第6章粗苯的精制 - 复件
- 格式:ppt
- 大小:1.26 MB
- 文档页数:53
粗苯加氢精制工艺设计粗苯是一种重要的化工原料,广泛用于生产苯乙烯、苯甲酸、邻苯二甲酸等有机化合物。
然而,粗苯中含有杂质,如硫、氮、氧等,对产品质量和生产设备都会造成影响。
因此,精制粗苯是必要的工艺环节。
本文将介绍以粗苯加氢精制的工艺设计。
一、工艺流程以粗苯加氢精制的工艺流程主要包括三个部分:预处理、加氢精制和分离回收。
具体流程如下:1.预处理粗苯进入预处理装置后,通过加热蒸汽和蒸汽空气混合物使粗苯中的硫化氢、二硫化碳、氨等杂质挥发出来,并通过冷却凝结后排放。
经过预处理后的粗苯进入加氢精制装置。
2.加氢精制加氢精制是以高压氢气为还原剂,通过加氢使粗苯中的杂质去除的过程。
加氢精制反应条件如下:温度:120-150℃压力:1.5-3.0MPa氢油比:300-1000催化剂:铜、铝、钼、钴等金属催化剂在加氢精制过程中,杂质会被还原成硫化氢、氨等气体,通过气液分离器分离,然后通过洗涤器洗涤,最终得到精制苯。
3.分离回收精制苯通过分馏塔进行分馏,得到苯和轻杂质。
苯进入产品收集罐,轻杂质则通过冷却凝结后排放。
二、工艺特点以粗苯加氢精制的工艺具有以下特点:1.精制效果好加氢精制工艺可以有效地去除粗苯中的硫、氮、氧等杂质,使得精制后的苯产品纯度高、质量好。
2.操作简便加氢精制过程中,催化剂的选择和操作比较简单,不需要特别复杂的设备和技术。
3.节能环保加氢精制工艺是一种节能环保的工艺,不需要高温高压操作,可以减少能源消耗和环境污染。
4.适应性强加氢精制工艺适用于各类粗苯,不受原料质量的限制。
三、工艺优化为了进一步提高以粗苯加氢精制的工艺效率和产品质量,可以从以下几个方面进行优化:1.选择优质催化剂铜、铝、钼、钴等金属催化剂的选择会对加氢精制的效果产生影响,因此应根据不同原料的特性选择适合的催化剂。
2.控制反应条件反应温度、压力和氢油比的控制对于加氢精制的效果有着至关重要的影响。
应根据原料特性和产品要求,合理选择反应条件进行控制。
煤化工工艺设计粗苯精制
随着化工工业的发展,煤化工在国民经济发展中扮演着重要的角色。
煤化工工艺设计粗苯精制是其中的关键点,本文将介绍煤化工工艺设计粗苯精制的意义、流程及其影响。
一、煤化工工艺设计粗苯精制的意义
煤炭是我国的主要能源之一,煤化工的发展能够降低能源的消耗,减少对石油等化石能源的依赖,达到可持续发展的目的。
粗苯是煤化工技术中的一个重要组份,可用于生产最终产品如合成树脂、塑料、橡胶、染料、医药、香料等,具有广泛的应用前景。
但粗苯中的杂质物质较多,对生产设备以及最终产品品质有很大影响,粗苯精制的工艺设计可以提高产品的质量,增加市场竞争力。
二、煤化工工艺设计粗苯精制的流程
1. 粗苯分离
通过减少一次油、沥青等杂志物的混合物和二次碳黑、焦油及煤气等杂质物的蒸汽重组能,来增加粗苯含量,分离出粗苯。
2. 粗苯洗涤
将粗苯通过多级精馏过程和再结晶处理后,通过临界分子量法获得较为纯净的苯,但仍然含有苯类和环香族化合物,还需要对苯分别用溶液进行浸泡、搅拌、沉淀等方法进行洗涤。
3. 蒸馏精制
在提高分离质量和提高产品精度的前提下,通过吸附或蒸馏、结晶、吸附剂组成的萃取剂一步浸泡等方式,提高精制效率达到最高效益。
三、煤化工工艺设计粗苯精制的影响
煤化工工艺设计粗苯精制可以提高产品的优势性,使生产设备受损情况减少;产品精度的提高为生产市场提供了更多的选择。
同时,工艺设计的优化可以减少工业生产对环境的污染,提升企业的竞争力。
总之,煤化工工艺设计粗苯精制在化工行业的发展中发挥着重要的作用。
不仅可以提高生产设备的品质,也可以增加企业的生产效益,对于推动煤化工的可持续发展具有十分重要的意义。
粗苯精制前言粗苯精制的目的是将粗苯或轻苯,通过净化及精馏的方法加工成苯类产品。
目前,粗苯精制净化的主要方法有硫酸洗涤精制法,加氢精制法及新型莱托尔法(Litol),即加氢转化精制法等。
现在国内一般仍采用硫酸洗涤精制法。
在精馏方面连续化程度逐步提高,国内对于年处理轻苯两万吨以上规模的精苯装置已普遍采用热油连续精馏流程。
汽相串联新工艺也在不少厂取得成功。
对于一万吨规模的粗苯精制装置,目前仍采用半连续或分段连续流程:我厂精馏、洗涤采用连续流程。
一、粗苯的组成、性质与应用(一)、粗苯的组成粗苯是由多种有机化合物组成的混合物,其主要成分为苯、甲苯、二甲苯、三甲苯等芳香族化合物。
此外,尚有少量脂肪烃、环烷烃、不饱和烃、酚类、吡啶类、含硫化合物、洗油低沸点馏份及其它杂质。
生成量约为炼焦用干煤量的1.0%~1.2%。
目前我国粗轻苯标准执行国标GB3059——82(标准附后)。
1、芳香族(苯族)碳氢化合物:苯:C6H6甲苯:C6H5CH3CH3HCH-CH-CC-HC-HHC二甲苯:C6H4(CH3)2有三种:邻位二甲苯(1、2)CH3CH3近式三甲苯(1、2、3)CH 3CH 3CH 3 CH 3丙苯:C 6H 5C 3H 7C 3H 7CH 32、不饱和碳氢化合物: 戊烯:C 5H 6 环戊二烯:C 5H 6苯乙烯:C 6H 5C 2H 3C 2H 3间位二甲苯(1、3)CH 3CH 3对位二甲苯(1、4)CH 3CH 3乙苯:C 6H 5C 2H 5C 2H 5三甲苯:C 6H 3(CH 3)3 有三种:对称三甲苯(1、3、5) CH 3CH 3CH 3 偏式三甲苯(1、2、4)CH 3CH 3CH 3古马隆:C 8H 6OO茚:C 9H 83、氮化物:吡啶:C5H 5 N甲基吡啶:C5H4 NCH3有三种:α甲基吡啶:CH3β甲基吡啶:CH3r甲基吡啶:CH3NH2苯胺:C6H5NH2甲基苯胺:C6H4(NH2)CH3有三种情况:α甲基苯胺:NH2β甲基苯胺:CH3 r甲基苯胺:CH3NH2二甲基苯胺:C6H3(NH2)(CH3)2CH3NH2NH2CH3CH34、硫化物:二硫化碳:CS2噻吩:C4H4SS甲基噻吩:C4H3SCH3有两种α甲基噻吩CH3CH3β甲基噻吩硫化氢:H2S(二)、粗苯的组份含量粗苯各组份含量常在很大范围内波动,它因焦炉炉型、炼焦程度、炉顶空间温度、结焦时间以及焦用煤性质及回收的操作条件而异。
粗苯精制一、粗苯精制目的得到基本的有机化工原料苯、甲苯、二甲苯等。
二、粗苯精制步骤酸洗或加氢、精馏分馏、初馏分中环戊二烯加工及高沸点茚和古马隆的加工。
三、粗苯组成苯及同系物占80-95%;不饱和化合物占5-15%,主要集中在≤79℃低沸点馏分和≥140℃高沸点馏分,它们主要为戊二烯、茚、古马隆及苯乙烯等;硫化物含量为0.2-2.0%;饱和烃含量为0.3-2.0%;此外还有来自洗油的轻组分、萘、酚、吡啶等成分。
四、粗苯中苯、甲苯、二甲苯及乙苯的沸点五、粗苯精制流程1、初步精馏1.1目的使低沸点化合物、高沸点含硫化合物和不饱和化合物分开。
1.2工艺流程粗苯送入1#初馏塔,塔顶逸出初馏分(环戊二烯50-60%、二硫化碳25-35%、苯5-15%);而塔底排出混合馏分进入2#初馏塔。
塔顶逸出苯、甲苯、二甲苯(BTX)馏分;塔底排出重苯。
注:初苯精馏塔的塔板30-50、回流比40-60、空塔气速0.6-0.9m/s。
2、化学精制2.1目的把粗苯中主要馏分沸点范围内所含的硫化物和不饱和化合物脱除。
2.2硫酸法精制2.2.1原理苯、甲苯、二甲苯(BTX)馏分用90-95%浓度的硫酸酸洗时,不饱和化合物、含硫化合物发生化学反应,生成复杂的产物。
2.2.1.1化学反应(1)聚合反应不饱和烃在硫酸的作用下发生聚合反应,生成酸式酯,进一步反应生成二聚物,此反应还可以进一步发生聚合反应生成三聚物和深度聚合物。
由于二聚物、三聚物和深度聚合物沸点高、粘度大从而与苯、甲苯、二甲苯(BTX)馏分分离。
(2)脱硫反应苯、甲苯、二甲苯(BTX)馏分中二硫化碳不与硫酸反应,但噻吩能与硫酸磺化反应生成噻吩硫酸能溶于硫酸和水中,因此自洗涤的方法与苯、甲苯、二甲苯(BTX)馏分分离。
(3)噻吩与不饱和化合物反应噻吩与不饱和化合物在硫酸的催化作用下发生反应生成烷基化噻吩,其沸点比苯高60-70℃,从而与苯分离。
2.2.1.2硫酸浓度酸洗硫酸浓度93-95%,浓度低时,达不到洗涤效果;而浓度高时,生产中性酯量增大,不饱和化合物聚合程度加深,磺化反应加剧。
粗苯精制工艺概述
2011-03-14
粗苯精制
工艺概述
粗苯是由多种有机物组成的复杂混合物,主要成分是苯及其同系物甲苯、二甲苯及三甲苯等。
粗苯精制过程就是通过化学的方法将粗苯中的不饱和化合物、硫化物等除去,然后用蒸馏方法将苯类产品分离出来的过程。
在连续式粗苯精制过程中,比较常见的工艺是五塔蒸馏方式。
粗苯精制工艺流程框图
控制方案
在粗苯精制过程中,主要是要解决各种塔的操作问题,这些塔的共同点是为了进行物质分离,其分离的原理是:根据混合液中各种组分的相对挥发度不同,使液相中的轻组分上升,重组分下降,从而达到分离物质的作用。
塔釜温度控制框图
塔釜温度控制是采用加热蒸汽流量与塔釜温度进行串级控制来实现的,影响塔釜温度的主要因素是物料进入再沸器后带走的热量,而再沸器的热量是由进入塔釜的蒸汽所提供的,因此,塔釜的温度可以通过调节进入再沸器的蒸汽流量来控制的,同时引入进料流量进行前馈控制,以此来实现对塔釜的温度控制,由于蒸汽的加入量对塔的其他参数如塔压影响很大,为了保证塔的安全,这里增加一个条件判断,当塔压在安全范围内用蒸汽流量和温度串级控制,当塔压过高时采用塔压控制的方法,使塔压降下来,以保证塔设备的安全。
影响塔顶温度的因素有许多,例如物料的回流量、再沸器的加热蒸汽量、冷凝器的冷却水量等,其中影响最大,作用最强的是物料回流量,所以通过回流量可以控制塔顶的温度,由于塔的进料量和其组成是主要干扰因素,由于5个塔是前后串联的,前一个塔的出料是后一个塔的进料,前后关联,进料量是不可控的,因此在这里引入前馈。
塔顶温度控制框图
五塔式粗苯精制流程图
蒸馏过程控制曲线。