();words++;if(*(words - 1) == '\n'){*words = '\0';flag = 0;}}words = start;while(*start){if(('A'<= *start) && (*start <= 'Z')){*words = *start;words++;}else if(('a'<= *start) && (*start <= 'z')) {*words = *start - 32;words++;}start++;}*words = '\0';cout << "输⼊成功!"<< endl;}输⼊密钥与输出密钥函数:12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26void InputKeys(float keys[ROW][COV]) //输⼊密钥{cout << "请输⼊密钥:"<< endl;for(size_t i = 0; i < ROW; i++){cout << "请输⼊第"<< i << "⾏密钥("<<ROW<<"个数):"; for(size_t j = 0; j < COV; j++){cin >> keys[i][j];}}cout << "输⼊成功 !"<< endl;}void PopKeys(float keys[ROW][COV]) //输出密钥{cout << "密钥为:"<< endl;for(size_t i = 0; i < ROW; i++){for(size_t j = 0; j < COV; j++){cout << keys[i][j] << " ";}cout << endl;}}加密函数:123 4 5void Encryption(float keys[ROW][COV], char*words, char*crypto) //加密函数{assert(words);int len = strlen(words);5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 int len = strlen(words);char*start = words;while(len > 0){int matrix[ROW] = { 0 };for(int i = 0; i < ROW; i++){if(*start)matrix[i] = *start - 'A';elsematrix[i] = 0;start++;}len -= ROW;int cry[ROW] = { 0 };for(int i = 0; i < ROW; i++){int temp = 0;for(int j = 0; j < COV; j++){temp = matrix[j] * keys[j][i] + temp; }cry[i] = temp % 26;*crypto = 'A'+ cry[i]; //计算密⽂crypto++;}}}解密函数,以及求逆矩阵函数:1234567891011 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39void Decode(float obkeys[ROW][COV], char*words, char*crypto)//解密函数{assert(crypto);int len = strlen(crypto);char*start = crypto;while(len > 0){int matrix[ROW] = { 0 };for(int i = 0; i < ROW; i++){if(*start)matrix[i] = *start - 'A';elsematrix[i] = 0;start++;}len -= ROW;int cry[ROW] = { 0 };for(int i = 0; i < ROW; i++){int temp = 0;for(int j = 0; j < COV; j++){temp = matrix[j] * obkeys[j][i] + temp;}cry[i] = temp % 26;*words = 'A'+ cry[i]; //计算明⽂words++;}}}39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107void ObMatrix( float a[ROW][COV], float b[ROW][COV], int n) //求逆矩阵函数{int i, j; //定义矩阵的⾏列式if(Gauss(a, b, n)){cout << "该⽅阵的逆矩阵为: \n";for(i = 0; i < n; i++){cout << setw(4);for(j = 0; j < n; j++){int temp =b[i][j]/ 1;float num = b[i][j] - temp;if(fabs(num) < 0.50)b[i][j] = (int)temp;elseb[i][j] = temp + (int)(num * 2);cout << b[i][j] << setw(10);}cout << endl;}}cout << "逆矩阵(mod26):"<< endl;for(int i = 0; i < ROW; i++){cout << setw(4);for(int j = 0; j < COV; j++){if(b[i][j] >= 0){b[i][j] = (int)b[i][j] % 26;}else{b[i][j] = 26 + (int)b[i][j] % 26;}cout << b[i][j] << setw(6);}cout << endl;}}bool Gauss(float A[ROW][COV], float B[ROW][COV], int n) //⾼斯消去法{int i, j, k;float max, temp;float t[ROW][COV]; //临时矩阵//将A矩阵存放在临时矩阵t[n][n]中for(i = 0; i < n; i++){for(j = 0; j < n; j++){t[i][j] = A[i][j];}}//初始化B矩阵为单位阵for(i = 0; i < n; i++){for(j = 0; j < n; j++){B[i][j] = (i == j) ? (int)1 : 0;}}for(i = 0; i < n; i++){//寻找主元max = t[i][i];k = i;for(j = i + 1; j < n; j++){if(fabs(t[j][i]) > fabs(max)){max = t[j][i];k = j;}}107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 }//如果主元所在⾏不是第i⾏,进⾏⾏交换if(k != i){for(j = 0; j < n; j++){temp = t[i][j];t[i][j] = t[k][j];t[k][j] = temp;//B伴随交换temp = B[i][j];B[i][j] = B[k][j];B[k][j] = temp;}}//判断主元是否为0, 若是, 则矩阵A不是满秩矩阵,不存在逆矩阵 if(t[i][i] == 0){cout << "There is no inverse matrix!";return false;}//消去A的第i列除去i⾏以外的各⾏元素temp = t[i][i];for(j = 0; j < n; j++){t[i][j] = t[i][j] / temp; //主对⾓线上的元素变为1B[i][j] = B[i][j] / temp; //伴随计算}for(j = 0; j < n; j++) //第0⾏->第n⾏{if(j != i) //不是第i⾏{temp = t[j][i];for(k = 0; k < n; k++) //第j⾏元素 - i⾏元素*j列i⾏元素 {t[j][k] = t[j][k] - t[i][k] * temp;B[j][k] = B[j][k] - B[i][k] * temp;}}}}return true;}程序运⾏结果:选择:1选择:y选择:n选择 2.明⽂加密:选择 3.密⽂解密:选择 4.退出:。
hill密码算法原理
Hill密码算法是一种基于线性代数的分组对称密码算法,它的
核心原理是将明文分成几个字母一组,然后利用矩阵乘法来实现加密和解密过程。
具体原理如下:
1. 密钥生成:选择一个正整数n,然后随机生成一个n×n的矩
阵K作为密钥矩阵。
2. 加密过程:
a. 将明文分组,每组n个字母。
如果最后一组不足n个字母,可以通过添加空格等方式补齐。
b. 将每个明文分组转换为一个列向量X,即向量X的每个元
素对应一个字母的数值,可以使用ASCII码表进行转换。
c. 对于每个明文向量X,进行矩阵乘法运算:C = K * X,其
中C为密文向量。
d. 将得到的密文向量C转换回字母形式。
3. 解密过程:
a. 将密文分组,每组n个字母。
b. 对于每个密文向量Y,进行矩阵乘法运算:X = K^-1 * Y,其中X为解密后的明文向量。
c. 将得到的明文向量X转换回字母形式。
需要注意的是,密钥矩阵K必须是可逆的,否则解密过程无
法正确进行。
同时,由于矩阵乘法运算的特性,对于某些明文分组,可能存在明文和密文相同的情况,这被称为"Hill同态"。
为了避免这种情况,通常会对字母表进行扩展或使用其他技巧进行加密。
Hill密码加密的密文破译姓名:谭周兴学号:13091076明文:breathtaking密文:RUPOTENTOIFVHill密码:将明文的每个字母当作26进制数字:A=0, B=1, C=2... 一串字母当成n 维向量,跟一个n×n的矩阵M相乘,再将得出的结果MOD26,得到密文。
密钥矩阵M必须是在Z26上可逆才能译码。
明文对应的数字:1,17,4,0,19,7,19,0,10,8,13,6密文对应的数字:17,20,15,14,19,4,13,19,14,8,5,21分析:一共有12位数字,则密钥矩阵可能是1*1、2*2、3*3、4*4、6*6、12*12(为12的因子)维的。
根据已有的明密文不能破译4*4及其以上的密钥矩阵,另外明文里面含有0,从而排除1*1的情况,因而考虑2*2阵和3*3阵。
1、2*2矩阵:将明文按行写成一些2*2矩阵,如A1=[11740],B=[17201514]。
A1M(mod26)=B,矩阵A1在实数域内是可逆矩阵,判断A1在Z26上是否可逆,计算det(A1)(mod 26)=10,与26不互素,故A1不可逆,M无法根据A1得到。
继续上述步骤,A2=[40197]。
计算det(A2)(mod 26)=2,与26不互素,故A2不可逆,M无法根据A2得到。
det(A3)(mod 26)=23,和M互素,如图计算A3的代数余子式A*=(detA)*A-1mod26(矩阵元素元素属于实数域)和A-1.A-1=A*|A|-1(这里的矩阵元素和行列式的逆属于Z26.|A|-1计算用如下代码即可:#include<stdio.h>void main(){int i,a;scanf("%d",&a);for(i=0;i<=25;i++){if((a*i)%26==1)break;}printf("%d",i);}算得M=[13 1;12 9]。