整理小升初找规律
- 格式:doc
- 大小:160.50 KB
- 文档页数:3
小升初特训专题:找规律考题及答案专题三:典型找规律问题答案1. 一条直线把圆分为两部分,两条直线可把圆分4部分,3条直线把圆分为(7 )部分,10条直线把圆分为(56)部分。
[规律:1 n (n 1),n表示22. 在平面上画一个圆把平面分为2部分,画2个圆把平面分为4部分,画5个圆把平面分为(22 )部分,画10个圆把平面分为(92 )部分。
[规律:2 n (n 1), n表示圆的个数。
]3. 在平面上画一个三角形把平面分为2部分,画2个三角形把平面分为8部分,画3个三角形把平面分为(20 )部分,画10个三角形把平面分为(272)部分。
[规律:2 3n (n 1), n表示三角形的个数。
]4. 在平面上画一个四边形把平面分为2部分,画2个四边形把平面分为10部分,画5个四边形把平面分为(82)部分,画10个四边形把平面分为(362)部分.[规律:2 4n (n 1), n表示四边形的个数。
]5. 找规律填上合适的数或字母:① 1、2、3、5、8、(13 )、(21 )、34.【斐波那契数列】②1、4、9、16、(25 )、(36 )............. 这个数列中的第90个数是(8100),第100个数是(10000)。
【规律:第n个数二n x n】③1、2、5、10、17、(26 )、(37)......... 这个数列中个数是(8101),第101 个数是(10001 )。
【规律:第n 个数=(n-1)X(n-1)+1 】101,1,98 )、(99,4,100 )、(97,9,102 ) .......... 这个数列中个括号内的三个数分别是(83,100,116 )。
⑤A B C D E FD E A F B CF B D C E A(C E F A B D ). 【规律:每行的第一个字母是上一行的第四个字母。
以此类推】⑥111,31,15,11.8,( 11.16),11.032 【规律:从相邻两数的差80、16、3.2……中发现前一个差是后一个差的5倍】3 1 12 12 16 1 10 1⑦——,一,,,,1 ,(2 ).【规律:分子分母同时乘以6得89 14 79 37 23 2 59 146即可发现:后一个分数的分子是前个分数的分子的2倍,后一个分数的分84母是前个分数的分母小5。
知识点梳理找规律是小学阶段常见的题型之一,其类型可分为数字找规律和图形找规律,主要考查学生的数感、归纳和递推的能力。
①数字找规律:先观察数字的趋势,一般地,数字由大到小,算法上必定是乘法、加法。
数字由小到大,算法上必定是除法、减法。
需要注意:如果一列数有小数、分数、百分数等,要先把数化成同一种形式再找规律。
②图形找规律:观察图形的形状、数量、变化趋势,整理成数据表格,对应观察,找出数字的规律。
表格形如:图形 1 2 3 4 ……n 数量注意:有些题型没有直接说明是规律类题型,需要自己尝试找规律,这一类较难。
经典题型【例1】计算:100+99-98-97+96+95-94-93+……+8+7-6-5+4+3-2-1【例2】有一组数:7,12,17,22,27,…请观察这组数的构成规律,用你发现的规律确定第8个数为(), 第n个数为()。
【例3】有一组数:1,4,16,64,……请观察这组数的构成规律,第n个数为()。
【例4】有一组数:2,6,12,20,30,… 请观察这组数的构成规律,用你发现的规律确定第8个数为( ),第n 个数为( )。
【例5】有一数列1、2、4、7、11、16、22、29……那么这个数列中第2006个数除以5的余数为多少?【例6】如果2!=2×3,3!=3×4×5,5!=5×6×7×8×9。
请你按此规则计算【例7】△△□ ☆★ △△□ ☆★ △△□ ☆★……左起第30个 图形 是( ),当 □ ☆★一共有18个时, △最多有( )个 。
【例8】一串分数:91,76,75,74,73,72,71,54,53,52,51,32,31 ……其中的第2000个分数是多少?【例9】若3111-=a ,1211a a -=,2311a a -= (2014)的值为多少?【例10】如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?【例11】已知3223222⨯=+,8338332⨯=+,154415442⨯=+……,若bab a ⨯=+288 (a 、b 为正整数),则a+b=( )。
小升初小学六年级数学复习总结·知识点专项练习题+答案(6)找规律知识要点:对题目中给出的图形或数据认真观察分析,找到图形、数据中的数量变化规律,再根据规律递推,找出正确的解答。
这一类题型主要考察学生根据已有条件进行归纳与猜想的能力。
下面的题请同学运用各种学过的方法,如周期性分析,递推法,列表法等找出规律来解答以下各题。
1、数字规律:数字之间和差倍的规律,典型的有:兔子数列、间隔数列、等差数列、等比数列等。
2、图形规律:①图形中数量变化:点数、角数、边数、对称轴数、区域数……②图形中位置变化:一般来说,一组图形中元素个数完全相同,不同的是局部元素位置有变化,这时从位置的角度出发来解题。
位置变化的类型分为平移、旋转、翻转。
③图形的叠加减变化:图形组成的元素部分相似,进行加减同异。
习题精选:1. 按规律填数:5,2,8,6,11,10,14,()。
A.13B.16C.15D.142. 一组按规律排列的数:14,39,716,1325,2136,……,请你推断第6个数是()。
A.2948B.3148C.2949D.31493. 按顺序排列的数:3,4,6,9,14,22,35,.....,中的第八个数是()A.56B.64C.50D.524. 根据下面四个算式,发现其中规律,然后在括号中填入适当的数,其中正确的一组是()。
1×5+4=9=3×3;2×6+4=16=4×4;3×7+4=25=5×5;4X8+4=36=6×6;10×()+4=()=()×()A.14、81、9、9B.14、144、12、12C.12、121、11、11D.以上答案均不对5. 观察前两个图的规律,填出方框中的数。
()A.5B.7C.6D.86. 观察下列图形:它们是按一定规律排列的,依照此规律,第50个图形共有()个★。
A.161B.151C.141D.1317. 根据图形的排列规律,那么第50个图形中有()个小圆点。
小升初专题六找规律例题1与周期相关的找规律问题【例1】、(★★)n7化小数后,小数点后若干位数字和为1992,求n为多少?【解】n7化小数后,循环数字和都为27,这样1992÷27=73…21,所以n=6。
【例2】、(★★)有一数列1、2、4、7、11、16、22、29……那么这个数列中第2006个数除以5的余数为多少?【解】数列除以5的余数为1、2、4、2、1、1、2、4、2、1…这样就使5个数一周期,所以2003÷5=400…3,所以余4。
【例3】、(★★★)某人连续打工24天,赚得190元(日工资10元,星期六做半天工,发半工资,星期日休息,无工资).已知他打工是从1月下旬的某一天开始的,这个月的1号恰好是星期日.问:这人打工结束的那一天是2月几日?【来源】第五届“华杯赛”初赛第16题【解】因为3×7<24<4×7,所以24天中星期六和星期日的个数,都只能是3或4.又,190是10的整数倍。
所以24天中的星期六的天数是偶数.再由240-190=50(元),便可知道,这24天中恰有4个星期六、3个星期日.星期日总是紧接在星期六之后的,因此,这人打工结束的那一天必定是星期六.由此逆推回去,便可知道开始的那一天是星期四.因为1月1日是星期日,所以1月22日也是星期日,从而1月下旬唯一的一个星期四是1月26日.从1月26日往后算,可知第24天是2月18日,这就是打工结束的日子.2图表中的找规律问题【例4】、(★★)图中,任意_--个连续的小圆圈内三个数的连乘积郡是891,那么B=_______.【来源】第十届<小数报>数学竞赛初赛填空题第5题【解】根据“任意三个连续的小圆圈内三个数的连乘积都是891”,可知任意一个小圆圈中的数和与它相隔2个小圆圈的小圆圈中的数是相同的.于是,B=891÷(9×9)=11.【例5】(★★★)自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;10,因此这-手续使总和减少了10)=(16+93)⨯12×10=588.620没有破,经过2分半钟全部肥皂泡都破了·小明在第20次吹出100个新的肥皂(2)数127应排在上起第几行,左起第几列?【解】:本题考察学生“观察—归纳—猜想”的能力.此表排列特点:①第一列的每一个数都是完全平方数,并且恰好等于所在行数的平方;②第一行第n个数是(n-1)2+1,②第n行中,以第一个数至第n个数依次递减1;④从第2列起该列中从第一个数至第n个数依次递增1.由此(1)〔(13-1)2+1〕+9=154;(2)127=112+6=〔(12-1)2+1〕+5,即左起12列,上起第6行位置.3较复杂的数列找规律【例6】、(★★★)设1,3,9,27,81,243是6个给定的数。
小升初真题之找规律篇1 (西城实验考题)有一批长度分别为 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 和 11 厘米的细木条,它们的数量都足够多,从中适当选取 3 根木条作为三条边,可围成一个三角形 ;如果规定底边是 11 厘米,你能围成多少个不同的三角形?2 (三帆中学考题)有 7 双白手套, 8 双黑手套, 9 双红手套放在一只袋子里。
一位小朋友在黑暗中从袋中摸取手套,每次摸一只,但无法看清颜色,为了确保能摸到至少 6 双手套,他最少要摸出手套( )只。
(手套不分左、右手,任意二只可成一双 ) 。
3 (人大附中考题)某次中外公司谈判会议开始 10 分钟听到挂钟打钟 (只有整点时打钟,几点钟就响几下),整个会议当中共听到 14 下钟声,会议结束时,时针和分针恰好成 90 度角,求会议开始的时间结束的时间及各是什么时刻。
4 (101 中学考题)4 道单项选择题,每题都有 A、B 、C 、D 四个选项,其中每题只有一个选项是正确的,有800 名学生做这四道题,至少有 _________人的答题结果是完全一样的?5 (三帆中学考题)设有十个人各拿着一只提桶同时到水龙头前打水,设水龙头注满第一个人的桶需要 1 分钟,注满第二个人的桶需要 2 分钟,…… .如此下去,当只有两个水龙头时,巧妙安排这十个人打水,使他们总的费时时间最少 .这时间等于_________分钟.预测 1在右图的方格表中,每次给同一行或同一列的两个数加 1,经过若干次后,能否使表中的四个数同时都是 5 的倍数?为什么?1 24 3预测 2甲、乙两厂生产同一规格的上衣和裤子,甲厂每月用 16 天生产上衣, 14 天做裤子,共生产448 套衣服(每套上衣、裤子各一件);乙厂每月用 12 天生产上衣, 18 天生产裤子,共生产720 套衣服。
两厂合并后,每月(按 30 天计算)最多能生产多少套衣服?找规律篇之答案1 (西城实验考题)【解】由于数量足够多,所以考虑重复情况;现在底边是 11,我们要保证的是两边之和大于第三边,这样我们要取出的数字和大于 11.情况如下:一边长度取 11,另一边可能取 1~11 总共 11 种情况;一边长度取 10,另一边可能取 2~10 总共 9 种情况;… …一边长度取 6,另一边只能取 6 总共 1 种;下面边长比 6 小的情况都和前面的重复,所以总共有 1+3+5+7+9+11=36 种。
个性化教学辅导教案教学目标3、规律的总结是抽象思维能力和计算能力,形象思维能力等的综合考察;4、规律题的积累经验也是非常必要的。
教学过程 教师活动学生活动1、甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲2、下午放学时,弟弟以每分钟40米的速度步行回家。
5分钟后,哥哥以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?(假定从学校到家有足够远,即哥哥追上弟弟时,仍没有回到家)3、一辆汽车和一辆摩托车同时从甲、乙两地出发,向同一个方向前进,摩托车在前,每小时行28千米,汽车在后,每小时行65千米,经过4小时汽车追上摩托车,甲乙两地相距多少千米?4、环湖一周共400米,甲、乙二人同时从同一地点同方向出发,甲过10分钟第一次从乙身后追上乙。
若二人同时从同一地点反向而行,只要2分钟二人就相遇。
求甲、乙的速度。
5、甲骑车、乙跑步,二人同时从同一地点出发沿着长4千米的环形公路同方向进行晨练。
出发后10分钟,甲便从乙身后追上了乙。
已知二人的速度和是每分钟700米,求甲、乙二人的速度各是多少?1、先找出下列各列数的排列规律,然后在括号里填上适当的数。
(1)2,6,10,14,(),22,26(2)3,6,9,12,(),18,21(3)33,28,23,(),13,(),3(4)55,49,43,(),31,(),192、先找出下列数排列的规律,然后在括号里填上适当的数。
(1)10,11,13,16,20,(),31(2)1,4,9,16,25,(),49,64(3)3,2,5,2,7,2,(),(),11,2(4)53,44,36,29,(),18,(),11,9,83、先找出规律,然后在括号里填上适当的数。
(1)2,2,4,6,10,16,(),()(2)34,21,13,8,5,(),2,()(3)3,7,15,31,63,(),()4、下面括号里的两个数是按一定的规律组合的,在□里填上适当的数。
小升初民办初中必考知识点之找规律
一、 找规律
⑴周期性问题
① 年月日、星期几问题
② 余数的应用
⑵数列问题
① 等差数列
通项公式 a n =a 1+(n-1)d
求项数: n=11n a a d
-+ 求和: S=1()2
n a a n + ② 等比数列
求和: S=1(1)1
n a q q -- ③ 裴波那契数列
⑶策略问题
① 抢报30
② 放硬币
⑷最值问题
① 最短线路
a.一个字符阵组的分线读法
b.在格子路线上的最短走法数
② 最优化问题
a.统筹方法
b.烙饼问题
二、 算式谜
1. 填充型
2. 替代型
3. 填运算符号
4. 横式变竖式
5. 结合数论知识点
三、数阵问题
1.相等和值问题
2.数列分组
⑴知行列数,求某数
⑵知某数,求行列数
3.幻方
⑴奇阶幻方问题:
杨辉法罗伯法
⑵偶阶幻方问题:
双偶阶:对称交换法
单偶阶:同心方阵法。
小升初专题找规律——图形规律类由结构类似,多少和位置不同的几何图案的图形个数之间也有一定的规律可寻。
这种探索图形结构成元素的规律的试题,解决思路有两种:一种是数图形,将图形转化为数字规律解决问题;另一种是通过图形的直观性,从图形中直接寻找规律,常用“拆图法”解决问题。
探索发现有关图形所具有的规律性或不变性的问题,它往往给出了一组变化了的图形或条件,要求通过阅读、观察、分析、猜想来探索规律通过比较,可以发现事物的相同点和不同点,更容易找到事物的变化规律例1.如图,由若干火柴棒摆成的正方形,第①图用了4根火柴,第②图用了7根火柴棒,第③图用了10根火柴棒,依次类推,第⑩图用根火柴棒,摆第n个图时,要用根火柴棒。
①②③例2.按如下规律摆放三角形:则第④堆三角形的个数为;第(n)堆三角形的个数为。
例3.如下图所示,小丽用棋子摆成三角形的图案,观察下面图案并填空:第1个第2个第3个第4个按照这样的方式摆下去,摆第5个三角形图案需要__________枚棋子;摆第n个三角形图案需要__________枚棋子(用含有n的式子表示);摆第100个三角形图案需要__________枚棋子.例4.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第11个图形需要黑色棋子的个数是 .例5.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.例6.图(3)是用火柴棍摆成的边长分别是1,2,3 根火柴棍时的正方形.当边长为9根火柴棍时,摆出的正方形所用的火柴棍的根数为 .例7.如图,房间地面的图案是用大小相同的黑、白正方形组合而成.图中,第1个黑色形由3个正方形组成,第2个黑色形由7个正方形组成,…,那么组成第6个黑色形的正方形有( )A .22个B .23个C .24个D .25个例8.有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转,则完成一次变换.图2,图3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( )A .上B .下C .左D .右90图1图2图3 …例9.根据下图中箭头指向的规律,从2015到2016再到2017, 箭头的方向是( )例10.填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是_______相关练习1.如图①,图②,图③,图④,,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________2.如图是一组有规律的图案,第1个 图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n (n 是正整数)个图案中由 个基础图形组成.3.观察下列图形的构成规律,根据此规律,第8个图形中有 个圆.4.如图,用同样并规格的黑白两种正方形瓷砖铺设正方形地面,观察图形并猜想填空:当白色瓷砖为为正整数)n n (2块时,黑色瓷砖有 块(结果写成一个多项式形式).第1个 ……第2个 第3个 第4个 0 284 24 62246 844m6(1) (2) (3) ……5.某校的一间礼堂,第1排的座位数为12,从第2排开始,每一排都比前一排增加x个座位.(1)请你在下表的空格里填写一个适当的式子:第1排的座位数第2排的座位数第3排的座位数第4排的座位数…12x+12x312+…(2)由题可知,第5排座位数是_______________,第15排座位数是________________;(3)已知第15排座位数是第5排座位数的2倍,求第25排有多少个座位?6.下图是某同学在沙滩上用石于摆成的小房子.观察图形的变化规律,写出第n个小房子用了块石子.7.将一张长方形的纸对折,如图所示可得到一条折痕(图中虚线).继续对折,对折时每次折痕与上次的折痕保持平行,连续对折三次后,可以得到7条折痕,那么对折四次可以得到条折痕.如果对折n次,可以得到条折痕.8.柜台上放着一堆罐头,它们摆放的形状见右图:第一层有23⨯听罐头,第二层有34⨯听罐头,第三层有45⨯听罐头,……根据这堆罐头排列的规律,第n(n为正整数)层有听罐头(用含n的式子表示).9.下列图案由边长相等的黑、白两色正方形按一定规律拼接而成。
1.观察下列图形,则第n 个图形中三角形的个数是( )
2.把一张纸片剪成4块,再从所得的纸片中任取若干块,每块又剪成4块,像这样依次地进行下去,到剪完某一次为止。
那么2007,2008,2009,2010这四个数中______________可能是剪出的纸片数
3.将一些半径相同的小圆按如图所示的规律摆放:第1个图形有6个小圆,第2个图形有10个小圆,第3个图形有16个小圆,第4个图形有24个小圆,……,依次规律,第6个图形有 个小圆.第n 个( )
4.
221.4135-
=⨯; 222.5237-=⨯; 223.6339-=⨯
224.74311-=⨯…………
则第n (n 是正整数)个等式为________.
5.王婧同学用火柴棒摆成三个“中”字形图案,依此规律,第n 个“中”字形图案需 根火柴棒( ).
6.如图7-①,图7-②,图7-③,图7-④,…,是用围棋棋子按照某种规律摆成的一行“广”字,按照这种规律,第5个“广”字中的棋子个数是________,第n 个“广”字中的棋子个数是________
第1个图形
第2个图形
第3个图形
第4个图形
…
……
第1个
第2个
第3个
7.请写出第20行,第21列的数字.
8.图6是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,第n(n是正整数)个图案中由个基础图形组成.
9.观察图中每一个大三角形中白色三角形的排列规律,则第5个大三角形中白色三角形有()个.
10.下列图案是晋商大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第n个图中所贴剪纸“○”
的个数为.
(1)(2)(3)
……
……
第一行
第二行
第三行
第四行
第五行
第一列第二列第三列第四列第五列
1 2 5 10 17 …
4 3 6 11 18 …
9 8 7 12 19 …
16 15 14 13 20 …
25 24 23 22 21 …
……
图8
图6
(1) (2) (3)
……
第1个第2个第3个
11.观察下表,回答问题:
第
个图形中“△”的个数是“○”的个数的5倍.
12.将正整数依次按下表规律排成四列,则根据表中的排列规律,数2009应排的位置是第 行第 列.
13.如图所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .
14.观察下列一组数:21,43,65,8
7
,…… ,它们是按一定规律排列的. 那么这一组数的第k 个数是 .
序号
1 2 3 …
图形
…
第1列 第2列 第3列 第4列 第1行 1 2 3 第2行 6 5 4 第3行 7 8 9 第4行 12 11 10 ……。