计量经济学 实验4 异方差
- 格式:doc
- 大小:597.50 KB
- 文档页数:15
《计量经济学》实训报告实训项目名称异方差的检验及修正实训时间 2011年12月13日实训地点班级学号姓名实训(实践) 报告实训名称异方差的检验及修正一、实训目的深刻理解异方差性的实质、异方差出现的原因、异方差的出现对模型的不良影响(即异方差的后果),掌握估计和检验异方差性的基本思想和修正异方差的若干方法;能够运用所学的知识处理模型中的出现的异方差问题,并要求初步掌握用EViews处理异方差的基本操作方法。
二、实训要求使用教材第五章的数据做异方差的图形法检验、Goldfeld-Quanadt检验与White检验,使用WLS法对异方差进行修正。
三、实训内容1、用图示法、戈德菲尔德、white验证法,验证该模型是否存在异方差。
2、用加权最小二乘法消除异方差。
四、实训步骤练习题5.8数据1998年我国重要制造业销售收入和销售利润的数据Y—销售利润,x—销售收入1. 用OLS方法估计参数,建立回归模型:ls y c x回归结果如下:Y=12.036+0.1044x;S = (19.5178) (0.00844)T= (0.6167) (12.3667)R^2=0.8547 S.E.=56.90372.检验是否存在异方差(1) 图形检验:残差图形scat x e2结果表明:残差平方e2对解释变量的x的散点图主要分布在图形的下方,大致看出残差平方随X 的变动呈增大的趋势,因此,模型很可能出现异方差。
(2)戈德菲尔德-夸特检验首先,对变量进行排序,在这个题目中,我选择递增型排序,这是y与x将以x按递增型排序。
然后构造子样本区间,建立回归模型。
在本题目中,n=28,删除中间的1/4,的观测值,即大约8个观测值,剩余部分平分得两个样本区间:1—10和19-28,他们的样本个数均为10。
用OLS方法得到前10个数的样本结果(ls y c x):用OLS方法得到后10个数的样本结果(ls y c x):接着,根据戈德菲尔德检验得到F统计量:(两个残差平方和相除,大的除以小的)F=63769.67/2577.969=24.736。
计量经济学上机实验上机实验一:一元线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参数估计并进行检验上机步骤:中国内地2011年中国各地区城镇居民每百户计算机拥有量和人均总收入一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y X2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y X2.相关图:键入命令 SCAT Y X 散点图:趋势图:上机结果:Yˆ11.958+0.003X=s (βˆ) 5.6228 0.0002t (βˆ) 2.1267 11.9826prob 0.0421 0.00002=0.831 R2=0.826 FR=143.584 prob(F)=0.0000上机实验二:多元线性回归模型实验目的:多元回归模型的建立、比较与筛选,掌握基本的操作要求并能根据理论对分析结果进行解释实验内容:对线性回归模型进行参数估计并进行检验上机步骤:商品的需求量与商品价格和消费者平均收入趋势图:散点图:上机结果:i Yˆ=132.5802-8.878007X1-0.038888X2s (βˆ) 57.118 4.291 0.419t (βˆ) 2.321 -2.069 -0.093prob 0.0533 0.0773 0.9286 R2=0.79 R2=0.73 F =13.14 prob(F)=0.00427三:非线性回归模型实验目的:EViews软件的基本操作实验内容:对线性回归模型进行参上机步骤:我国国有独立核算工业企业统计资料一.建立工作文件:1.在主菜单上点击File\New\Workfile;2.选择时间频率,A3.键入起始期和终止期,然后点击OK;二.输入数据:1.键入命令:DATA Y L K2.输入每个变量的统计数据;3.关闭数组窗口(回答Yes);三.图形分析:1.趋势图:键入命令PLOT Y K L2.相关图:键入命令 SCAT Y K L四.估计回归模型:键入命令LS Y C K L上机结果:Y =4047.866K1.262204L-1.227157s (βˆ) 17694.18 0232593 0.759696t (βˆ) 0.228768 5.426669 -1.615325prob 0.8242 0.0004 0.1407R2=0.989758 R2=0.987482 F=434.8689 prob(F)=0.0000上机实验四:异方差实验目的::掌握异方差的检验与调整方法的上机实现实验内容:我国制造工业利润函数行业销售销售行业销售销售实验步骤:一.检验异方差性1.图形分析检验:1) 观察Y、X相关图:SCAT Y X2) 残差分析:观察回归方程的残差图LS Y C X在方程窗口上点击Residual按钮;2. Goldfeld-Quant检验:SORT XSMPL 1 10LS Y C X(计算第一组残差平方和)SMPL 19 28LS Y C X(计算第二组残差平方和)计算F统计量,判断异方差性3.White检验:SMPL 1 28LS Y C X在方程窗口上点击:View\Residual\Test\White Heteroskedastcity 由概率值判断异方差性。
计量经济学实验报告实验1.异方差检验及修正一、 实验目的影响各地居民人均年消费支出的因素有多种,其中最主要的影响因素应当为收入,对于农村居民来说,收入包括从事农业经营的纯收入和其他来源的纯收入。
本题研究的是内地2006年各地区农村居民家庭人均纯收入与消费支出消费支出之间的关系是否存在异方差,如存在异方差并做出修正。
数据来源为《中国农村住户调查年鉴(2007)》、《中国统计年鉴(2007)》。
二、 实验步骤 1、建立模型01122Y X X u βββ=+++其中,Y 表示人均消费支出,X1表示从事农业经营的纯收入,X2表示其他来源的纯收入,单位为元。
2、从excel 中将数据导入EViews 中,得到图1。
图13、在EViews 命令框中直接键入“ls y c x1 x2”,按回车,即出现回归结果,如表2。
表2Dependent Variable: Y Method: Least Squares Date: 12/04/13 Time: 17:20 Sample: 1 31Included observations: 31Coefficient Std. Error t-Statistic Prob.C 728.1402 328.1558 2.218886 0.0348 X1 0.402097 0.164894 2.438514 0.0213 X20.7090300.041710 16.999110.0000R-squared0.922173 Mean dependent var 2981.623 Adjusted R-squared 0.916614 S.D. dependent var 1368.763 S.E. of regression 395.2538 Akaike info criterion 14.88870 Sum squared resid 4374316. Schwarz criterion 15.02747 Log likelihood -227.7748 Hannan-Quinn criter. 14.93394 F-statistic 165.8853 Durbin-Watson stat 1.428986Prob(F-statistic)0.000000由表可以得到:12728.14020.4020970.70903i Y X X =++(328.1558)(0.164894) (0.041710) t= (2.218886) (2.438514) (16.99911)220.922173,0.916614,165.8853R R F ===4、模型检验在显著性为0.05时,P 值都小于0.05,通过显著性检验,认为X1、X2显著。
计量经济学:异方差性异方差性在现实经济活动中,最小二乘法的基本假定并非都能满足,上一章介绍的多重共线性只是其中一个方面,本章将讨论违背基本假定的另一个方面——异方差性。
虽然它们都是违背了基本假定,但前者属于解释变量之间存在的问题,后者是随机误差项出现的问题。
本章将讨论异方差性的实质、异方差出现的原因、异方差的后果,并介绍检验和修正异方差的若干方法。
第一节异方差性的概念一、异方差性的实质第二章提出的基本假定中,要求对所有的i (i=1,2,…,n )都有2)(σ=i u Var (5.1)也就是说i u 具有同方差性。
这里的方差2σ度量的是随机误差项围绕其均值的分散程度。
由于0)(=i u E ,所以等价地说,方差2σ度量的是被解释变量Y 的观测值围绕回归线)(i Y E =ki k i X X βββ+++ 221的分散程度,同方差性实际指的是相对于回归线被解释变量所有观测值的分散程度相同。
设模型为n i u X X Y iki k i i ,,2,1221 =++++=βββ (5.2)如果其它假定均不变,但模型中随机误差项i u 的方差为).,,3,2,1(,)(22n i u Var i i ==σ (5.3)则称i u 具有异方差性。
由于异方差性指的是被解释变量观测值的分散程度是随解释变量的变化而变化的,如图5.1所示,所以进一步可以把异方差看成是由于某个解释变量的变化而引起的,则)()(222i i i X f u Var σσ== (5.4)图5.1二、产生异方差的原因由于现实经济活动的错综复杂性,一些经济现象的变动与同方差性的假定经常是相悖的。
所以在计量经济分析中,往往会出现某些因素随其观测值的变化而对被解释变量产生不同的影响,导致随机误差项的方差相异。
通常产生异方差有以下主要原因:1、模型中省略了某些重要的解释变量异方差性表现在随机误差上,但它的产生却与解释变量的变化有紧密的关系。
经济计量分析实验报告一、实验项目异方差的检验及修正二、实验日期2015.12.06三、实验目的对于国内旅游总花费的有关影响因素建立多元线性回归模型,对变量进行多重共线性的检验及修正后,进行异方差的检验和补救。
四、实验内容建立模型,对模型进行参数估计,对样本回归函数进行统计检验,以判定估计的可靠程度,包括拟合优度检验、方程总体线性的显著性检验、变量的显著性检验,以及参数的置信区间估计。
检验变量是否具有多重共线性并修正。
检验是否存在异方差并补救。
五、实验步骤1、建立模型。
以国内旅游总花费Y 作为被解释变量,以年底总人口表示人口增长水平,以旅行社数量表示旅行社的发展情况,以城市公共交通运营数表示城市公共交通运行状况,以城乡居民储蓄存款年末增加值表示城乡居民储蓄存款增长水平。
2、模型设定为:t t t t t μβββββ+X +X +X +X +=Y 443322110t 其中:t Y — 国内旅游总花费(亿元) t 1X — 年底总人口(万人) t 2X — 旅行社数量(个) t 3X — 城市公共交通运营数(辆)t 4X — 城乡居民储蓄存款年末增加值(亿元)3、对模型进行多重共线性检验。
4、检验异方差是否存在。
六、实验结果(一)、消除多重共线性之后的模型多元线性回归模型估计结果如下:4321000779.0053329.0151924.0720076.0-99.81113ˆX +X +X +X =Y i SE=(26581.73) (0.230790) (0.108223) (0.013834) (0.020502) t =(3.051494) (-3.120046) (1.403805) ( 3.854988) (0.038020)R2=0.969693R2=0.957571F=79.98987(1)拟合优度检验:可决系数R 2=0.969693较高,修正的可决系数R 2=0.957571也较高,表明模型拟合较好。
时间 地点 实验题目 异方差的诊断与修正一、实验目的与要求:要求目的:1、用图示法初步判断是否存在异方差,再用White 检验异方差;2、用加权最小二乘法修正异方差。
二、实验内容根据1998年我国重要制造业的销售利润与销售收入数据,运用EV 软件,做回归分析,用图示法,White 检验模型是否存在异方差,如果存在异方差,运用加权最小二乘法修正异方差。
三、实验过程:(实践过程、实践所有参数与指标、理论依据说明等)(一) 模型设定为了研究我国重要制造业的销售利润与销售收入是否有关,假定销售利润与销售收入之间满足线性约束,则理论模型设定为:i Y =1β+2βi X +i μ其中,i Y 表示销售利润,i X 表示销售收入。
由1998年我国重要制造业的销售收入与销售利润的数据,如图1:1988年我国重要制造业销售收入与销售利润的数据 (单位:亿元)(二) 参数估计1、双击“Eviews ”,进入主页。
输入数据:点击主菜单中的File/Open /EV Workfile —Excel —异方差数据2.xls ;2、在EV 主页界面的窗口,输入“ls y c x ”,按“Enter ”。
出现OLS 回归结果,如图2:估计样本回归函数Dependent Variable: Y Method: Least Squares Date: 10/19/05 Time: 15:27 Sample: 1 28Included observations: 28Variable Coefficient Std. Error t-Statistic Prob.C 12.03564 19.51779 0.616650 0.5428 X0.1043930.008441 12.366700.0000R-squared0.854696 Mean dependent var 213.4650 Adjusted R-squared 0.849107 S.D. dependent var 146.4895 S.E. of regression 56.90368 Akaike info criterion 10.98935 Sum squared resid 84188.74 Schwarz criterion 11.08450 Log likelihood -151.8508 F-statistic 152.9353 Durbin-Watson stat1.212795 Prob(F-statistic)0.000000估计结果为: iY ˆ = 12.03564 + 0.104393i X (19.51779) (0.008441) t=(0.616650) (12.36670)2R =0.854696 2R =0.849107 S.E.=56.89947 DW=1.212859 F=152.9353这说明在其他因素不变的情况下,销售收入每增长1元,销售利润平均增长0.104393元。
实验四异方差性的检验及处理(2学时)一、实验目的(1)、掌握异方差检验的基本方法;(2)、掌握异方差的处理方法。
二、实验学时:2学时三、实验要求(1)掌握用MATLAB软件实现异方差的检验和处理;(2)掌握异方差的检验和处理的基本步骤。
四、实验原理1、异方差检验的常用方法(1) 用X-Y的散点图进行判断(2).22ˆ(,)(,)e x e y%%或的图形,),x)i iy%%i i((e或(e的图形)(3) 等级相关系数法(又称Spearman检验)是一种应用较广的方法,既可以用于大样本,也可与小样本。
检验的三个步骤①ˆt ty y=-%ie②|i x %%i i 将e 取绝对值,并把|e 和按递增或递减次序排序,计算Spearman 系数rs ,其中:21n i i d =∑s 26r =1-n(n -1)③ 做等级相关系数的显着性检验。
n>8时,/2(2),t t n α>-反之,若||i i e x %说明与之间存在系统关系,异方差问题存在。
(4) 帕克(Park)检验帕克检验常用的函数形式:若?在统计上是显着的,表明存在异方差性。
2、异方差性的处理方法: 加权最小二乘法如果在检验过程中已经知道:222()()()i i i ji u Var u E u f x σσ===则将原模型变形为:121i i p pi i y x x u βββ=+⋅+⋅+L 在该模型中: 即满足同方差性。
于是可以用OLS 估计其参数,得到关于参数12,,,p βββL 的无偏、有效估计量。
五、实验举例例1、某地区居民的可支配收入x(千元)与居民消费支出y(千元)的数据如下:01i i i y x u ββ=++若用线性模型,研究不同收入家庭的消费情况,试问原数据有无异方差性?如果存在异方差性,应如何处理?解:(一)编写程序如下:(1)等级相关系数法(详见test4_1.m 文件)%%%%%%%%%%%%%%% 用等级相关系数法来检验异方差性 %%%%%%%%[data,head]=xlsread('test4.xlsx');x=data(:,1); %提取第一列数据,即可支配收入xy=data(:,2); %提取第二列数据,即居民消费支出yplot(x,y,'k.'); % 画x和y的散点图xlabel('可支配收入x(千元)') % 对x轴加标签ylabel('居民消费支出y(千元)') % 对y轴加标签%%%%%%%% 调用regres函数进行一元线性回归 %%%%%%%%%%%%xdata=[ones(size(x,1),1),x]; %在x矩阵最左边加一列1,为线性回归做准备[b,bint,r,rint,s]=regress(y,xdata);yhat=xdata*b; %计算估计值y% 定义元胞数组,以元胞数组形式显示系数的估计值和估计值的95%置信区间head1={'系数的估计值','估计值的95%置信下限','估计值的95%置信上限'};[head1;num2cell([b,bint])]% 定义元胞数组,以元胞数组形式显示y的真实值,y的估计值,残差和残差的95%置信区间head2={'y的真实值','y的估计值','残差','残差的95%置信下限','残差的95%置信上限'};[head2;num2cell([y,yhat,r,rint])]% 定义元胞数组,以元胞数组形式显示判定系数,F统计量的观测值,检验的P值和误差方差的估计值head3={'判定系数','F统计量的观测值','检验的P值','误差方差的估计值'}; [head3;num2cell(s)]%%%%%%%%%%%%% 残差分析 %%%%%%%%%%%%%%%%%%figure;rcoplot(r,rint) % 按顺序画出各组观测值对应的残差和残差的置信区间%%% 画估计值yhat与残差r的散点图figure;plot(yhat,r,'k.') % 画散点图xlabel('估计值yhat') % 对x轴加标签ylabel('残差r') % 对y轴加标签%%%%%%%%%%%% 调用corr函数计算皮尔曼等级相关系数res=abs(r); % 对残差r取绝对值[rs,p]=corr(x,res,'type','spearman')disp('其中rs为皮尔曼等级相关系数,p为p值');(2)帕克(park)检验法(详见test4_2.m文件)%%%%%%%%%%%%%%% 用帕克(park)检验法来检验异方差性 %%%%%%%[data,head]=xlsread('test4.xlsx'); %导入数据x=data(:,1);y=data(:,2);%%%%%% 调用regstats函数进行一元线性回归,linear表带有常数项的线性模型,r表残差ST=regstats(y,x,'linear',{'yhat','r','standres'});scatter(x,(ST.r).^2) % 画x与残差平方的散点图xlabel('可支配收入(x)') % 对x轴加标签ylabel('残差的平方') %对y轴加标签%%%%%%% 对原数据x和残差平方r^2取对数,并对log(x)和log(r^2)进行一元线性回归ST1=regstats(log((ST.r).^2),log(x),'linear',{'r','beta','tstat','fstat'})ST1.tstat.beta % 输出参数的估计值ST1.tstat.pval % 输出回归系数t检验的P值ST1.fstat.pval % 输出回归模型显着性检验的P值(3)加权最小二乘法(详见test4_3.m文件)%%%%%%%%%%% 调用robustfit函数作稳健回归 %%%%%%%%%%%%[data,head]=xlsread('test4.xlsx'); % 导入数据x=data(:,1);y=data(:,2);% 调用robustfit函数作稳健回归,返回系数的估计值b和相关统计量stats[b,stats]=robustfit(x,y) %调用函数作稳健回归stats.p % 输出模型检验的P值%%% 绘制残差和权重的散点图 %%%%%%%plot(stats.resid,stats.w,'o') %绘制残差和权重的散点图xlabel('残差')ylabel('权重'(二)实验结果与分析:第一步::用OLS方法估计参数,并保留残差(1)散点图图4.1 可支配收入(x)居民消费支出(y)散点图因每个可支配收入x的值,都有5个居民消费收入y与之对应,所以上述散点图呈现此形状。
计量经济学实验报告学院:信管学院专业:实验编号:实验四实验题目:异方差性姓名:学号:10指导老师:实验四异方差性【实验目的】掌握异方差性的检验及处理方法【实验内容】建立并检验我国制造业利润函数模型【实验步骤】下表列出了2011年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型。
数据来源:国家统计局→国家统计年鉴2012数据(/tjsj/ndsj/2012/indexch.htm)→工业(按行业分规模以上工业企业主要经济效益指标)一、检验异方差性⒈图形分析检验⑴观察销售利润(Y)与销售收入(X)的相关图(图1):SCAT X Y图1 我国制造工业销售利润与销售收入相关图从图中可以看出,随着销售收入的增加,销售利润的平均水平不断提高,但离散程度也逐步扩大。
这说明变量之间可能存在递增的异方差性。
⑵残差分析首先将数据排序(命令格式为:SORT 解释变量),然后建立回归方程。
在方程窗口中点击Resids按钮就可以得到模型的残差分布图(或建立方程后在Eviews工作文件窗口中点击resid对象来观察)。
图2 我国制造业销售利润回归模型残差分布图2显示回归方程的残差分布有明显的扩大趋势,即表明存在异方差性。
⒉Goldfeld-Quant检验⑴将样本按解释变量排序(SORT X)并分成两部分(分别有1到10共1个样本和19到28共10个样本)⑵利用样本1建立回归模型1(回归结果如图3),其残差平方和为8067.52。
SMPL 1 10LS Y C X图3 样本1回归结果⑶利用样本2建立回归模型2(回归结果如图4),其残差平方和为25214669。
SMPL 20 29LS Y C X图4 样本2回归结果⑷计算F 统计量:12/RSS RSS F ==25214669/8067.52=3125.45,21RSS RSS 和分别是模型1和模型2的残差平方和。
取05.0=α时,查F 分布表得44.3)1110.1110(05.0=----F ,而44.345.312505.0=>=F F ,所以存在异方差性⒊White 检验⑴建立回归模型:LS Y C X ,回归结果如图5。
计量经济学实验一、实验内容1、实验目的研究农村居民各种不同类型的收入对消费支出的影响。
同时,掌握线性模型或双对数模型,并熟悉异方差的检验和解决办法。
2、实验要求(1)利用线性模型或双对数模型进行分析;(2)判断并解决异方差问题;(3)对模型进行调整;(4)提出扩大消费的政策建议。
二、实验报告1、问题提出影响农村居民家庭消费支出的因素有很多,如经济增长,人均国内生产总值,消费者物价指数等等。
其中,收入是影响消费的主要因素。
随着改革开放,劳动力的需求增加,农民工纷纷进城务农;我国颁布一系列对农民的补贴性政策,农民收入不断提高之际,收入也呈现多元化的局面,从单一的家庭人均纯收入扩展到工资性收入、财产性收入、转移性收入等。
我们选取了2006年各省市农村居民家庭各类收入与消费支出的数据,研究农村居民各种不同类型的收入对消费支出的影响,2、指标选择2006年各省市农村居民家庭各类收入与消费支出的数据。
3、数据来源实验课上老师提供的。
4、数据分析为了研究农村居民消费性支出与工资性收入、家庭经营纯收入、财产性收入、转移性收入之间的关系。
我们取得了2006年各省市农村居民家庭各类收入与消费支出的数据,如图1.1:地区消费性支出Y 工资性收入A 家庭经营纯收入B财产性收入E 转移性收入F北京5724.50 5047.39 1957.09 678.81 592.19 天津3341.06 3247.92 2707.35 126.37 146.29 河北2495.33 1514.68 2039.64 107.72 139.78 山西2253.25 1374.34 1622.86 74.51 109.21 内蒙古2771.97 590.70 2406.21 84.81 260.16 辽宁3066.87 1499.47 2210.84 141.80 238.30 吉林2700.66 605.11 2556.7 187.74 291.58 黑龙江2618.19 654.86 2521.51 145.69 230.38 上海8006.00 6685.98 767.71 558.17 1126.8 江苏4135.21 3104.77 2271.37 178.51 258.58 浙江6057.16 3575.14 3084.28 311.60 363.80 安徽2420.94 1184.11 1617.76 52.78 114.43福建3591.40 1855.53 2481.62 113.52 384.09江西2676.60 1441.34 1863.5 35.13 119.57山东3143.80 1671.54 2409.78 127.60 159.4河南2229.28 1022.74 2108.26 40.37 89.66湖北2732.46 1199.16 2095.15 25.91 99.13湖南3013.32 1449.65 1743.39 42.49 154.09广东3885.97 2906.15 1693.64 220.87 259.12广西2413.93 974.32 1705.75 22.45 69.96海南2232.19 555.72 2486.94 49.44 163.43重庆2205.21 1309.91 1349.57 27.29 187.07四川2395.04 1219.51 1586.54 52.84 143.50贵州1627.07 715.49 1112.81 36.93 119.38云南2195.64 441.81 1631.60 82.19 94.85西藏2002.24 568.39 1410.51 156.00 300.06陕西2181.00 848.26 1219.33 52.56 140.04甘肃1855.49 637.37 1291.85 52.56 152.27青海2178.95 653.30 1374.36 100.66 230.05宁夏2246.97 823.09 1662.07 53.35 221.63新疆2032.36 254.07 2323.01 58.69 101.51 2006年各省市农村居民家庭各类收入与消费支出(单位:元)图:1.1假定消费性支出与工资性收入、家庭经营纯收入、财产性收入、转移性收入之间呈现线性关系。
第4章 异方差性一、单项选择1.Goldfeld-Quandt 方法用于检验( ) A.异方差性 B.自相关性 C.随机解释变量 D.多重共线性2.在异方差性情况下,常用的估计方法是( ) A.一阶差分法 B.广义差分法 C.工具变量法 D.加权最小二乘法3.White 检验方法主要用于检验( ) A.异方差性 B.自相关性 C.随机解释变量 D.多重共线性4.Glejser 检验方法主要用于检验( ) A.异方差性 B.自相关性 C.随机解释变量 D.多重共线性5.下列哪种方法不是检验异方差的方法 ( )A.戈德菲尔特——匡特检验B.怀特检验C.戈里瑟检验D.方差膨胀因子检验 6.当存在异方差现象时,估计模型参数的适当方法是 ( ) A.加权最小二乘法 B.工具变量法C.广义差分法D.使用非样本先验信息7.加权最小二乘法克服异方差的主要原理是通过赋予不同观测点以不同的权数,从而提高估计精度,即 ( )A.重视大误差的作用,轻视小误差的作用B.重视小误差的作用,轻视大误差的作用C.重视小误差和大误差的作用D.轻视小误差和大误差的作用8.如果戈里瑟检验表明,普通最小二乘估计结果的残差i e 与i x 有显著的形式ii i v x e +=28715.0的相关关系(i v满足线性模型的全部经典假设),则用加权最小二乘法估计模型参数时,权数应为 ( )A. i xB. 21i x C. i x 1D. i x 19.如果戈德菲尔特——匡特检验显著,则认为什么问题是严重的 ( )A.异方差问题B.序列相关问题C.多重共线性问题D.设定误差问题 10.设回归模型为ii i u bx y +=,其中ii x u Var 2)(σ=,则b 的最有效估计量为( )A.∑∑=2ˆx xy bB. 22)(ˆ∑∑∑∑∑--=x x n y x xy n bC.x y b=ˆ D. ∑=xy n b 1ˆ二、多项选择1.下列计量经济分析中那些很可能存在异方差问题( ) A.用横截面数据建立家庭消费支出对家庭收入水平的回归模型 B.用横截面数据建立产出对劳动和资本的回归模型C.以凯恩斯的有效需求理论为基础构造宏观计量经济模型D.以国民经济核算帐户为基础构造宏观计量经济模型E.以30年的时序数据建立某种商品的市场供需模型 2.在异方差条件下普通最小二乘法具有如下性质()A 、线性B 、无偏性C 、最小方差性D 、精确性E 、有效性 3.异方差性将导致A 、普通最小二乘法估计量有偏和非一致B 、普通最小二乘法估计量非有效C 、普通最小二乘法估计量的方差的估计量有偏D 、建立在普通最小二乘法估计基础上的假设检验失效E 、建立在普通最小二乘法估计基础上的预测区间变宽 4.下列哪些方法可用于异方差性的检验()A 、DW 检验B 、方差膨胀因子检验法C 、判定系数增量贡献法D 、样本分段比较法E 、残差回归检验法5.当模型存在异方差现象进,加权最小二乘估计量具备( )A 、线性B 、无偏性C 、有效性D 、一致性E 、精确性 6.下列说法正确的有()A 、当异方差出现时,最小二乘估计是有偏的和不具有最小方差特性B 、当异方差出现时,常用的t 和F 检验失效C 、异方差情况下,通常的OLS 估计一定高估了估计量的标准差D 、如果OLS 回归的残差表现出系统性,则说明数据中不存在异方差性E 、如果回归模型中遗漏一个重要变量,则OLS 残差必定表现出明显的趋势 三、名词解释1.异方差性2.格德菲尔特-匡特检验3.怀特检验4.戈里瑟检验和帕克检验 四、简答题1.什么是异方差性?试举例说明经济现象中的异方差性。
计量经济学异方差实验报告及心得体会一、实验报告实验步骤:1、设定实验数据:设置自变量X和因变量Y,并人为引入异方差,即error项的方差不恒定。
2、建立回归模型:根据设定的数据,建立回归模型,运用最小二乘法估计模型参数。
3、对回归结果进行分析:通过查看回归系数、残差和残差的图形等,判断是否存在异方差问题。
4、进行异方差检验:利用统计软件进行异方差检验,如White 检验或Breusch–Pagan检验等,获取检验结果。
5、处理异方差问题:根据异方差检验结果,采取相应的处理方法,如使用加权最小二乘法或进行异方差稳健标准误的估计。
6、比较处理前后的回归结果:对处理前后的回归结果进行比较和分析,观察异方差的处理是否有效。
实验结果:在实验过程中,我们设定了一个简单的回归模型,并引入异方差。
经过处理异方差问题后,我们发现被异方差影响的模型的回归系数和标准误均有所变化。
而经过异方差处理后,回归结果更加稳定,模型的预测能力也相应提高。
二、心得体会通过本次实验,我对计量经济学中异方差的概念和影响有了更加深入的了解。
异方差问题存在时,回归模型的估计结果可能会产生偏误,影响模型的准确性。
因此,我们需要进行异方差检验,并采取相应的处理方法。
实验过程中,我们运用了统计软件进行异方差检验和处理,这使得整个分析过程更加简洁和高效。
此外,本次实验还提醒我们在实际研究中要注意可能存在的异方差问题,并及时处理。
在计量经济学领域,处理异方差问题的方法有很多,选择适合实际情况的方法非常重要。
因此,我们需要不断学习和实践,提高自己的计量经济学分析能力。
总之,本次实验对我们深入理解异方差在计量经济学中的重要性起到了很好的引导作用。
通过亲自操作和实践,我们能更好地掌握计量经济学分析的方法和技巧,有助于我们在未来的研究和实践中更好地运用和应用计量经济学知识。
计量经济学异方差的检验与修正实验报告本文以Salvatore(2001)《计量经济学》第13章为基础,通过实际数据测试,探究异方差的检验与修正方法及影响。
一、实验数据说明本实验采用的数据为美国1980年的50个州的经济数据,其中X1为人均所得(单位:美元),X2为每个州的城市百分比,Y为人口出生率(单位:千分之一),数据来源于《Applied Linear Regression Models》(Kutner, Nachtsheim, & Neter, 2004)。
二、实验原理当数据呈现异方差性时,传统的OLS估计方法将会失效,此时需要使用其他的估计方法。
其中常用的是加权最小二乘(WLS)估计方法。
WLS估计方法的思想是对存在异方差(方差不相等)的观测值进行权重调整,使得加权后的平方残差最小。
本实验将通过检验异方差条件、使用原有OLS估计进行对比以及应用WLS修正方法的实现来说明异方差对实证分析的影响。
三、实验内容及结果首先,为了检验异方差条件是否成立,可以采用Breusch-Pagan检验。
测试结果如下:\begin{equation}H_0:Var(\epsilon_i)=\sigma^2=\textit{常数},\nonumber\\H_1:Var(\epsilon_i)\neq \sigma^2,i=1,2,…,n\end{equation}结果如下表:Breusch-Pagan Test: u^2 = 112.208 Prob > chi2 = 0.0000通过检验结果可知,Breusch-Pagan检验统计量的p值为0.0000,小于0.05的水平,因此拒绝原假设,认为方差存在异方差。
接下来,我们将使用传统的OLS估计方法进行回归分析(OLS 1),并与WLS估计方法(WLS 1)进行对比。
OLS 1结果如下:\begin{equation}Y=0.0514X1+1.0871X2-58.7254 \nonumber\end{equation}\begin{table}[h]\centering\caption{OLS1结果}\begin{tabular}{cccc}\toprule& coef. & std. err. & t \\\midruleconst & -58.7254 & 23.703 & -2.477 \\X1 & 0.0514 & 0.027 & 1.895 \\X2 & 1.0871 & 0.402 & 2.704 \\\bottomrule\end{tabular}\end{table}从OLS 1的结果中可以看出,X1和X2对Y的影响都是正的,但没有达到显著水平,此时需要进行进一步分析。
实验实训报告课程名称:计量经济学实验开课学期:2012-2013学年第一学期开课系(部):经济系开课实验(训)室:数量经济分析实验室学生姓名:专业班级:学号:重庆工商大学融智学院教务处制实验题目实验概述【实验(训)目的及要求】通过本次实验,使学生掌握异方差模型的检验方法及校正方法。
其中,检验方法主要掌握图形法检验、怀特检验;校正方法主要掌握加权最小二乘法、White 校正法。
【实验(训)原理】对于不同的样本点,随机误差项的方差不再是常数,而互不相同,则认为出现了异方差性。
异方差的实质表现为随机误差项的方差随着解释变量(引起异方差的解释变量)观测值的变化而变化。
对于出现异方差的原模型主要采用校正其异方差,再对校正后的模型采用普通最小二乘法估计。
实验内容【实验(训)方案设计】1、图形法检验:(1)回归分析;(2)得到残差趋势图和残差散点图;(3)分析异方差。
2、使用White检验异方差:(1)回归分析;(2)得到White检验统计量及伴随概率;(3)根据结果判断分析异方差的存在性。
3、在发现存在异方差的基础上,进行异方差的处理:(1)使用加权最小二乘法校正异方差:①输入回归方程;②在Option中选择加权最小二乘法,并输入权重序列名称;③得到校正后的结果。
(2)使用White校正法解决异方差:①输入回归方程;②在Option中选择White校正;③得到校正后的结果。
【实验(训)过程】(实验(训)步骤、记录、数据、分析)实验背景本例用的是四川省2000年各地市州的医疗机构数和人口数。
为了给制定医疗机构的规划提供依据,分析比较医疗机构(Y,单位:个)与人口数量(X,单位:万人)的关系,建立卫生医疗机构数与人口数的回归模型。
假定医疗机构数与人口数之间满足线性约束,则理论模型设定为其中,i Y 表示卫生医疗机构数,i X 表示人口数。
【实验(训)过程】(实验(训)步骤、记录、数据、分析)1、根据实验数据的相关信息建立Workfile ;在菜单中依次点击File\New\Workfile,在出现的对话框“Workfilerange ”中选择数据频率。
实验四异方差性【实验目的】掌握异方差性的检验及处理方法【实验内容】建立并检验我国制造业利润函数模型【实验步骤】【例1】表1列出了1998年我国主要制造工业销售收入与销售利润的统计资料,请利用统计软件Eviews建立我国制造业利润函数模型。
一、检验异方差性⒈图形分析检验⑴观察销售利润(Y)与销售收入(X)的相关图(图1):SCAT X Y图1 我国制造工业销售利润与销售收入相关图从图中可以看出,随着销售收入X的增加,销售利润Y的平均水平不断提高,但离散程度也逐步扩大。
这说明变量之间可能存在递增的异方差性。
⑵残差分析首先将数据排序(命令格式为:SORT X解释变量),然后建立回归方程。
在方程窗口中点击Resids按钮就可以得到模型的残差分布图(或建立方程后在Eviews工作文件窗口中点击resid对象来观察)。
View,Actual,Residuai图2 我国制造业销售利润回归模型残差分布图2显示回归方程的残差分布有明显的扩大趋势,即表明存在异方差性。
⒉Goldfeld-Quant检验⑴将样本安解释变量排序(SORT X)并分成两部分(分别有1到10共11个样本合19到28共10个样本)⑵利用样本1建立回归模型1(回归结果如图3),其残差平方和为2579.587。
SMPL 1 10LS Y C X图3 样本1回归结果Dependent Variable: YMethod: Least SquaresDate: 11/14/13 Time: 13:37Sample: 1 10Included observations: 10Variable Coefficient Std. Error t-Statistic Prob.C 15.76466 14.82022 1.063727 0.3185X 0.085894 0.019182 4.477937 0.0021R-squared 0.714814 Mean dependent var 77.06400Adjusted R-squared 0.679166 S.D. dependent var 31.70225S.E. of regression 17.95685 Akaike info criterion 8.790677Sum squared resid 2579.587 Schwarz criterion 8.851194Log likelihood -41.95338 F-statistic 20.05192Durbin-Watson stat 2.280129 Prob(F-statistic) 0.002061⑶利用样本2建立回归模型2(回归结果如图4),其残差平方和为63769.67。
SMPL 19 28LS Y C X图4 样本2回归结果Dependent Variable: YMethod: Least SquaresDate: 11/14/13 Time: 13:39Sample: 19 28Included observations: 10Variable Coefficient Std. Error t-Statistic Prob.C -11.99687 138.6642 -0.086517 0.9332 X0.1105520.0393672.8082090.0229R-squared 0.496413 Mean dependent var 369.2440 Adjusted R-squared 0.433465 S.D. dependent var 118.6175 S.E. of regression 89.28163 Akaike info criterion 11.99833 Sum squared resid 63769.67 Schwarz criterion 12.05884 Log likelihood -57.99163 F-statistic 7.886037 Durbin-Watson stat2.489267 Prob(F-statistic)0.022906⑷计算F 统计量:12/RSS RSS F ==63769.67/2579.59=24.72,21RSS RSS 和( Sum squaredresid )分别是模型1和模型2的残差平方和。
取05.0=α时,查F 分布表得44.3)1110,1110(05.0=----F ,而44.372.2405.0=>=F F ,所以存在异方差性.(原假设为同方差,大于临界值,则拒绝原假设)⒊White 检验⑴建立回归模型:LS Y C X ,回归结果如图5。
图5 我国制造业销售利润回归模型Dependent Variable: Y Method: Least Squares Date: 11/14/13 Time: 13:42Sample: 1 28Included observations: 28VariableCoefficientStd. Error t-Statistic Prob.C 12.03349 19.51809 0.616530 0.5429X 0.104394 0.008442 12.36658 0.0000R-squared 0.854694 Mean dependent var 213.4639Adjusted R-squared 0.849105 S.D. dependent var 146.4905S.E. of regression 56.90455 Akaike info criterion 10.98938Sum squared resid 84191.34 Schwarz criterion 11.08453Log likelihood -151.8513 F-statistic 152.9322Durbin-Watson stat 2.497440 Prob(F-statistic) 0.000000 ⑵在方程窗口上点击View\Residual\Test\White Heteroskedastcity,检验结果如图6。
图6 White检验结果White Heteroskedasticity Test:F-statistic 3.607090 Probability 0.042040Obs*R-squared 6.270439 Probability 0.043490Test Equation:Dependent Variable: RESID^2Method: Least SquaresDate: 11/14/13 Time: 13:43Sample: 1 28Included observations: 28Variable Coefficient Std. Error t-Statistic Prob.C -3279.669 2857.119 -1.147894 0.2619X 5.670687 3.109366 1.823744 0.0802X^2 -0.000871 0.000653 -1.334033 0.1942R-squared 0.223944 Mean dependent var 3006.833Adjusted R-squared 0.161860 S.D. dependent var 5144.454S.E. of regression 4709.748 Akaike info criterion 19.85361Sum squared resid 5.55E+08 Schwarz criterion 19.99635Log likelihood -274.9506 F-statistic 3.607090Durbin-Watson stat2.576402 Prob(F-statistic)0.042040其中F 值为辅助回归模型的F 统计量值。
取显著水平05.0=α,由于2704.699.5)2(2205.0=<=nR χ,所以存在异方差性。
实际应用中可以直接观察相伴概率p 值的大小,若p 值较小,则认为存在异方差性。
反之,则认为不存在异方差性。
⒋Park 检验⑴建立回归模型(结果同图5所示)。
⑵生成新变量序列:GENR LNE2=log(RESID^2)GENR LNX=log (X )⑶建立新残差序列对解释变量的回归模型:LS LNE2 C LNX ,回归结果如图7所示。
图7 Park 检验回归模型Dependent Variable: LNE2 Method: Least Squares Date: 11/14/13 Time: 14:12Sample: 1 28Included observations: 28Variable Coefficient Std. Error t-Statistic Prob. C -5.554862 2.585463 -2.148497 0.0412 LNX1.6743090.3518834.7581420.0001R-squared 0.465460 Mean dependent var 6.679331 Adjusted R-squared 0.444900 S.D. dependent var 1.925320 S.E. of regression 1.434460 Akaike info criterion 3.628203 Sum squared resid 53.49953 Schwarz criterion 3.723360 Log likelihood -48.79484 F-statistic 22.63991 Durbin-Watson stat2.315009 Prob(F-statistic)0.000064从图7所示的回归结果中可以看出,LNX的系数估计值不为0且能通过显著性检验,即随即误差项的方差与解释变量存在较强的相关关系,即认为存在异方差性。
⒌Gleiser检验(Gleiser检验与Park检验原理相同)(重新数据)⑴建立回归模型(结果同图5所示)。
⑵生成新变量序列:GENR E=ABS(RESID)⑶分别建立新残差序列(E)对各解释变量(X/ X^2/ X^(1/2)/ X^(-1)/ X^(-2)/ X^(-1/2))的回归模型:LS E C X,回归结果如图8、9、10、11、12、13所示。
图8Dependent Variable: EMethod: Least SquaresDate: 11/14/13 Time: 14:20Sample: 1 28Included observations: 28Variable Coefficient Std. Error t-Statistic Prob.C 12.23936 10.61881 1.152612 0.2596X 0.015267 0.004593 3.324123 0.0026R-squared 0.298242 Mean dependent var 41.69654Adjusted R-squared 0.271251 S.D. dependent var 36.26573S.E. of regression 30.95889 Akaike info criterion 9.771947Sum squared resid 24919.78 Schwarz criterion 9.867104Log likelihood -134.8073 F-statistic 11.04980Durbin-Watson stat 1.727735 Prob(F-statistic) 0.002644图9Dependent Variable: EMethod: Least SquaresDate: 11/14/13 Time: 14:21Sample: 1 28Included observations: 28Variable Coefficient Std. Error t-Statistic Prob.C 27.05837 8.232528 3.286763 0.0029X^2 2.74E-06 1.02E-06 2.689852 0.0123R-squared 0.217699 Mean dependent var 41.69654 Adjusted R-squared 0.187611 S.D. dependent var 36.26573 S.E. of regression 32.68726 Akaike info criterion 9.880597 Sum squared resid 27779.88 Schwarz criterion 9.975755 Log likelihood -136.3284 F-statistic 7.235303 Durbin-Watson stat 1.690469 Prob(F-statistic) 0.012319图10Dependent Variable: EMethod: Least SquaresDate: 11/14/13 Time: 14:22Sample: 1 28Included observations: 28Variable Coefficient Std. Error t-Statistic Prob.C -15.67683 17.09642 -0.916965 0.3676X^(1/2) 1.386178 0.389207 3.561545 0.0015R-squared 0.327898 Mean dependent var 41.69654 Adjusted R-squared 0.302048 S.D. dependent var 36.26573 S.E. of regression 30.29767 Akaike info criterion 9.728768 Sum squared resid 23866.67 Schwarz criterion 9.823926 Log likelihood -134.2028 F-statistic 12.68460 Durbin-Watson stat 1.748726 Prob(F-statistic) 0.001450图11Dependent Variable: EMethod: Least SquaresDate: 11/14/13 Time: 14:22Sample: 1 28Included observations: 28Variable Coefficient Std. Error t-Statistic Prob.C 59.38997 8.966462 6.623568 0.0000X^(-1) -19128.96 7040.358 -2.717044 0.0116R-squared 0.221145 Mean dependent var 41.69654 Adjusted R-squared 0.191189 S.D. dependent var 36.26573 S.E. of regression 32.61520 Akaike info criterion 9.876183 Sum squared resid 27657.53 Schwarz criterion 9.971341Log likelihood -136.2666 F-statistic 7.382327 Durbin-Watson stat 1.846972 Prob(F-statistic) 0.011561图12Dependent Variable: EMethod: Least SquaresDate: 11/14/13 Time: 14:23Sample: 1 28Included observations: 28Variable Coefficient Std. Error t-Statistic Prob.C 46.93599 7.198811 6.519964 0.0000X^(-2) -3230227. 1793010. -1.801566 0.0832R-squared 0.110979 Mean dependent var 41.69654 Adjusted R-squared 0.076785 S.D. dependent var 36.26573 S.E. of regression 34.84559 Akaike info criterion 10.00848 Sum squared resid 31569.59 Schwarz criterion 10.10364 Log likelihood -138.1187 F-statistic 3.245641 Durbin-Watson stat 1.768049 Prob(F-statistic) 0.083222图13Dependent Variable: EMethod: Least SquaresDate: 11/14/13 Time: 14:23Sample: 1 28Included observations: 28Variable Coefficient Std. Error t-Statistic Prob.C 86.80755 15.09094 5.752297 0.0000X^(-1/2) -1611.111 496.1991 -3.246904 0.0032R-squared 0.288497 Mean dependent var 41.69654Adjusted R-squared 0.261132 S.D. dependent var 36.26573S.E. of regression 31.17309 Akaike info criterion 9.785737Sum squared resid 25265.81 Schwarz criterion 9.880894Log likelihood -135.0003 F-statistic 10.54239Durbin-Watson stat 1.830876 Prob(F-statistic) 0.003206由上述各回归结果可知,各回归模型中解释变量的系数估计值显著不为0且均能通过显著性检验。