对流换热传热学课件06资料
- 格式:ppt
- 大小:1.76 MB
- 文档页数:8
高等传热学课件对流换热高等传热学课件对流换热一、概述湍流模型是半阅历、半理论的争论方法,其目的是将湍流的脉动相关项与时均量联系起来,使时均守恒方程封闭。
自1925年Prandtl提出混合长度理论,各国学者对湍流模型进行了大量争论,提出了许多模型。
W.C.Regnolds建议按模型中所包含的微分方程数目进行分类,成为目前适用的湍流模型分类方法。
一般将湍流模型分为:z 零方程模型(代数方程模型)z 一方程模型z 二方程模型z 多方程模型争论(Morkovin 莫尔科文)表明:当M5时,流体的可压缩性对湍流结构不起主导影响,因此我们仅参考不行压缩状况。
依据大量的试验争论结果,湍流边界层对流换热的强弱主要取决在内层区:由相像原理分析得出,Prt近似是一个常数(Prt≈0.9)这样,只要确定了νt,即可简洁地得到αt,所以在介绍湍流模型时,只给出νt或t时均量的关系式。
二、零方程模型(代数方程模型)零方程模型中不包含微分方程,而用代数关系式将νt与时均量关联起来。
Prandtl混合长度理论是最早的代数方程模型。
它适用于:充分进展的湍流剪切流边界层内层,y≤0.2δ。
对外层区,一些学者争论后仍沿用Prandtl混合长度的模型关系式:但,L=λδ(3.7.1)试验常数λ在0.08~0.09之间。
Von Kármán、Deissler、Van Driest、Taylor等人先后提出了更完善的代数方程模型。
(1) Von Kármán模型Von Kármán假设湍流内各点的脉动相像(局部相像),即各点之间只有长度尺度与空间尺度的.差别。
对平行流流场,若对某点(y0处)四周的时均速度进行Taylor开放:(a)若流淌相像,则必有尺度L与速度u0(u0=u(y0))使上式无量纲后成为通用分布。
u(y0)y令 Y=; U(Y)= u0L则有无量纲形式:(b)若上式是相像的通用速度分布,则式中各系数之比应与位置无关,而是一个常数。
第六章高速流动对流换热在前面几章介绍的强制对流换热中,我们假设速度和速度梯度充分小,以致动能和粘性耗散的影响可以忽略不计。
现在考虑高速和粘性耗散的影响。
我们主要介绍有更多重要应用的外部边界层。
6.1 高速流对流换热基本概念高速对流主要涉及以下两类现象:z从机械能向热能的转换,导致流体中的温度发生变化;z由于温度变化使流体的物性发生变化。
空气一类气体若具有极高的速度,将会导致超高温离解、质量浓度梯度,并因此发生质量扩散,使问题变得更加复杂。
这里仅限于关注未发生化学反应的边界层;对空气来说,这意味着我们将不考虑温度超过2000K或者马赫数高于5的情况。
对液体,如果普朗特数足够高的话,粘性耗散实际上在中等速度时就具有很可观的作用。
我们的讨论仅限于普朗特数接近于1的气体。
有关高速对流的研究大都涉及对机械能转换和流体物性随温度变化两个因素的总体考虑,很难看到它们单独的影响。
这里,我们暂不考虑变物性的影响,首先讨论能量转换问题。
能量转换过程能可逆地发生,也能不可逆地发生。
比如,在边界层内,激波与粘性的相互作用使得机械能与热能间的不可逆转换增大,无粘性的速度变化(比如在接近亚音速滞止点附近流体的减速)则产生可逆的,或者非常接近可逆的能量转换。
高速边界层滞止点的比较能很好地说明这两种情况的明显区别。
z在滞止点(图6-1)处速度降低,边界层以外的压力和温度提高。
对于亚音速流动,该过程几乎是等熵的,流体粘度不起什么作用。
无论减速可逆还是不可逆,滞止区边界层以外的流体温度等于滞止温度,也就是说,流体温升来自于绝热减速:(6.1.1) 若不考虑变物性影响,并用*T ∞代替T ∞,低速滞止点的解也能适用于高速滞止点问题: w w ()q h T T ∗∞=− (6.1.2)z 但高速边界层问题有所不同。
如果自由速度很高,边界层以内速度梯度很大,边界层内因粘性切应力产生粘性耗散。
如果物体是绝热的,那么耗散产生的热量可以靠分子或者涡漩传导的机理,从靠近表面的向边界层外传递出去,如图6-2所示。
第六章 单相流体对流换热及准则关联式第一节 管内受迫对流换热本章重点:准确掌握准则方程式的适用条件和定性温度、定型尺寸的确定。
1-1 一般分析),,,,,,,,(l c t t u f h p f w μαρλ=流体受迫在管内对流换热时,还应考虑以下因素的影响:① 进口段与充分发展段,② 平均流速与平均温度,③ 物性场的不均匀性,④ 管子的几何特征。
一、进口段与充分发展段1.流体在管内流动的主要特征是,流动存在着两个明显的流动区段,即流动进口(或发展)段和流动充分发展段,如图所示。
(1)从管子进口到边界层汇合处的这段管长内的流动称为管内流动进口段。
(2)进入定型流动的区域称为流动充分发展段。
在流动充分发展段,流体的径向速度分量v 为零,且轴向速度u 不再沿轴向变化,即:0=∂∂xu, 0=v 2.管内的流态(1)如果边界层在管中心处汇合时流体流动仍然保持层流,那么进入充分发展区后也就继续保持层流流动状态,从而构成流体管内层流流动过程。
2300Re <用νdu m =Re 判断流态, 式中 m u 为管内流体的截面平均流速, d 为管子的内直径,ν为流体的运动黏度。
(2)如果边界层在管中心处汇合时流体已经从层流流动完全转变为紊流流动,那么进入充分发展区后就会维持紊流流动状态,从而构成流体管内紊流流动过程。
410Re >(3)如果边界层汇合时正处于流动从层流向紊流过渡的区域,那么其后的流动就会是过渡性的不稳定的流动,称为流体管内过渡流动过程。
410Re 2300<<3.热进口段和热充分发展段当流体温度和管壁温度不同时,在管子的进口区域同时也有热边界层在发展,随着流体向管内深入,热边界层最后也会在管中心汇合,从而进入热充分发展的流动换热区域,在热边界层汇合之前也就必然存在热进口区段。
随着流动从层流变为紊流, 热边界层亦有层流和紊流热边界层之分。
热充分发展段的特征对常物性流体,在常热流和常壁温边界条件下,热充分发展段的特征是:)(1x f t f =及)(2x f t w =与管内任意点的温度),(r x f t =组成的无量纲温度⎪⎪⎭⎫⎝⎛--x f x w w t t t t ,,x ,随管长保持不变,即: 0,,x ,=⎪⎪⎭⎫ ⎝⎛--∂∂x f x w w t t t t x 式中,t —管内任意点的温度,),(r x f t = ⇒xf x w w t t tt ,,x ,--仅是r 的函数。