实验十 Hill密码的加密、解密与破译
- 格式:doc
- 大小:59.00 KB
- 文档页数:5
数模实验一 实验内容:用MATLAB 实现 Hill n 密码程序(包括加密、解密及破译三个环节)一 实验目的实现Hill n 密码体系的关键环节(加密、解密、破译)二 预备知识熟悉mod 、det 、find 等Matlab 命令三 实验内容与要求(1)假设加密矩阵为A =⎪⎪⎭⎫ ⎝⎛3201,用MATLAB 编制程序,加密下面一段明文:SHUXUEJIANMOJINGSAI 命令结果 function hill()%输入密钥disp('输入密钥(矩阵)的维数');n=input('');disp('输入密钥(矩阵,按行输入)');key=zeros(n,n);for j=1:nfor k=1:nkey(j,k)=input('');endend IXQTEOBACPQSBABUU CAAi=1; while i<m+1B=message(i:i+n-1)';a=key*B;A(i:i+n-1)=a';i=i+n;endfor i=1:m if A(i)>26A(i)=mod(A(i),26);endA(i)=A(i)+64;endstr=char(A);fprintf('密文为%s',str)(2)假设加密矩阵为A =1103⎛⎫ ⎪⎝⎭,用MATLAB 编制程序,解密下面一AXSTZOSAOPBSTKSAN OPSAHAUUNSUUAKGAUZC K KOP D O 段密文: 命令结果 function hill2()%输入密钥disp('输入密钥(矩阵)的维数');n=input('');YTMHOSTCEVUEEGTC YGEVTCICPKGEPKLG HCU@NGEVSS(3)甲方截获了一段密文:BKOPGATRHMMBFC SDJC CAUU经分析这段密文是用Hill2密码编译的,且这段密文的字母SDJC依次代表字母IJIA,请破译这段密文的内容(4)编写通用的Hill密码软件(Matlab)。
Hill 密码的加密、解密和破译 实验报告吴林柱 5100309888实验任务2、利用所介绍的Hill 密码体制原理,根据所给定的26个英文字母的乱序表值(见表),设计与Hill 4密码体制的加密、解密与破译框图并建立必要的计算机程序。
设英文26个字母以下的乱序表与Z 26中的整数对应: A B C D E F G H I J K L M 5 23 2 20 10 15 8 4 18 25 0 16 13 N O P Q R S T U V W X Y Z 731196122421171422119(1)设⎪⎪⎪⎪⎪⎭⎫⎝⎛=4116109485105965968A ,验证矩阵A 能否作为Hill 4,用框图画出你的验算过程,并编写相应的计算机程序。
(2)设明文为HILL CRYPTOGRAPHIC SYSTEM IS TRADITIONAL 。
利用上面的表值与加密矩阵给此明文加密,并将得到的密文解密。
画出加密与解密过程的框图并编写相应的计算机程序。
(3)已知在上述给定值下的一段密文为JCOWZLVBDVLEQMXC ,对应的明文为DELAY OPERATIONSU 。
能否确定对应的加密矩阵?给出你的判断过程。
4、如下的密文据表10.1以Hill 加密,密文为VIKYNOTCLKYRJQETIRECVUZLNOJTUYDI MHRFITQ 。
已获知其中相邻字母LK 表示字母KE ,试破译这份密文。
5、找出元素属于Z 26的所有可能的Hill 密码加密矩阵。
若截获了如下一段密文UTCQCVFOYQUVMGMGULFOLEYHDUDOPEASWXTIFBAMWT 且知他是根据表10.1按Hill 密码 体制加密的,能否破译?实验解答2、(1)由定义可知,元素属于Z m 的方阵A 模m 可逆的充要条件是,m 和det A 没有公共素因子。
因此,框图如下:求矩阵A 的行列式 det A 若det A 与26没有公共素因子,则A 可用。
hill密码加密例题Hill密码是一种基于线性代数的密码算法,它使用矩阵运算来进行加密和解密。
下面我将给出一个Hill密码加密的例题,并从多个角度进行全面解答。
假设我们要加密的明文是:"HELLO",并且我们选择使用2x2的密钥矩阵进行加密。
密钥矩阵可以表示为:K = [[2, 3],。
[1, 4]]现在,我们将按照Hill密码的加密步骤来进行加密:步骤1: 明文转化为数字。
首先,我们需要将明文转化为对应的数字。
通常可以使用字母表来进行映射,比如A对应0,B对应1,以此类推。
在这个例题中,我们使用A=0,B=1,C=2,...,Z=25的映射方式。
所以,"HELLO"可以转化为[7, 4, 11, 11, 14]。
步骤2: 分组。
然后,我们将数字分组,每个组的长度与密钥矩阵的行数相同。
在这个例题中,由于密钥矩阵是2x2的,所以我们将数字分组为[[7, 4], [11, 11], [14]]。
步骤3: 矩阵乘法。
接下来,我们将每个分组与密钥矩阵进行矩阵乘法运算。
对于每个分组,我们将其转化为一个行向量,并与密钥矩阵进行乘法运算。
在这个例题中,第一个分组[7, 4]与密钥矩阵K进行乘法运算,得到的结果为[2, 29]。
步骤4: 取模运算。
然后,我们对矩阵乘法的结果进行取模运算,通常取模26。
这是因为我们使用了26个字母的字母表。
在这个例题中,对于矩阵乘法的结果[2, 29],我们进行取模26运算,得到[2, 3]。
步骤5: 数字转化为密文。
最后,我们将取模运算的结果转化为对应的字母。
在这个例题中,[2, 3]对应的字母是"C"和"D"。
所以,加密后的密文为"CD"。
综上所述,使用2x2的密钥矩阵K对明文"HELLO"进行Hill密码加密后得到的密文为"CD"。
从多个角度来看,Hill密码的加密过程涉及到了线性代数的矩阵运算,包括矩阵乘法和取模运算。
实验内容:Hill n 密码体系 一 实验目的实现Hill n 密码体系的关键环节(加密、解密、破译) 二 预备知识熟悉mod 、det 、find 等Matlab 命令 三 实验内容与要求(1)假设加密矩阵为A =⎪⎪⎭⎫⎝⎛3201,用M A T L A B 编制程序,加密下面一段明文:SHUXUEJIANMOJINGSAI(2)假设加密矩阵为A =1103⎛⎫⎪⎝⎭,用M A T L A B编制程序,解密下面一段密文:AXSTZOSAOPBSTKSAN OPSAHAUUNSUUAKGAUZC K KOP D O(3)甲方截获了一段密文:BKOPGATRHMMBFC SDJC CAUU经分析这段密文是用Hill 2密码编译的,且这段密文的字母SDJC依次代表字母IJIA ,请破(4)编写通用的Hill密码软件(Matlab或C++) Shiyan.m代码function mima=shiyan(x,A)n=length(x);x2=double(x)-96;x3=reshape(x2,2,n/2);x4=A*x3;x5=mod(reshape(x4,1,n),26)+96;x5(find(x5==96))=122;mima=char(x5);sy2.m代码:function mingwen=sy2(x,A)n=length(x);x2=double(x)-96;x3=reshape(x2,2,n/2);a=floor(det(A));aa=qiumoni(a);A_inv=mod(aa*det(A)*inv(A),26);x4=A_inv*x3;x5=mod(reshape(x4,1,n),26)+96;x5(find(x5==96))=122;mingwen=char(x5);qiumoni代码:function aa=qiumoni(a)a=a;aa=0;for i=1:25if mod(a*i,26)==1aa=i;breakendendif aa==0disp('没有该模的逆')endsy3.m代码:function A=sy3(a1,a2)C=reshape(double(a1)-96,2,2);P=reshape(double(a2)-96,2,2);c=mod(det(C),26);cc=qiumoni(c);%qiumoni请参见(2)C_inv=mod(cc*det(C)*inv(C),26);A=mod(P*C_inv,26)%使用说明:%先建立Shiyan.m、sy2.m、qiumoni.m、sy3.m三个M文件%1、进行加密操作:% 将加密的内容写在“x=’’”中的单引号中,将加密矩阵写在“A=’’”的单引号中,接着%输入“mima=shiyan(x,A)”即可得到密文。
Hill密码加密的密文破译姓名:谭周兴学号:13091076明文:breathtaking密文:RUPOTENTOIFVHill密码:将明文的每个字母当作26进制数字:A=0, B=1, C=2... 一串字母当成n 维向量,跟一个n×n的矩阵M相乘,再将得出的结果MOD26,得到密文。
密钥矩阵M必须是在Z26上可逆才能译码。
明文对应的数字:1,17,4,0,19,7,19,0,10,8,13,6密文对应的数字:17,20,15,14,19,4,13,19,14,8,5,21分析:一共有12位数字,则密钥矩阵可能是1*1、2*2、3*3、4*4、6*6、12*12(为12的因子)维的。
根据已有的明密文不能破译4*4及其以上的密钥矩阵,另外明文里面含有0,从而排除1*1的情况,因而考虑2*2阵和3*3阵。
1、2*2矩阵:将明文按行写成一些2*2矩阵,如A1=[11740],B=[17201514]。
A1M(mod26)=B,矩阵A1在实数域内是可逆矩阵,判断A1在Z26上是否可逆,计算det(A1)(mod 26)=10,与26不互素,故A1不可逆,M无法根据A1得到。
继续上述步骤,A2=[40197]。
计算det(A2)(mod 26)=2,与26不互素,故A2不可逆,M无法根据A2得到。
det(A3)(mod 26)=23,和M互素,如图计算A3的代数余子式A*=(detA)*A-1mod26(矩阵元素元素属于实数域)和A-1.A-1=A*|A|-1(这里的矩阵元素和行列式的逆属于Z26.|A|-1计算用如下代码即可:#include<stdio.h>void main(){int i,a;scanf("%d",&a);for(i=0;i<=25;i++){if((a*i)%26==1)break;}printf("%d",i);}算得M=[13 1;12 9]。