大一微积分下册经典题目与解析
- 格式:doc
- 大小:550.00 KB
- 文档页数:17
第六章 定积分§6.1~6.2 定积分的概念、性质一、填空题1、设()f x 在[,]a b 上连续,n 等分011[,]:n n a b a x x x x b -=<<<<=,并取小区间左端点1i x -,作乘积1()i b af x n --⋅,则11lim ()ni n i b a f x n -→∞=-⋅=∑()d b af x x⎰.2、根据定积分的几何意义,20d x x =⎰2,1x -=⎰2π,sin d x x ππ-=⎰0.3、设()f x 在闭区间[,]a b 上连续,则()d ()d b baaf x x f t t -=⎰⎰0.二、单项选择题1、定积分()d b af x x ⎰(C) .(A) 与()f x 无关 (B) 与区间[,]a b 无关 (C) 与变量x 采用的符号无关 (D) 是变量x 的函数 2、下列不等式成立的是 (C) . (A) 222311d d x x x x >⎰⎰ (B) 22211ln d (ln )d x x x x <⎰⎰(C)110d ln(1)d x x x x >+⎰⎰ (D) 11e d (1)d xx x x <+⎰⎰3、设()f x 在[,]a b 上连续,且()d 0b af x x =⎰,则 (C) .(A) 在[,]a b 的某小区间上()0f x = (B) [,]a b 上的一切x 均使()0f x = (C) [,]a b 内至少有一点x 使()0f x = (D) [,]a b 内不一定有x 使()0f x = 4、积分中值公式()d ()()b af x x f b a ξ=-⎰中的ξ是 (B) .(A) [,]a b 上的任一点 (B) [,]a b 上必存在的某一点(C) [,]a b 上唯一的某一点 (D) [,]a b 的中点5、d arctan d d bax x x =⎰ (D) .析:arctan d b ax x ⎰是常数(A) arctan x (B)211x+ (C) arctan arctan b a - (D) 06、设244123d ,s i n d I x x Ix x ππ===⎰⎰⎰,则123,,I I I 的关系为 (B) .(A) 123I I I >> (B) 213I I I >> (C) 312I I I >> (D) 132I I I >> 7、设41I x =⎰,则I 的值 (A) . (A) 0I ≤≤(B) 115I ≤≤ (C) 1165I ≤≤ (D) 1I ≥析:4()f x =[]0,1上的最大值是2,最小值是0,所以0I ≤≤.三、估计定积分220e d x x I x -=⎰的值.解 记2()e ,[0,2]xxf x x -=∈,则2()(21)e x x f x x -'=-,令()0f x '=,得12x =. 因为1241e ,(0)1,(2)e 2f f f -⎛⎫=== ⎪⎝⎭,所以()f x 在[0,2]上的最大值为2e ,最小值为14e -,从而 212242ee d 2e x x I x --≤=≤⎰.四、设()f x 在[,]a b 上连续,在(,)a b 内可导,且1()d ()baf x x f b b a =-⎰.求证:至少存在一点(,)a b ξ∈,使得()0f ξ'=.证明 由积分中值定理,存在一点[,]a b η∈,使得()d ()()b af x x f b a η=-⎰,即1()d ()b af x x f b a η=-⎰.又由题设可知,()f x 在[,]b η上连续,在(,)b η内可导,且有()()f f b η=,根据罗尔定理,存在一点(,)(,)b a b ξη∈⊂,使得()0f ξ'=.§6.3微积分的基本公式一、填空题1、若20()x f x t t =⎰,则()f x '=32x .2、32d d x x x⎰23、极限0sin 3d lim1cos x x t tx→=-⎰3.4、定积分412d x x -=⎰52.5、设,0()sin ,0x x f x x x ≥⎧=⎨<⎩,则11()d f x x -=⎰1cos12-.6、由方程2d cos d 0e y xt t t t +=⎰⎰所确定的隐函数()y y x =的导数d d y x=2cos ey x-.7、设()f x 是连续函数,且31()d x f t t x -=⎰,则(7)f =112.8、设13201()()d 1f x x f x x x =++⎰,则10()d f x x =⎰3π.析:设10()d f x x A =⎰,则等式两端同时积分得111320001()d d d 1f x x x x A x x =+⋅+⎰⎰⎰ 1013arctan |,,4443A x A A A ππ=+⋅∴==. 9、设()f x 在闭区间[,]a b 上连续,且()0f x >,则方程1()d d 0()x x abf t t t f t +=⎰⎰在开区间(,)a b 内有1个实根.析:设1()()d d ()x x abF x f t t t f t =+⎰⎰,则有 1()d 0,()()d 0()a b ba F a t Fb f t t f t =<=>⎰⎰,由根的存在定理知至少有存在一个(),a b ξ∈使得()0F ξ=;若方程有两个根,不妨设1,2ξξ即12()0,()0F F ξξ==,则由罗尔定理知,(),a b ξ∃∈使得()0F ξ'=, 即使得1()0()f x f x +=成立,这与()0f x >矛盾, 所以方程又且只有一个根.二、单项选择题1、下列积分中能用微积分基本公式的只有 (C) .(A) 11d x x -⎰ (B) 31e d ln x x x ⎰(C) 1-⎰(D) 1-⎰2、设2()()d xa x F x f t t x a=-⎰,其中()f x 是连续函数,则lim ()x a F x →= (B) . (A) 2a (B) 2()a f a (C) 0 (D) 不存在3、设561cos 2()sin d ,()56x x x f x t t g x -==+⎰,则当0x →时,()f x 是()g x 的 (B) .(A) 低阶无穷小 (B) 高阶无穷小 (C) 等价无穷小 (D) 同阶但不等价无穷小 析: 1cos 42056450004()sin d ()2limlimlim 0()56xx x x x xt tf x x xg x x x-→→→⋅===++⎰. 三、求020(e 1)d limsin x t x t t x x→-⎰.解 根据洛必得法则,得202322000(e 1)d (e 1)d (e 1)1limlimlim lim sin 333x x t t x x x x x t t t t x x x xx x x →→→→---====⎰⎰.四、求函数20()e d xtI x t t -=⎰的极值.解 2()e x I x x -'=,()2222()ee (2)12e x x x I x x x x ---''=+-=-.令()0I x '=,得驻点0x =,又(0)10I ''=>,所以0x =是()I x 得极小值点,极小值为(0)0I =.五、求x .解x x x ==⎰()()24204sin cos d cos sin d sin cos d x x x x x x x x x ππππ=-=-+-⎰⎰⎰()()42042sin cos cos sin x x x x πππ=++--=.六、已知0()()d 1cos xx t f t t x -=-⎰,证明:20()d 1f x x π=⎰.证明 原式可化为 0()d ()d 1cos x xx f t t tf t t x -=-⎰⎰,两边对x 求导,得()d ()()sin xf t t xf x xf x x +-=⎰,即0()d sin xf t t x =⎰,令2x π=,得20()d sin12f t t ππ==⎰,即 20()d 1f x x π=⎰.§6.4 定积分的换元积分法一、填空题1、设()f x 在区间[,]a a -上连续,则2[()()]d a ax f x f x x ---=⎰.2、91x =⎰2ln 2. 3、09912(21)d x x -+=⎰1200.4、31e =⎰2. 5、(211d x x -=⎰2.6、222d 2x xx x -+=+⎰ln3. 7、x =⎰4π.8、设211e ,22()11,2x x x f x x ⎧-≤<⎪⎪=⎨⎪-≥⎪⎩,则212(1)d f x x -=⎰12-.二、单项选择题1、设()f x 是连续函数,()d ()d b baaf x x f a b x x -+-=⎰⎰ (A) .(A) 0 (B) 1 (C) a b + (D) ()d b af x x ⎰析:令a b x y +-=,则()d ()d ()d ()dy 0b bbaaaabf x x f a b x x f x xg x -+-=+=⎰⎰⎰⎰2、设()f x 是连续函数,()F x 是()f x 的原函数,则 (A) . (A) 若()f x 是奇函数,()F x 必为偶函数 (B) 若()f x 是偶函数,()F x 必为奇函数 (C) 若()f x 是周期函数,()F x 必为周期函数 (D) 若()f x 是单调增函数,()F x 必为单调增函数 析:(B)反例:()cos ,()sin 1f x x F x x ==+(C)反例:()1,()f x F x x ==(D)反例:212(),()f x x F x x == 三、计算下列定积分1、()234332011311211222d 3d 32233t t t t t t t t -+⎛⎫⋅=+=+= ⎪⎝⎭⎰⎰. 2、()1ln 1122000021d 21d 2arctan 2112t t t t t t t t π⎛⎫⋅=-=-=- ⎪++⎝⎭⎰⎰.3、d d t t t t =⎰1t=-=.四、设()f x 是连续函数,证明:02(sin )d (sin )d xf x x f x x πππ=⎰⎰.证明(sin )d ()(sin )(d )=()(sin )d x txf x xt f t t t f t t ππππππ=-=---⎰⎰⎰令(sin )d (sin )d (sin )d (sin )d f t t tf t t f x x xf x x ππππππ=-=-⎰⎰⎰⎰.从而 02(sin )d (sin )d xf x x f x x πππ=⎰⎰,即 02(sin )d (sin )d xf x x f x x πππ=⎰⎰.五、设(),()f x g x 在[,](0)a a a ->上连续,且()f x 满足条件()()f x f x A +-=(A 为常数),()g x 为偶函数. (1)证明:()()d ()d a aaf xg x x A g x x -=⎰⎰;(2)利用(1)的结论计算定积分22sin arctan e d xx x ππ-⎰.(1)证明00()()d ()()d ()()d a aaaf xg x x f x g x x f x g x x --=+⎰⎰⎰,而000()()d ()()(d )()()d ()()d a aaax tf xg x xf tg t t f t g t t f x g x x -=----=-=-⎰⎰⎰⎰令,所以()()d ()()d ()()d a aaaf xg x x f x g x x f x g x x -=-+⎰⎰⎰[]0()()()d ()d a af x f xg x x A g x x =-+=⎰⎰.(2)解 取()arctan e ,()sin ,2xf xg x x a π===,令 ()()()arctan earctan e xx F x f x f x -=-+=+,则 ()2222e e e e ()arctan e arctan e 01e 1e 1e 1e x x x x xx x x x xF x -----''=+=+=+=++++,所以 ()F x A =(常数),又(0)arctan1arctan12arctan12F π=+==,即 ()()2f x f x A π-+==.于是有22202sin arctan e d sin d sin d 222xx x x x x x πππππππ-===⎰⎰⎰.§6.5 定积分的分部积分法一、填空题1、cos d x x x π=⎰2-.2、已知()f x 的一个原函数是2ln x ,则1e()d xf x x '=⎰1.3、11()e d xx x x --+=⎰124e --.4、设0sin ()d xtf x t t π=-⎰,则0()d f x x π=⎰2. 析:0000sin sin ()d ()|d ()d x x f x x xf x x x x x x xπππππππ=-=---⎰⎰⎰0(cos )|2x π=-=. 二、计算下列定积分1、2001d arccos 122x x x x =+=-⎰⎰12==+. 2、1e111e1e 1e 1111eeee11ln d (ln )d ln d ln d ln d x x x x x x x x x x x x x x x x =-+=-+⋅+-⋅⎰⎰⎰⎰⎰1121e e 12e e e=-+-+-+=-. 3、ln 2ln 2ln 20ln 2ln 211e d d(e )e e d ln 2e (1ln 2)22x x xx xx x x x x -----=-=-+=--=-⎰⎰⎰. 4、2222200001cos 211sin d d d cos 2d 222x x x x x x x x x x x ππππ-=⋅=-⎰⎰⎰⎰22220022011d(sin 2)sin 2sin 2d 44164x x x x x x x πππππ⎛⎫⎪=-=-- ⎪ ⎪⎝⎭⎰⎰22201110cos 21642164x πππ⎛⎫ ⎪=-+=+ ⎪⎝⎭. 5、1102x x =⎰⎰(被积函数为偶函数)方法一 :122arcsin dx =-⎰1202arcsin x x ⎫=--⎪⎪⎝⎭212x ⎛⎫=-- ⎪ ⎪⎝⎭1202d 1x ⎫=--=-⎪⎪⎝⎭⎰. 方法二:166sin arcsin cos dt cos t txt x t t ππ-=⎰⎰602d(-cos )1t t π==-⎰. 6、111120000ln(1)1ln(1)1d ln(1)d d ln(1)(2)222x x x x x x x x x ++⎛⎫=+=-+ ⎪----⎝⎭⎰⎰⎰ 11001111ln 2d ln 2d (2)(1)321x x x x x x ⎛⎫=-=-+ ⎪-+-+⎝⎭⎰⎰[]1121ln 2ln(2)ln(1)ln 2ln 2ln 2333x x =---++=-=.三、设()f x 是连续函数,证明:000()d d ()()d x u xf t t u x u f u u ⎡⎤=-⎢⎥⎣⎦⎰⎰⎰.证明()0000()d d ()d d()d ()d ()d xx u u x u x xf t t u u f t t u f t t x f t t uf u u ⎡⎤=-=-⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰()d ()d ()d ()d xxx xx f u u uf u u xf u u uf u u =-=-⎰⎰⎰⎰()()d xx u f u u =-⎰.§6.6 广义积分与Γ函数一、单项选择题1、下列广义积分收敛的是 (D) . (A)e d xx +∞⎰(B) e1d ln x x x +∞⎰(C) 1x +∞⎰ (D) 321d x x +∞-⎰2、以下结论中错误的是 (D) .(A) 201d 1x x +∞+⎰收敛 (B) 20d 1x x x +∞+⎰发散 (C) 2d 1x x x +∞-∞+⎰发散 (D) 2d 1x x x +∞-∞+⎰收敛 3、1211d x x -=⎰ (D) .(A) 0 (B) 2 (C) 2- (D) 发散析:1101222210101111d d d ,d x x x x x x x x --=+⎰⎰⎰⎰发散,0211d x x-⎰也发散。
第二章习题2-11. 试利用本节定义5后面的注(3)证明:若lim n →∞x n =a ,则对任何自然数k ,有lim n →∞x n +k =a .证:由lim n n x a →∞=,知0ε∀>,1N ∃,当1n N >时,有取1N N k =-,有0ε∀>,N ∃,设n N >时(此时1n k N +>)有 由数列极限的定义得 lim n k x x a +→∞=.2. 试利用不等式A B A B -≤-说明:若lim n →∞x n =a ,则lim n →∞∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立. 证:而 n n x a x a -≤- 于是0ε∀>,,使当时,有N n N ∃>n n x a x a ε-≤-< 即 n x a ε-<由数列极限的定义得 lim n n x a →∞=考察数列 (1)nn x =-,知lim n n x →∞不存在,而1n x =,lim 1n n x →∞=,所以前面所证结论反之不成立。
3. 利用夹逼定理证明:(1) lim n →∞222111(1)(2)n n n ⎛⎫+++ ⎪+⎝⎭=0; (2) lim n →∞2!nn =0.证:(1)因为222222111112(1)(2)n n n n n n n n n n++≤+++≤≤=+ 而且 21lim0n n →∞=,2lim 0n n→∞=,所以由夹逼定理,得222111lim 0(1)(2)n n n n →∞⎛⎫+++= ⎪+⎝⎭. (2)因为22222240!1231n n n n n<=<-,而且4lim 0n n →∞=,所以,由夹逼定理得4. 利用单调有界数列收敛准则证明下列数列的极限存在. (1) x n =11n e +,n =1,2,…;(2) x 1x n +1,n =1,2,…. 证:(1)略。
高等数学下册习题答案详解高等数学是大学数学的一门重要课程,它涵盖了微积分、线性代数、概率论等内容。
在学习过程中,习题是检验学生理解和掌握程度的重要方式。
下面将详细解答高等数学下册的一些典型习题,帮助读者更好地理解和应用数学知识。
1.微分方程习题解答微分方程是高等数学下册中的重要内容之一。
下面我们来解答一个经典的微分方程习题:已知微分方程dy/dx = 2x + 3,求其通解。
解答:首先将方程变形为dy = (2x + 3)dx,然后对两边同时积分,得到∫dy = ∫(2x + 3)dx。
对左边进行积分得到y = ∫dy = y + C1,其中C1为常数。
对右边进行积分得到∫(2x + 3)dx = x^2 + 3x + C2,其中C2为常数。
将上述结果代入原方程,得到y = x^2 + 3x + C2 - C1,即为微分方程的通解。
2.向量习题解答向量是高等数学下册中的另一个重要内容。
下面我们来解答一个向量习题:已知向量a = (1, 2, -3)和向量b = (4, -1, 2),求向量a和向量b的数量积和向量积。
解答:向量a和向量b的数量积为a·b = 1×4 + 2×(-1) + (-3)×2 = 4 - 2 - 6 = -4。
向量a和向量b的向量积为a×b = (2×2 - (-3)×(-1), (-3)×4 - 1×2, 1×(-1) - 2×4) = (7, -14, -9)。
3.级数习题解答级数是高等数学下册中的另一个重要内容。
下面我们来解答一个级数习题:已知级数∑(n=1)^(∞) 1/n^2 是收敛的,求级数∑(n=1)^(∞) 1/n^4 的和。
解答:由已知的级数∑(n=1)^(∞) 1/n^2 是收敛的可知,其和为π^2/6。
因为级数∑(n=1)^(∞) 1/n^4 是收敛的,所以存在一个常数S使得∑(n=1)^(∞) 1/n^4 = S。
微积分练习册[第八章]多元函数微分学习题8-1多元函数的基本概念1.填空题:(1)若yxxy y x y x f tan),(22-+=,则___________),(=ty tx f (2)若xy y x y x f 2),(22+=,则(2,3)________,(1,)________yf f x-==(3)若)0()(22 y yy x xyf +=,则__________)(=x f (4)若22),(y x xy y x f -=+,则____________),(=y x f(5)函数)1ln(4222y x y x z ---=的定义域是_______________(6)函数y x z -=的定义域是_______________(7)函数xyz arcsin=的定义域是________________ (8)函数xy xy z 2222-+=的间断点是_______________2.求下列极限: (1)xy xy y x 42lim0+-→→(2)x xyy x sin lim0→→(3)22222200)()cos(1lim y x y x y x y x ++-→→ 3.证明0lim22)0,0(),(=+→yx xy y x4.证明:极限0lim 242)0,0(),(=+→y x yx y x 不存在5.函数⎪⎩⎪⎨⎧=≠+=(0,0)),( ,0)0,0(),(,1sin ),(22y x y x y x x y x f 在点(0,0)处是否连续?为什么习题8-2偏导数及其在经济分析中的应用1.填空题 (1)设y x z tanln =,则__________________,=∂∂=∂∂yzx z ; (2)设)(y x e z xy+=,则__________________,=∂∂=∂∂yzx z ; (3)设zyxu =,则________,__________________,=∂∂=∂∂=∂∂z u y u x u ; (4)设x y axc z tan =,则_________________,_________,22222=∂∂∂=∂∂=∂∂y x zyz x z(5)设zyx u )(=,则________2=∂∂∂y x u ; (6)设),(y x f 在点),(b a 处的偏导数存在,则_________),(),(lim 0=--+→xb x a f b x a f x2.求下列函数的偏导数y xy z )1()1(+=z y x u )arcsin()2(-=3.设xy z =,求函数在(1,1)点的二阶偏导数4.设)ln(xy x z =,求y x z ∂∂∂23和23y x z∂∂∂5.)11(yx ez +-=,试化简yz y x z x∂∂+∂∂226.试证函数⎪⎩⎪⎨⎧=≠+=)0,0(),( ,0)0,0(),(,3),(22y x y x y x xyy x f 在点(0,0)处的偏导数存在,但不连续.习题8-3全微分及其应用1.X 公司和Y 公司是机床行业的两个竞争者,这两家公司的主要产品的需求曲线分别为:QY PY Qx Px 41600;51000-=-=公司X 、Y 现在的销售量分别是100个单位和250个单位。
一. 填空题(共30分) 1设()xy y z e x sin cos -=,则.1|0ππ--=∂∂==y x xz2.曲面z xy 2=在点()1,1,1的切平面方程为.02=-+y x3.曲线t e z t t y x t 2sin ,cos ,=-==在2π=t 处的切线方程.42202πππ-=-=-z y ex4.计算().1cos 121sin 1210-=⎰⎰dx dy y x5.把直角坐标系下的二次积分化为极坐标系下的二次积分有()()rdr r r f d dx yyy x f dy ⎰⎰⎰⎰=---1001110sin ,cos ,22θθθπ 6.积分().16242224π=⎰⎰-+≤+dxdy y x x x7.()e e x e d x y x y x 11ln 211112-=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+++-⎰⎰≤≤-≤≤-+σ8.级数∑∞=+--1231n n n n的敛散性为.发散9.级数∑∞=1n nnx 的和函数()()x x s --=1ln ,.2ln 112=∑∞=n nn10.().2111222222-=++--⎰⎰≤+ππdxdy y x yx y x二. 计算题(每小题7分,共70分) 1。
设z yx xzy u =的全微分du分数 评卷人解:两边取对数z x y z x y u ln ln ln ln ++=-----(1), 再对(1)两边取全微分:⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=dz z x zdx ydz dy y zxdy dx x y du u ln ln ln 1.ln ln ln dz z x y dy y z x dx z x y ⎪⎭⎫⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+= 所以,.ln ln ln dz z x y dy y z x dx z x y u du ⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛++⎪⎭⎫⎝⎛+= 2.计算由方程yz zxln =确定的函数()y x z z ,=的全微分。
实用文档之"第一章 函数极限与连续"一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。
2、=-+→∞)1()34(lim22x x x x 。
3、0→x 时,x x sin tan -是x 的 阶无穷小。
4、01sin lim 0=→xx kx 成立的k 为 。
5、=-∞→x e xx arctan lim 。
6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。
7、=+→xx x 6)13ln(lim 0 。
8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。
9、函数)2ln(1++=x y 的反函数为_________。
10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。
11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。
12、函数xxx f +=13arcsin )(的定义域是__________。
13、lim ____________x →+∞=。
14、设8)2(lim =-+∞→xx ax a x ,则=a ________。
15、)2)(1(lim n n n n n -++++∞→=____________。
二、选择题 1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。
(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。
2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。
(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。
大学微积分试题及答案一、选择题(每题5分,共20分)1. 若函数f(x)在点x=a处可导,则下列说法正确的是:A. f(x)在点x=a处连续B. f(x)在点x=a处一定有极值C. f(x)在点x=a处的导数为0D. f(x)在点x=a处的导数一定大于0答案:A2. 曲线y=x^2在点(1,1)处的切线方程是:A. y=2x-1B. y=x+1C. y=2xD. y=x-1答案:A3. 函数f(x)=x^3-3x+2的导数是:A. 3x^2-3B. 3x^2+3C. x^2-3D. x^3-3答案:A4. 曲线y=x^3-6x^2+9x+1在x=3处的凹凸性是:A. 凹B. 凸C. 不确定D. 既非凹也非凸答案:B二、填空题(每题5分,共20分)1. 函数f(x)=2x^2-4x+3的极小值点是______。
答案:12. 曲线y=x^3-3x在点(2,5)处的切线斜率是______。
答案:33. 函数f(x)=x^2-6x+8的单调递增区间是______。
答案:[3, +∞)4. 曲线y=x^2-4x+3在x=2处的法线方程是______。
答案:y=-x+7三、解答题(每题10分,共60分)1. 求函数f(x)=x^3-3x^2+4x-2在区间[0,3]上的最大值和最小值。
答案:函数f(x)的导数为f'(x)=3x^2-6x+4。
令f'(x)=0,解得x=1, 2。
在区间[0,1]上,f'(x)>0,函数单调递增;在区间[1,2]上,f'(x)<0,函数单调递减;在区间[2,3]上,f'(x)>0,函数单调递增。
因此,函数在x=1处取得极大值f(1)=1,在x=2处取得极小值f(2)=-2。
在区间端点处,f(0)=-2,f(3)=1。
所以,函数在区间[0,3]上的最大值为1,最小值为-2。
2. 求由曲线y=x^2与直线y=4x-3围成的面积。
微积分典型例题微积分是数学的一个分支,主要研究函数的变化率和积分,是很多科学领域的基础工具。
在学习微积分的过程中,典型例题的练习是非常重要的,可以帮助我们理解和掌握微积分的基本概念和方法。
下面是一些常见的微积分典型例题,通过这些例题的解答,我们可以更好地理解微积分的原理和应用。
1.求函数f(x) = 3x^2 + 2x - 1的导数。
解答:对于任意给定的函数,求导数是微积分的基本操作之一。
我们可以使用导数的定义来求函数f(x)的导数。
根据导数的定义,f(x)的导数可以表示为f'(x) = lim(h->0)(f(x + h) - f(x))/h。
对于给定的函数f(x) = 3x^2 + 2x - 1,我们可以直接对其进行求导。
根据求导的规则,对于指数函数x^n,其导数为nx^(n-1)。
所以,对于函数f(x) =3x^2 + 2x - 1,我们可以分别对每一项求导,得到f'(x) = 6x + 2。
2.求函数f(x) = x^3 - 2x^2 + x的极值点。
解答:对于给定的函数f(x),我们可以通过求导数来找到其极值点。
极值点是函数在该点处的导数为0的点。
所以,我们可以对函数f(x)求导,并令导数f'(x)等于0,求解方程得到极值点。
对于函数f(x) = x^3 - 2x^2 + x,我们可以先求导数f'(x) = 3x^2 - 4x + 1。
然后,我们令f'(x) = 0,解方程得到x = 1和x = 1/3。
所以,函数f(x)的极值点为x = 1和x = 1/3。
3.求函数f(x) = e^x的不定积分。
解答:对于给定的函数f(x),求不定积分是微积分的另一个基本操作。
不定积分表示函数f(x)的原函数,记作∫f(x)dx。
对于函数f(x) = e^x,我们可以直接求其不定积分。
根据指数函数的积分规则,∫e^xdx = e^x + C,其中C是积分常数。
微积分期末试卷选择题(6×2)cos sin 1.()2,()()22()()B ()()D x x f x g x f x g x f x g x C π==1设在区间(0,)内( )。
A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数2x 1n n n n 20cos sin 1n A X (1) B X sin21C X (1) xn e x x n a D a π→-=--==>、x 时,与相比是( )A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( )A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1X cosn=200000001()5"()() ()()0''( )<0 D ''()'()06x f x X X o B X oC X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( )A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线1~6 DDBDBD一、填空题1d 12lim 2,,x d xax ba b →++=xx2211、( )=x+1、求过点(2,0)的一条直线,使它与曲线y=相切。
这条直线方程为:x23、函数y=的反函数及其定义域与值域分别是:2+1x5、若则的值分别为:x+2x-31 In 1x + ;2 322y x x =-; 3 2log ,(0,1),1xy R x=-; 4(0,0) 5解:原式=11(1)()1mlimlim 2(1)(3)3477,6x x x x m x m x x x m b a →→-+++===-++∴=∴=-= 二、判断题1、 无穷多个无穷小的和是无穷小( )2、 0sin limx xx→-∞+∞在区间(,)是连续函数()3、 0f"(x )=0一定为f(x)的拐点()4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( )5、 设函数f(x)在[]0,1上二阶可导且'()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有1~5 FFFFT三、计算题1用洛必达法则求极限212lim x x x e →解:原式=222111330002(2)lim lim lim 12x x x x x x e e x e x x--→→→-===+∞- 2 若34()(10),''(0)f x x f =+求 解:33223333232233432'()4(10)312(10)''()24(10)123(10)324(10)108(10)''()0f x x x x x f x x x x x x x x x x f x =+⋅=+=⋅++⋅⋅+⋅=⋅+++∴= 324lim(cos )xx x →求极限4I cos 224I cos lim 022000002lim 1(sin )4cos tan cos lim cos lim lim lim lim 22224n xx x n x xx x x x x x e e x In x x x x In x x x x xx e →→→→→→→-=---=====-∴=解:原式=原式4 (3y x =-求 511I 31123221531111'3312122511'(3312(1)2(2)n y In x In x In x y y x x x y x x x x =-+---=⋅+⋅-⋅---⎤=-+-⎥---⎦解:53tan xdx ⎰2222tan tan sec 1)tan sec tan tan sin tan tan cos 1tan tan cos cos 1tan cos 2x xdx x xdx x xdx xdx xxd x dx x xd x d xxx In x c=----++⎰⎰⎰⎰⎰⎰⎰⎰解:原式=( = = = =6arctan x xdx ⎰求22222222211arctan ()(arctan arctan )22111(arctan )2111arctan (1)211arctan 22xd x x x x d x x x x dx x x x dx x x xx c=-+--+⎡⎤--⎢⎥+⎣⎦+-+⎰⎰⎰⎰解:原式= = = =四、证明题。
积分练习题解析一、简介积分是微积分中的重要概念,用于求解曲线下面的面积、求解曲线的长度、求解曲线的平均值等问题。
本文将通过解析一些典型的积分练习题,帮助读者更好地理解和掌握积分的求解方法和技巧。
二、题目一解析题目描述:计算函数f(x)=2x的不定积分。
解析:根据不定积分的定义,可以直接求解该积分。
不定积分是求解原函数,因此我们需要找到一个函数F(x),使得F'(x)=f(x)=2x。
解题步骤如下:1. 找到F(x)的原函数,根据幂函数的求导法则,可知F(x)的原函数是x的平方。
2. 验证F'(x)=f(x),即验证(x^2)'=2x。
根据幂函数的求导法则,可知(x^2)'=2x,所以F'(x)=2x,符合要求。
3. 得出不定积分的结果为F(x)+C,其中C为常数。
因此,f(x)=2x 的不定积分为F(x)+C=x^2+C。
三、题目二解析题目描述:计算定积分∫[0, 1] (3x^2+2x+1)dx。
解析:定积分是求解函数在两个给定点之间区域的面积,可以看成是不定积分在两个给定点之间的差值。
解题步骤如下:1. 对被积函数进行不定积分,得到其原函数。
根据幂函数的积分法则,可以得到原函数F(x) = x^3 + x^2 + x。
2. 计算原函数在积分区间的值,即F(1)和F(0)。
代入得到F(1) = 3,F(0) = 0。
3. 计算定积分的结果,即F(1) - F(0) = 3 - 0 = 3。
因此,定积分∫[0, 1] (3x^2+2x+1)dx的结果为3。
四、题目三解析题目描述:计算定积分∫[-1, 1] (e^x - e^-x)dx。
解析:定积分的求解同样可以通过不定积分的方法来完成。
解题步骤如下:1. 对被积函数进行不定积分,得到其原函数。
根据指数函数的积分法则,可以得到原函数F(x) = e^x + e^-x。
2. 计算原函数在积分区间的值,即F(1)和F(-1)。
《微积分》练习100题及其解答1.求极限:.⎪⎭⎫ ⎝⎛--→x e x x 111lim 0解:∵,)0(~1→-x xe x ∴.()2121lim 1lim 11lim 111lim 02000-=-=+-=-+-=⎪⎭⎫ ⎝⎛--→→→→x e x e x e x e x x e x x x x x x x x x 2.求极限:.xx e e x x x sin lim sin 0--→解:∵,∴.)0(~1→-x xe x1sin 1lim sin lim sin sin 0sin 0=--⋅=---→→xx e e x x e e xx x x x x x 或者:记,则当时,在之间满足Lagrange 定理的条件,存x e x f =)(0≠x )(x f x x sin ,在(介于与之间),使得,从而ξξx x sin )(sin sin ξf x x e e xx '=--,所以,.1)0()(lim sin lim 0sin 0='='=--→→f f x x e e x x x x ξ1sin lim sin 0=--→xx e e x x x 3.求极限:.()x xx x e1lim+→解:;()11200lim lim 1xxe e xx xx x x x e xe e e →→⎡⎤⎛⎫⎢⎥+=⋅+= ⎪⎢⎥⎝⎭⎣⎦或者.()()12000ln 1limlim 2lim x x xx x x x x e x e e x e xe x →→→++==⇒+=+4.求极限:.01lim 1xx x +→⎛⎫+ ⎪⎝⎭解:,而,所以,.01lim ln 101lim 1x xx x x e x +→+⎛⎫+ ⎪⎝⎭→⎛⎫+= ⎪⎝⎭0ln(1)1lim ln 1lim0t x t x t x +→+∞→⎛⎫++== ⎪⎝⎭01lim 11xx x +→⎛⎫+= ⎪⎝⎭5.求极限:.())0,0,0(3ln ln lim0>>>-++→c b a xc b a x x x x解:.()00ln ln 3ln ln ln ln limlim 3x x x x x x x x x x x a b c a a b b c c abc xa b c →→++-++==++6.求极限:.()00x αα→>解:.()()112110001101lim lim 10111x x x x x x x αααααααααα--→→→->⎧==-=⎨∞<≤⎩-++7.求极限:.lim(0)x αα→>解:.()()22211000112202limlim022211x x x x x x x αααααααααα--→→→->⎧==-=⎨∞<≤⎩-++8.求极限:.(0)x αα→>解:.012x α→=-9.设函数在内,讨论的单调性.)(x f ()∞+∞-,0)0(,0)(≤>''f x f xx f y )(=解:,,⎥⎦⎤⎢⎣⎡-'=-'='⎪⎭⎫ ⎝⎛='x x f x f x x x f x f x x x f y )()(1)()()(20)0()()(--≤x f x f x x f 当时,,而,则,即,从而此时0>x )0()(f xx f '≤0)(>''x f )0()(f x f '≥'0>'y 递增;同理,当时,递增.x x f y )(=0<x xx f y )(=所以,在内单调增加.xx f y )(=()∞+∞-,10.设函数,求:(1)的极大值;(2)()220()2(0)xf x a ta dta =-+->⎰)(x f M 求极小时的值.M a 解:(1),而,所以xx f a x x f 2)(0)(=''±=⇒='0>a ;a a a f M 232)(3-=-=(2)时,,此时,0>a 102223223=⇒=-='⎪⎭⎫ ⎝⎛-='a a a a M a04>=''a M的极小值为.M 34)1(-=M 11.求极限:.22011lim sin x x x →⎛⎫-⎪⎝⎭解:()()2222224000sin sin 11sin lim lim lim sin sin x x x x x x x x x x x x xx →→→-+-⎛⎫-== ⎪⎝⎭.320000sin sin 1cos sin 1limlim 2lim 2lim 363x x x x x x x x x x x x x x →→→→-+-====12.求极限:.⎪⎭⎫ ⎝⎛-→x x x 220sin 11lim 解:2222222200011sin sin 22lim lim lim sin sin 2sin sin 2x x x x x x x x x x xx x x x →→→--⎛⎫-== ⎪+⎝⎭;222000cos 212sin 2limlimsin 2sin 2cos 22sin 26cos 22sin 22sin 212lim 2sin 234cos 2sin 22x x x x xx x x x x x x x x xx x x x x x x →→→--==+++--==-+-13.求极限:.⎪⎭⎫⎝⎛--→x x x ln 111lim 1解:;211ln 11lim ln 11lim ln 111lim ln )1(1ln lim ln 111lim 11111-=---=--+=--+=-+-=⎪⎭⎫ ⎝⎛--→→→→→x x x x x x xx xx x x x x x x x x x x 14.求极限:.1lim arcsin xx e x +→解:∵,∴.arcsin ~(0)x x x →11100lim arcsin lim lim t t xx x t x x ee x xe t ++=→+∞→→=====+∞15.求极限:.⎪⎭⎫⎝⎛-+∞→x x x arctan 2lim解:.22221arctan 21lim arctan lim lim lim 11121x x x x x x x x x x xxππ→+∞→+∞→+∞→+∞⎛⎫-- ⎪⎛⎫⎝⎭+-==== ⎪+⎝⎭-16.求极限:.2120lim x x x e→解:.22112lim lim t tx x x t e x et=→→+∞====+∞17.求极限:.lim sin ln x x x +→解:.00001ln tan sin lim sin ln lim lim lim 0csc csc cot x x x x x x x x x x x x x x++++→→→→===-=-18.求极限:.1lim x -→解:11lim x x -→→=112sec 24x x ππ--→→===19.求极限:.xx xx x sin tan lim 20-→解:.22232200000tan tan sec 11cos sin21lim lim lim lim lim sin 3363x x x x x x x x x x x x x x x x x x →→→→→----=====20.求极限:.()ln 1ln limcot x x xarc x→+∞+-解:()222222111ln 111lim lim lim 1lim 1.111cot 1111x x x x x x x x x x arc x x xx x x →+∞→+∞→+∞→+∞⎛⎫+-- ⎪+⎝⎭==+==-+⎛⎫⎛⎫++ ⎪ ⎪+⎝⎭⎝⎭21.求极限:.()2lim sec tan x x x π→-解:.()2221sin cos lim sec tan limlim 0cos sin x x x x xx x x x πππ→→→--===-22.求积分:.cos sin 1sin 2x xdx x --⎰解:()2cos sin cos sin 11sin 2cos sin cos sin x x x x dx dx dx x x x x x --==---⎰⎰⎰.1ln csc cot 2244sin 4dx x x C x πππ⎛⎫⎛⎫=-=---+ ⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭⎰23.求积分:.cos sin 1sin 2x xdx x -+⎰解:.()()()22cos sin 11cos sin cos sin sin cos sin cos x xdx d x x C x xx x x x -=+=-++++⎰⎰24.求积分:.cos sin 1cos 2x xdx x -+⎰解:()2cos sin cos sin 1sec tan sec 1cos22cos 2x x x x dx dx xdx xdxx x --==-+⎰⎰⎰⎰.()1sec ln sec tan 2x x x C =--++25.求积分:.dx xxx ⎰--2cos 1sin cos 解:()2cos sin cos sin 1csc cot csc 1cos 22sin 2x x x x dx dx x xdx xdxx x --==--⎰⎰⎰⎰.()1csc ln csc cot 2x x x C =-+-+26.求积分:.cos sin 1cos 2x xdx x +-⎰解:()2cos sin cos sin 1csc cot csc 1cos 22sin 2x x x x dx dx x xdx xdxx x ++==+-⎰⎰⎰⎰.()1csc ln csc cot 2x x x C =---+27.求积分:.1sin 1cos2xdx x--⎰解:()221sin 1sin 1csc csc 1cos 22sin 2x x dx dx xdx xdx x x --==--⎰⎰⎰⎰.()1cot ln csc cot 2x x x C =-+-+28.求积分:.1sin 1cos2xdx x -+⎰解:()221sin 1sin 1sec sec tan 1cos 22cos 2x x dx dx xdx x xdx x x --==-+⎰⎰⎰⎰.()1tan sec 2x x C =-+29.求积分:.1cos 1cos2xdx x-+⎰解:()221cos 1cos 1sec sec 1cos22cos 2x x dx dx xdx xdx x x --==-+⎰⎰⎰⎰.()1tan ln sec tan 2x x x C =-++30.求积分:.1cos 1cos2xdx x--⎰解:.()()221sin 1sin 1csc csc 1cos22sin 211cot ln tan cot ln csc cot 222x x dx dx xdx xdxx x x x C or x x x C--==--⎛⎫=-++-+-+ ⎪⎝⎭⎰⎰⎰⎰31.求积分:.1arctan21xedx x +⎰解:.1arctan11arctan arctan 21arctan 1xx x e dx e d e C x x=-=-++⎰⎰32.求积分:.2x dx解:222211222xe t x x e dx =⎛⎫==== ⎪⎝⎭.(2211ln ln 222x x e c e C ⎛ '=++=++ ⎝33.求积分:.211x dx e +⎰解:⎰+dx e x 211⎰⎰----++-=+=)1(112112222xx x x e d e dx e e C e x ++-=-)1ln(212或者:⎰⎰+=+=xxx x x x de e e dx e e e 222222)1(121)1(.[]C e x de e de e xx x x x ++-=⎥⎦⎤⎢⎣⎡+-=⎰⎰)1ln(221111212222234.求积分:.()21xxe dx x +⎰解:()()()2211(1)11111xxx xxxe xe xe dx d x xe d d xe x x x x x ⎛⎫=+=-=-+ ⎪+++⎝⎭++⎰⎰⎰⎰.11x x xxe e e dx C x x=-+=+++⎰35.求积分:.211dx x x -+⎰解:2221141133111422dx dx dxx x x x ==-+⎛⎫⎤⎫+-+- ⎪⎪⎥⎝⎭⎭⎦⎰⎰⎰.211122112d x x C x ⎤⎤⎫⎫=--+⎪⎪⎥⎥⎭⎭⎦⎦⎤⎫+-⎪⎥⎭⎦⎰36.求积分:.2141dx x x -+⎰解:()2221111413231dx dx dxx x x ==-+---⎰⎰⎰.21ln ln 3661d C C ⎫==+=⎪⎭⎫-⎪⎭⎰37.求积分:.dx解:22111ln 1111u u du du C u u u u -⎛⎫⎛⎫=-=+ ⎪ ⎪--++⎝⎭⎝⎭⎰⎰.))ln 2ln12ln1Cor x C or x C ⎛⎫=+-+-+ ⎝38.求积分:.解:设,则,,x e u +=1)1ln(2-=u x du u udx 122-=222112111u du du u u u ⎛⎫==+- ⎪--+⎝⎭⎰⎰12ln ln 1u u C C u ⎛⎫-⎛⎫=++=+ ⎪+⎝⎭.)2ln1orx C -+39.求积分:.21443dx x x +-⎰解:.21121ln 443823x dx C x x x -=++-+⎰40.求积分:.23222x dx x x --+⎰解:222323*********(1)x x dx dx x x x x x ⎡⎤--=+⎢⎥-+-+++⎣⎦⎰⎰.()23ln 22arctan(1)2x x x C =-++++41.求积分:.2dx x⎰解:设,则,,t x sin 2=t x cos 242=-tdt dx cos 2=.()222cot csc 1cot arcsin 2x dx tdt t dt t t C C x x ==-=--+=--+⎰⎰⎰42.求积分:.2dx x ⎰解:设,则,,θtan 2=x 2sec θ=θθd dx 2sec 2=.()Cxx x x C x x x x x x C d d d dx x x ++-++=++++--+-=++---=⎪⎭⎫⎝⎛-+=-==+⎰⎰⎰⎰22222222222244ln 44ln 2141sin 1sin ln 21csc sin sin 11sin 1sin sin )sin 1(1sin cos 14θθθθθθθθθθθθ43.求积分:.⎰++dx x x 1)2(1解:消去根号,记,t =122122+=+=-=t x tdtdx t x.()222arctan 21tdtt C C t t ==+=++⎰44.求积分:.⎰-+dx x x x21解:记,3122222+=+=+=⇒-=t x tdtdx t x x t ()()⎰⎰⎰⎰++=⎪⎭⎫ ⎝⎛++=++=-+dt t t dt t t t dt t t dx x x x 21222112232212222.C x x C tt +-+-=++=22arctan 2222arctan2245.求积分:.⎰++dx x x x21解:记,1122222-=+=-=⇒+=t x tdtdx t x x t ()()⎰⎰⎰⎰-+=⎪⎭⎫ ⎝⎛-+=--=++dt t t dt t t t dt t t dx x x x 21222112212212222.C x x x C t t t +++-+++=++-+=2222ln 222222ln 22246.求积分:.2dx x -⎰解:记,2213222t t t x dx tdt x +-=⇒==-=,.2222312212623332t dx dt dt t dt x t t t t C C⎛⎫==+=+ ⎪----⎝⎭=+=+⎰⎰⎰⎰47.求积分:.解:记,232212122+=+=-=⇒+=t x tdtdx t x x t .Cxx C t t dt t t dt t dt t t dx x x ++-+=+-=+-=⎪⎭⎫ ⎝⎛+-=+=++⎰⎰⎰⎰321arctan 322123arctan3223162331232221222248.求积分:.⎰++dx x 3111解:记,dt t dx t x x t 23323,211=-=⇒+=.22233313331ln 1212142233(1)ln 142t dx dt t dt t t t C t t x C ⎛⎫==-+=-+++ ⎪++⎝⎭=+-+++⎰⎰49.求积分:.()⎰-dx x xx 2321arcsin 解:设:,则x u arcsin =;()332222arcsin sin sin sin sec cos cos 1sec sec sec ln sec tan 1lnln 1ln 12x xu u u udx d u du ud uu u x u u udu u u u u C C x x C ===-=-=-++==-++-+⎰⎰⎰⎰⎰50.求积分:.()()2213xdx xx ++⎰解:.()()()222222211111ln 4134313xx dx d x C x x x x x ⎛⎫+⎛⎫=-=+ ⎪ ⎪+++++⎝⎭⎝⎭⎰⎰51.假设某种商品的需求量,商品的总成本是,每1200080Q P =-2500050C Q =+单位商品需要纳税2元,试求使销售利润最大时商品单价(单位:元)和最大利润额.P 解:收入,28012000)8012000(P P P P PQ R -=-==总成本,P Q C 40006250005025000-=+=总利润,649000161608022-+-=--=P P Q C R L 边际利润,16160160+-='-'='P C R L 令,得,此时,有最大利润(元).0='L 101=P 0160<-=''L 167080=Max L 52.一商家销售某种商品的价格(万元/吨),为销售量,商品的成本函数x P 2.07-=x 是(万元).(1)若每销售1吨商品,政府征税t (万元),求商家获取最大利润时13-=x C 的销售量;(2)t 为何值时,政府税收最大?解:(1)收入,总成本,22.07)2.07(x x x x Px R -=-==13-=x C 税收,总利润,tx T =1)4(2.02+-+-=--=x t x T C R L 边际利润;令,得,此时,有最t x L -+-='44.00='L t x 5.210-=04.0<-=''L 大利润;(2),,令,得,所以当时政府税25.210t t tx T -==t T 510-='0='T 2=t 2=t 收最大.53.求积分:.()322arcsin 1x xdx x -⎰解:设,则x u arcsin =;()332222arcsin sin sin sin sec cos cos 1sec sec sec ln sec tan 1ln 1ln 1.2x xu u u udx d u du ud u u ux u u udu u u u u C Cx x C ===-=-=-++==++-+⎰⎰⎰⎰⎰54.已知的一个原函数为,求积分:.()f x ()1sin ln x x +()xf x dx '⎰解:∵,()1sin ()1sin ln cos ln xf x x x x x x'+=+=+⎡⎤⎣⎦∴()()()()xf x dx xdf x xf x f x dx'==-⎰⎰⎰.()1sin cos ln 1sin ln x x x x x x C =++-++55.设是三阶可导函数,,而.求.()f t ()0f t ''≠()()()x f t y tf t f t '=⎧⎨'=-⎩33d y dx解:由已知,,,,从而;()dx f t dt ''=()dy tf t dt ''=dy dy dt t dx dx dt ==1d dy dt dx ⎛⎫= ⎪⎝⎭,.()221d y d dy dx dt dx dt dx f t ⎛⎫== ⎪''⎝⎭()()()323321()d f t d y d d y f t dx dx dx d f t f t ⎡⎤⎢'''''⎛⎫⎣⎦===- ⎪'⎡⎤''⎡⎤⎝⎭⎣⎦⎣⎦56.设,求.()22tan()sec x yx x y tdt x y ---=≠⎰22d ydx解:对等式两边求导.得,()()()()222sec 1sec 1x y y x y y ''---=--整理,得,2sin ()y x y '=-()()()222sin cos 1d yx y x y y dx '∴=---.()()()21sin 2()cos sin 22y x y x y x y '=--=--57.已知,其中二阶可微,求.()y f x y =+()f u 22d ydx 解:,.()()1y f x y y '''=++()'1()f x y y f x y '+∴='-+对两边再求导,()()1y f x y y '''=++,()()()21y f x y y y f x y ''''''''=++++.()()()211y f x y y f x y '''++''∴='-+3"()[1'()]f x y f x y +=-+58.已知,求.0sin ()xtf x dt t p =-ò0()f t dt p ò解:由已知,,或sin ()xf x xp ¢=-sin ()()x f x xf x p ¢¢=-01cos sin ()()t t tt xdx f x dx xf x dxp ¢¢-==-òòò,()(0)()()()()()t tt f t f xf x f x dx f t tf t f x dx p p p =--+=-+òò取,有,t p =021cos ()()()f f f x dx pp p p p p =-=-+ò.()2f t dt p\=ò59.求积分:.121211x x x e x +æö÷ç+-÷ç÷çèøò解:1111122222111112222221111x x x x x x x x x x I x e dx e dx x e dx e dx xd e x x +++++æöæöæö÷ç÷÷çç÷=+-=+-=+ç÷÷çç÷÷÷ççç÷çèøèøèøòòòòò.21521232x x xee +==60.求极限:.2240sin lim x x xx®-解:224300sin sin sin lim lim x x x x x x x x x x x ®®-+-=×302sin cos 222lim x x xx x®-=.3022sin cos 2lim 8t t t t t ®-=2011cos lim 2t t t ®-=2202sin 12lim 2t t t ®=20sin 12lim 42t t t ®æö÷ç÷ç÷çç=çç÷ç÷÷çèø14=而,22223200000sin sin sin 1cos 1sin 1lim lim lim 2lim 2lim sin 3323x x x x x x x x x x x x x x x x x x x ®®®®®-+--=×==´=请问以上方法错在哪里?61.计算.x ò解:记,代入,得()221ln 1x u e u x u ==+=+原式()()222ln 1121u u uduu u ++=+ò()()22222ln 12ln 121u u du u u duu =+=+-+òò.()22ln 12222u u u arctgu c c =+-++=-++62.求积分:.()12ln 11x dx x++ò解:令,,,,11t x t -=+211x t +=+()221dt dx t =-+()()22222111111t t x t t +æö-ç+=+=ççè++代入,则()12ln 11x I dx x +=+ò()()()()21122200ln 1122ln 11211x t I dx dt x t t t ++==×++++òò()()1112220001120ln 2ln 1ln 1ln 211112ln 2ln 214t x dt dt dx t t xI dt t p-++==-+++\==+òòòò.112011ln 221I dx x \=×+òln 28p =63.求积分:1ò解:记212t x t dx tdt==-=-当时,;当时,,则0x =t 1=1x =0t =原式.110202212dt arctgtt p ===-ò64.设在内有意义,且(1)可导;(2)有反函数;(3)()F x ()0,+¥()x j .求.()()5322115F x t dt x x j æö÷ç÷=-ç÷ç÷èøò()F x 解:由(3)可知,时,,0x =()()010F t dt j =ò()01F =记,则为其反函数()x F y =()y x j =且或()()F y y j =()()F x xj =对(3)的式子两边求导,有,即.()()()23321123F x F x x x j ¢=- ()23321123x F x x x ¢×=-化简有()F x ¢=()23321132F x dx x x c æö\==-+ò而,故.()01F =()233211132F x x x =-+65.求积分:1ò解:11I -==òò.112-==òò12arcsin tp ==66.求积分:1ò解:令sin 02x t t p =<<.()22202200sin cos cos 1cos 1cos 4t d t I dt arctg t tt p pp p==-=-=++òò67.证明:.()4011212n tg xdx n np<<+ò证明:记,则.14201n nn t I tg xdx dt t p==+òò()11212n I n n<<+68.求积分:.244sin 1xxdx ep p --+ò解:.224404sin 11sin 111x x x x dx xdx e e e pp p ---æö÷ç=+÷ç÷çèø+++òò2402sin 8xdx p p -==ò69.设,且,则方程0在()[],f x C a b Î()0f x >()()1xxabf x dx dx f x +=òò(),a b内有几个根.解:记,,()()()1xxabF x f t dt dt f t =+òò()()()110abbaF a dt dt f t f t ==-<òò,而.;()()0baF b f x dx =>ò()0f x >[],x a b Î()()()10F x f x f x ¢=+>在内严格单调增加.因此,在内只有一个根.()F x \(),a b ()F x (),a b 70.在上连续可微,且满足.试证存在一点.使()f x [)0,1()()1212f xf x dx =ò()0,1x Î.()()0f f x x x ¢+=证:设.则,()()F x xf x =()()0000F f =´=.()()()()112211122F f xf x dx F x dx =´==´òò由于在上可微,由积分中值定理,必存在一点,使得()F x []0,110,2h æö÷çÎ÷ç÷çèø,在上,满足Rolle 定理的三个条件,固而存在()()()1122F F F h h =´´=[],1h ()F x ,使得.即.x (),1h Î()0,1Ì()0F x ¢=()()0f f x x x ¢+=71.设求,.()11010x x xe x f x e x ìïïïï¹ï=íï+ïïï=ïî()0f -¢()0f +¢解:由知()()()000limx x f x f x f x x x ®-¢=-()0f -¢()()11000lim lim lim 0011txt t x x x f x f e e x e e --®-¥®®-====-++()0f +¢()()11000lim lim lim 1011txt t x x xf x f e e x ee ++®+¥®®-====-++另,时0x ¹()1121111xx x e e x f x e æö÷ç÷-+ç÷ç÷èø¢=æö÷ç÷+ç÷ç÷èø;()0f -¢()1121011lim lim 1xx x x xe e xf x e --®®æö÷ç÷-+ç÷ç÷èø¢==æö÷ç÷+ç÷ç÷èø()()121lim01u u u xu u e u e e =®-¥-+¾¾¾®=+()0f +¢()1121011lim lim 1xx x x xe e xf x e ++®®æö÷ç÷-+ç÷ç÷èø¢==æö÷ç÷+ç÷ç÷èø()()21lim1u u u u e u e e ®+¥-+=+()()()11lim21u u u u u uu e u e e e e e ®+¥-++-=+()22lim21u uu uu e ue e e ®+¥-=+.()221lim lim 1221u u u u u u e u e e e ®+¥®+¥--===+72.设在上连续,且,证明:必存在,使()f x []0,n ()()()0f f n n N =Î()0,n x Î.()()1f f x x +=证明:记,则在上连续,因而有最大(小)值()()()1x f x f x j =+-()x j []0,1n -,,;()M m ()m x M j ££[]0,1x n Î-而,,…,;()()()010f f j =-()()()121f f j =-()()()11n f n f n j -=--从而,()()()1110n n k k k f k f k m M nnj --==éù+-ëû£==£åå故而,必存在,使,即()0,n x Î()0j x =.()()1f f x x +=73.证明:函数在上一致连续.3)(x x f =[]1,0证明:任取两点,,不妨设,则,考虑到1x []1,02∈x 21x x ≠03231≠-x x ()321232312132232132121323121)()(x x x x x x x x x x x x x x x f x f +--≤++-=-=-;()2323121323121)()(x x x x x x x f x f --≤-=-即;2133231321)()(x x x x x f x f -≤-=-所以,对于任意小的正数,取,当时,必有0>ε3εη=η<-21x x 成立,ε<-≤-=-321323121)()(x x x x x f x f 故而函数在上一致连续.3)(x x f =[]1,074.函数在上有定义,且(1),(2)对于在,)(x f ()∞,0)1()(lim 1f x f x =→0>∀x ,则(为常数).)()(2x f x f =C x f ≡)(C 证明:任取,记,,,…,()∞+∈,0x x x =1x x x ==124123xx x x ===,….则1211-==-n x x x n n 由可知,,即)()(2x f x f =)()(x f x f =;)()()()()(321n x f x f x f x f x f ===== 而注意到,故)0(1lim >=+∞→x x n n ;)0(1lim lim 121>==-+∞→+∞→x x x n n n n 而,从而)1()(lim 1f x f x =→;)1()lim ()(lim )(11f x f x f x f n x n x ===→→所以,(为常数).C x f ≡)()1(f C =75.求极限:.21n n n tan n lim ⎪⎭⎫ ⎝⎛∞→解:注意到⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⋅=⎪⎭⎫ ⎝⎛n tan n ln n exp n tan n n 1122,⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-⋅=11111112n tan n n tan n ln n tan n n exp 且,111111=-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+∞→ntan n n tan n ln lim n 而22111tan lim 11tan lim n n n n n n n n -=⎪⎭⎫ ⎝⎛-∞→∞→30201tan lim1tan lim y y y y y y y y ny -=-=→→=.yy tan lim y y sec lim y y 31331220220==-=→→故.e n tan n lim n n 3121=⎪⎭⎫⎝⎛∞→76.已知,,求.12a =()11112n n n a a n a +⎛⎫=+> ⎪⎝⎭lim n n a →∞解:很明显,,,,,12a =0n a >11112n n n a a a +⎛⎫=+≥ ⎪⎝⎭()12111122n n n a n a a +⎛⎫=+≤>⎪⎝⎭所以,,单调有界,存在;1212n n a a a +≤≤≤≤= {}n a lim n n a →∞记,则由得,注意到,解得.lim n n a l →∞=1112n n n a a a +⎛⎫=+ ⎪⎝⎭112l l l ⎛⎫=+ ⎪⎝⎭21≤≤l 1l =77.设函数,求.xx y +=12()n y 解:,,11112++-=+=x x x x y 2111111⎪⎭⎫⎝⎛+-='⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-='x x x y ,()()322121111+-='⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=''x x y 由数学归纳法可得:.()()())1(1!11>+-=+n x n yn n n 78.设函数在区间上连续,在内可导,且,()x f []0,1()0,1()()010==f f .试证:121=⎪⎭⎫ ⎝⎛f (1)存在,使;1,12η⎛⎫∈⎪⎝⎭()ηη=f (2)对任意实数,必存在,使得.λ()0,ξη∈()()1f f ξλξξ'--=⎡⎤⎣⎦证明:(1)设,则在区间上连续,在内可导,且()()h x x f x =-()h x []0,1()0,1,,,则存在,,即()00h =()11h =11022h ⎛⎫=-< ⎪⎝⎭1,12η⎛⎫∈ ⎪⎝⎭()()0h f ηηη=-=.()ηη=f (2)记,在区间上连续,在内可导,且,()()xF x f x x e λ-=-⎡⎤⎣⎦[]0,1()0,1()00F =,则由定理,必存在,使得,即()0F η=Rolle ()0,ξη∈()0F ξ'=.()()1f f ξλξξ'--=⎡⎤⎣⎦79.判断级数的敛散性.11nn ¥=åò提示:.220001122n xdx n n>=®<òòò80.证明:当时,.0>x ()x x xx<+<+1ln 1证明:记,则在上连续因而可积.tt f +=11)()(t f []x 0由积分第一中值定理,比存在一点,使得:()x 0∈ξ,()()x f dt t x x⋅=+=+⎰ξ0111ln 即.()x x ξ+=+111ln 而,,x <<ξ011111<+<+ξx ∴,)0(11><+<+x x x x x ξ即.()x x x x<+<+1ln 181.求在条件下,()22212312323,,2334f x x x x x x x x =+++2221231x x x ++=()123,,f x x x 的最大值和最大值点.解:利用拉格朗日乘数法,设,()()22222212312323123,,,23341L x x x x x x x x x x x λλ=++++++-,则123112233322221234206240624010x x x L x x L x x x L x x x L x x x λλλλ'=+=⎧⎪'=++=⎪⎨'=++=⎪⎪'=++-=⎩.1231222312323(1)020121(2)05x x x x Maxf x x x x x Maxf x x λ≠⇒=-⇒==→=±⇒=⎧+=⎪=⇒⇒==⇒=⎨=⎪⎩82.设随机变量,问:当取何值时,落入区间的概率最大?()2~,X N μσσX ()1,3解:因为,()212~x X f x σ⎛⎫- ⎝⎭=,{}133113()X P X P g σσσσσσ∆⎧⎫⎛⎫⎛⎫<<=<<=Φ-Φ=⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭利用微积分中求极值的方法,有223311()g σσσσσ⎛⎫⎛⎫⎛⎫'''=-Φ+Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;222222221311111422231111130e e σσσσ⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎢⎥==-=⎢⎥⎣⎦令得,则;又,故.404ln 3σ=0σ=0()0g σ''<0σ=故当落入区间的概率最大.σ=X ()1,383.设,讨论方程的实数根.x e x f x λ-=)(0=-x e x λ解:(1)显然,当时,方程没有实根;0λ=0=-x e x λ(2)当时,方程有唯一实根;0λ<0=-x e xλ(3)当时,;曲线为下凸的,0>λ0)(,)(>=''-='x x e x f e x f λx e x f x λ-=)(呈∪型;由可知,驻点,极小值,0)(=-='λx e x f λln 0=x )ln 1()(0λλ-=x f 由此可知,当时,方程没有实根;e <<λ00=-x e x λ当,极小值,方程只有一个实根;e =λ0)ln 1()(0=-=λλxf 0=-x e x λλln 0=x 当,极小值,方程有2个实根.e >λ0)ln 1()(0<-=λλxf 0=-x e xλ84.函数的单调增减区间、凹凸区间与极值.()()()211f x x x =-+解:,()()()()()()()()()22111211131f x x x ,f x x x x x x '=-+=++-+=+-由得驻点:;()0f x '=113x ,=-由上可知,函数在与内单调递增,在内递减;极()f x ()1,-∞-13,⎛⎫+∞ ⎪⎝⎭113,⎛⎫- ⎪⎝⎭大值,极小值;()10f -=132327f ⎛⎫=-⎪⎝⎭由可得,因而函数曲线在内()()()211f x x x =-+()62f x x ''=+13,⎛⎫-∞- ⎪⎝⎭,函数曲线上凸;在内下凸,如下图.()0f x ''<13,⎛⎫-+∞ ⎪⎝⎭85.已知收益函数为,其中为价格,为需求量,求需求弹性时260R=Q Q -P Q 2d ε=-的边际收益.MR 解:因为,所以需求函数,边际收益函数为,且260R=Q Q -60P Q =-602R =Q '-需求弹性函数为;60601d P dQ Q Q dP Q Qε-==-=-当需求弹性时,,此时的边际收益.2d ε=-20Q =()20604020MR R '==-=86.设函数,求其渐近线.xx exe x f y 111)(+==解:首先考虑其水平渐近线和垂直渐近线:x()1,-∞-1-113,⎛⎫- ⎪⎝⎭1313,⎛⎫+∞ ⎪⎝⎭()f x '+0-0+()f x 增加极大值递减极小值递增因为,,,所以,1lim 1=∞→x x e +∞=+→x x e 100lim 0lim 100=-→xx e ;11011lim lim lim 0(1)(1)1t x t t t t x xxee t t e t e x e+-→+∞→+∞→⎛⎫==== ⎪++⎝⎭+;11011lim lim lim 0(1)(1)1t x t t t t x xxee t t e t e x e--→-∞→-∞→⎛⎫==== ⎪++⎝⎭+;110011limlim lim (1)(1)1t x t t x t t xxee t t e t e x e-→∞→→⎛⎫===∞=⎪++⎝⎭+故而没有水平渐近线和垂直渐近线;xx exex f y 111)(+==由于,()111limlim 21xx x xf x e a x e →∞→∞===+()1111111211lim lim lim 2211x x x x x x x x xe x e xe b fx x x e e →∞→∞→∞⎡⎤⎛⎫-+⎢⎥⎡⎤ ⎪⎡⎤⎝⎭⎢⎥⎢⎥=-=-=⎢⎥⎢⎢⎥⎣⎦++⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,11011111122lim lim 2(1)41x t t x t xx xe e t t e x e→∞→-+-⎛⎫==== ⎪+⎝⎭+故而有斜渐近线:.xx exe x f y 111)(+==4121+=x y 87.求函数曲线的渐近线.()1ln 1x y e x=++解:显然,,为其垂直渐近线;()01lim ln 1x x e x→⎡⎤++=∞⎢⎥⎣⎦0x =,为其水平渐近线;()()1lim ln 1lim ln 10x xx x e e x →-∞→-∞⎡⎤++=+=⎢⎥⎣⎦0y =又,,,因而()()11ln 1ln 1x x y e x e x x -=++=+++()1lim ln 10x x e x -→+∞⎡⎤++=⎢⎥⎣⎦为其一条斜渐近线.y x=88.若,试证明:与具有相同的敛散性.lim (0)n n a a a →∞=≠∑∞=+-11n n n a a ∑∞=+-1111n nn a a 证明:问题为讨论两个正项级数的敛散性,可以用比较法的极限形式,因为不是具体的级数形式.记,则,111nn n a a V -=+0,0>>n n V U ==n n n V U ∞→limnn nn n a a a a 11lim11--=++∞→1.lim +∞→n n n a a )0(2≠a 可见,与具有相同的敛散性.∑∞=+-11n n n a a∑∞=+-1111n nn a a 89.讨论下列级数的敛散性:(1)2);(3);(4)1n ∞=11tan 2n n n ∞+=∑()3113nnn n n ∞=⎤+-⎣⎦∑()∑∞=+-+121211n n n n n(5);(6);(7).()()1111ln 1n n n ∞+=-+∑()211nn n n ∞=-+∑()()1111ln n n nn e e ∞+-=-+∑解:(1)当充分大时,比如时,有,从而n 3>n ()n n <+<1ln 1,而当时,,()n n n n <+<1ln 1∞→n 1→n n由极限的夹逼性定理知,当时,,所以,∞→n 1→1n ∞=(2)注意到,这是正项级数,当时,(等价无穷小),0→x x x ~tan 所以,而后者收敛,所以收敛.11tan ~2n n n π∞+=∑112n n n π∞+=∑11tan 2n nn π∞+=∑(3)利用柯西判别法:也是正项级数,,可见原()33113n+-=<→级数收敛;事实上,,,)())333111333nnnn nnnn nn ⎤+-+⎣⎦<<3113nnn n ∞=⎤⎣⎦∑都收敛,且同为正项级数,因而原级数收敛.3113nn n n ∞=⎤⎣⎦∑(4)因为,()()111111122221212112121→+⋅+⋅=+=+=+-+-nn nnnn n n n n n n nnnnnu 改用比较判别法:取,则21nv n =;()11lim 1lim lim 122121=⎪⎪⎭⎫⎝⎛+=+=+∞→++∞→∞→n n n n n nn n n n n nv u其中()(){}1122222lim lim exp lim 12ln ln 111n x n x x n x x x x n x ++→∞→+∞→+∞⎛⎫⎛⎫⎡⎤==+-+ ⎪ ⎪⎣⎦++⎝⎭⎝⎭,()()()()()22222222ln ln 1211exp lim exp lim exp lim 111111x x x x x x x x x x x x x →+∞→+∞→+∞⎧⎫⎧⎫⎪⎪-⎪⎪⎧⎫-++⎪⎪⎪⎪⎪⎪+===-=⎨⎬⎨⎬⎨⎬+⎪⎪⎪⎪⎪⎪-⎩⎭+⎪⎪⎪⎪+⎩⎭⎩⎭所以,与同时收敛.()∑∞=+-+121211n n n nn ∑∞=121n n(5)条件收敛.(6),发散.()()22111111nnn n n nn n n∞∞∞===-+-=+∑∑∑(7)=,()()1111ln n n n n e e ∞+-=-+∑()()12111ln 1n n n e n∞+=-+-∑,()222ln 1n n n e n e n e +-<-<()()()22222lim lim lim ln 1ln 1ln n x xn x x x n x x e e e e n e x e e -→∞→+∞→+∞==+-+-+==∞.()=+-=--+∞→x x x x xx e e e e e 22lim ()22221lim 1x x x x e e e →+∞+-x xx x ee e 2532106lim ++∞→另一方面,==,;()x x e e -+ln 1()xe x 21ln 1-++()x e xx x 1~1ln 11112-++()+∞→x 可见,原级数非绝对收敛;但是单调减少且趋于0,所以,原级数条件收敛.()x x e e -+ln 190.若正项级数与都发散,讨论与的敛散性.1nn v∞=∑1nn u∞=∑{}1max ,nnn u v ∞=∑{}1min ,nnn u v ∞=∑解:,,{}{}1max ,2n n n n n n u v u v u v =++-{}{}1min ,2n n n n n n u v u v u v =+--(1)显然,,或者,故而{}{}1max ,2n n n n n n n u v u v u v u =++-≥{}max ,n n n u v v ≥发散;{}1max ,nnn u v ∞=∑(2)而的敛散性未定.{}1min ,nnn u v ∞=∑例如,若,()222211111111123456212n n u n n ∞==+++++++++-∑ ,()222=11111111123456221n n v n n ∞=+++++++++-∑。
微积分习题及答案微积分习题及答案微积分作为数学的重要分支,是研究变化和积分的学科。
它是现代科学和工程领域中不可或缺的工具。
在学习微积分的过程中,习题是非常重要的一部分,通过解答习题可以加深对概念和原理的理解,并提升解决实际问题的能力。
下面将介绍几个常见的微积分习题及其答案。
一、极限习题1. 求极限:lim(x→0) (sinx/x)解答:当x趋近于0时,sinx/x的值趋近于1。
这是因为sinx/x的极限定义为1,所以该极限的值为1。
2. 求极限:lim(x→∞) (1+1/x)^x解答:当x趋近于无穷大时,(1+1/x)^x的值趋近于e,其中e是自然对数的底数。
这是因为(1+1/x)^x的极限定义为e,所以该极限的值为e。
二、导数习题1. 求函数f(x) = x^2的导数。
解答:根据导数的定义,f'(x) = 2x。
所以函数f(x) = x^2的导数为2x。
2. 求函数f(x) = e^x的导数。
解答:根据导数的定义,f'(x) = e^x。
所以函数f(x) = e^x的导数为e^x。
三、积分习题1. 求∫(x^2 + 2x + 1)dx。
解答:根据积分的定义,∫(x^2 + 2x + 1)dx = (1/3)x^3 + x^2 + x + C,其中C为常数。
2. 求∫(sinx + cosx)dx。
解答:根据积分的定义,∫(sinx + cosx)dx = -cosx + sinx + C,其中C为常数。
四、微分方程习题1. 求解微分方程dy/dx = 2x。
解答:对方程两边同时积分,得到y = x^2 + C,其中C为常数。
2. 求解微分方程dy/dx = 3x^2。
解答:对方程两边同时积分,得到y = x^3 + C,其中C为常数。
通过解答以上习题,可以加深对微积分概念和原理的理解。
同时,通过解决实际问题的能力的提升,可以将微积分应用于科学和工程领域中的实际问题。
微积分的习题和答案是学习过程中的重要参考资料,希望以上内容对大家有所帮助。
微积分练习册[第八章]多元函数微分学习题8-1多元函数的基本概念1.填空题:(1)若yxxy y x y x f tan),(22-+=,则___________),(=ty tx f (2)若xy y x y x f 2),(22+=,则(2,3)________,(1,)________yf f x-==(3)若)0()(22 y y y x xyf +=,则__________)(=x f (4)若22),(y x x y y x f -=+,则____________),(=y x f(5)函数)1ln(4222y x y x z ---=的定义域是_______________(6)函数y x z -=的定义域是_______________(7)函数x yz arcsin =的定义域是________________ (8)函数xy xy z 2222-+=的间断点是_______________2.求下列极限: (1)xy xy y x 42lim 00+-→→(2)x xyy x sin lim0→→(3)22222200)()cos(1lim y x y x y x y x ++-→→ 3.证明0lim22)0,0(),(=+→yx xy y x4.证明:极限0lim 242)0,0(),(=+→y x yx y x 不存在5.函数⎪⎩⎪⎨⎧=≠+=(0,0)),( ,0)0,0(),(,1sin ),(22y x y x y x x y x f 在点(0,0)处是否连续?为什么习题8-2偏导数及其在经济分析中的应用1.填空题 (1)设y x z tanln =,则__________________,=∂∂=∂∂yzx z ;(2)设)(y x e z xy+=,则__________________,=∂∂=∂∂y zx z ; (3)设zyx u =,则________,__________________,=∂∂=∂∂=∂∂z u y u x u ; (4)设x y axc z tan =,则_________________,_________,22222=∂∂∂=∂∂=∂∂y x zy z x z(5)设zyx u )(=,则________2=∂∂∂y x u ; (6)设),(y x f 在点),(b a 处的偏导数存在,则_________),(),(lim 0=--+→xb x a f b x a f x2.求下列函数的偏导数y xy z )1()1(+=z y x u )arcsin()2(-=3.设xy z =,求函数在(1,1)点的二阶偏导数4.设)ln(xy x z =,求y x z ∂∂∂23和23yx z∂∂∂ 5.)11(yx ez +-=,试化简y z y x z x∂∂+∂∂226.试证函数⎪⎩⎪⎨⎧=≠+=)0,0(),( ,0)0,0(),(,3),(22y x y x yx xyy x f 在点(0,0)处的偏导数存在,但不连续. 习题8-3全微分及其应用1.X 公司和Y 公司是机床行业的两个竞争者,这两家公司的主要产品的需求曲线分别为:QY PY Qx Px 41600;51000-=-=公司X 、Y 现在的销售量分别是100个单位和250个单位。
(1) X 和Y 当前的价格弹性是多少?(2) 假定Y 降价后,使QY 增加到300个单位,同时导致X 的销量Qx 下降到75个单位,试问X 公司产品的交叉价格弹性是多少?(利用弧交叉弹性公式:)/12121212Py Py Py Py Qx Qx Qx Qx Erx +-+-=2.假设市场由A 、B 两个人组成,他们对商品X 的需求函数分别为: Px I K D Px I K D B B B A A A /;/)(Pr =+= (1)商品X 的市场需求函数;(2)计算对商品X 的市场需求价格弹性;若Y 是另外一种商品,Pr 是其价格,求商品X 对Y 的需求交叉弹性3.求下列函数的全微分(1)ts ts u -+=(2)设z y xz y x f 1)(),,(=,求)1,1,1(df(3))1ln(22y x z ++=,求当2.0,1.0,2,1=∆=∆==y x y x 的全增量z ∆和全微分dz4.计算33)97.1()02.1(+的近似值习题8-4多元复合函数的求导法则1.填空题(1)设v u z ln 2=而y x v y x u 23,-==,则____________________,=∂∂=∂∂yz x z (2)设)sin(y x ar z -=而t x 3=,则_________=dtdz(3)设1)(2+-=a z y e u ax ,而xz x a y cos ,sin ==,则________=dxdu(4)设)arctan(xy z =,而xe y =,则________=dxdz(5)设),(22xye y xf u -=,则___________________,=∂∂=∂∂yux u (6)),,(xyz xy x f u =,则________=∂∂xu(1)∑∞=12n nn2.设f y x yf xy f xz ),()(1++=具有二阶连续导数,求y x z ∂∂∂23.设f y xx f z ),,(=具有二阶连续偏导数,求22xz ∂∂4.设f xy x xf z ),,2(2=,具有二阶连续偏导数,求y x z ∂∂∂2.5.设f ey x f z yx ),,cos ,(sin +=,具有二阶连续偏导数,求22xz∂∂7.设f 与g 有二阶连续导数,且)()(at x g at x f z -++=,证明:22222z z a t x∂∂=∂∂ 习题8-5隐函数的求导公式1.填空题:(1)设arctany x=,则________=dx dy(2)设022=-++xyz z y x ,则______________,=∂∂=∂∂yzx z(3)设y z z x ln =,则___________________,=∂∂=∂∂yz x z (4)设zx y z =,则_________________,=∂∂=∂∂yz x z 2.设xyz e z=,求yx z∂∂∂23.设333a xyz z =-,求yx z∂∂∂24.设z y x z y x 32)32sin(2-+=-+,求yzx z ∂∂+∂∂ 5.设⎪⎩⎪⎨⎧=+++=203222222z y x y x z ,求dx dz dx dy , 6.设),(t x f y =,而t 是由方程0),,(=t y x F 所确定的y x ,的函数,求dxdy 7.设由方程0),(=++x zy y z x F 确定),(y x z z =,F 具有一阶连续偏导数,证明: xy z yz y x z x -=∂∂+∂∂ 8.设),(),,(),,(y x z x z y y z y x x ===,都是由方程0),,(=z y x F 所确定的有连续偏导数的函数,证明:1-=∂∂⋅∂∂⋅∂∂xz z y y x习题8-6多元函数的极值及其应用1.填空题:(1)gy x xy y x z +-+-=4222z 驻点为_____________ (2)22)(4),(y x y x y x f ---=的极_____值为_______________ (3))2(),(22y y x e y x f x++=的极______值为_________________ (4)xy z =在适合附加条件1=+y x 下的极大值为____________________(5)22),(y x x y x f u --==在{}1,22≤+=y x y x D 上的最大值为______________,最小值为______________2.从斜边长为L 的一切直角三角形中,求有最大周长的直角三角形.班级:姓名:学号:3.旋转抛物面22y x z +=被平面1=++z y x 截成一椭圓,求原点到该椭圆的最长与最短距离微积分练习册[第八章]多元函数微分学4.某养殖场饲养两种鱼,若甲种鱼放养x (万尾),乙种鱼放养y (万尾),收获时两种鱼的收获量分别为)0(,)24(,)3(>>----βααββαy y x x y x ,求使产鱼总量最大的放养数班级:姓名:学号:5.设生产某种产品需要投入两种要素,和分别为两要素的投入量,Q 为产出量:若生产函数为βα212x x Q =,其中βα,为正常数,且1=+βα,假设两种要素的价格分别为1p 和2p ,试问:当产出量为12时,两要素各投入多少可以使得投入总费用最小?微积分练习册[第九章]二重积分习题9-1二重积分的概念与性质1.填空题(1)当函数),(y x f 在闭区域D 上_________时,则其在D 上的二重积分必定存在 (2)二重积分⎰⎰Dd y x f δ),(的几何意义是_____________________________________(3)若),(y x f 在有界闭区域D 上可积,且21D D D ⊃⊃,当0),(≥y x f 时,则⎰⎰⎰⎰21),(_____________),(D D d y x f d y x f δδ;当0),(≤y x f 时,则⎰⎰⎰⎰21),(_____________),(D D d y x f d y x f δδ(4)δδ______________)sin(22⎰⎰+Dd y x ,其中δ是圆域2224≤+y x 的面积,πδ16=(注:填比较大小符号)2.比较下列积分的大小: (1)⎰⎰+=Dd y x I δ21)(与⎰⎰+=Dd y x I δ32)(其中积分区域D 是由x 轴,y 轴与直线1=+y x 所围成(2)1ln()DI x y d δ=+⎰⎰与22ln()DI x y d δ⎡⎤=+⎣⎦⎰⎰,其中 {}10,53),(≤≤≤≤=y x y x D3.估计下列积分的值 (1)(1)DI xy x y d δ=++⎰⎰,其中{}20,10),(≤≤≤≤=y x y x D(2)22(49)DI x y d δ=++⎰⎰,其中{}4),(22≤+=y x y x D 4.求二重积分221x y δ+≤⎰⎰5.利用二重积分定义证明(,)(,)DDkf x y d k f x y d δδ=⎰⎰⎰⎰(其中为k 常数)习题9-2利用直角坐标计算二重积分1.填空题 (1)323(3)______________Dxx y y d δ++=⎰⎰其中10,10 ≤≤≤≤y x D :(2)cos()___________Dx x y d δ+=⎰⎰其中D :顶点分别为),(),0,(),0,0(πππ(的三角形闭区域(3)将二重积分(,)Df x y d δ⎰⎰,其中D 是由x 轴及上半圆周)0(222≥=+y r y x所围成的闭区域,化为先y后x 的积分,应为__________________________________ (4)将二重积分(,)Df x y d δ⎰⎰,其中D 是由直线2,==x x y 及双曲线)0(1>=x xy 所围成的闭区域,化为先x 后y 的积分,应为_________________________________(5)将二次积分dy y x f dx x x x ⎰⎰--222 21 ),( 改换积分次序,应为______________________(6)将二次积分dy y x f dx x⎰⎰sin 2x sin- 0),( π改换积分次序,应用______________________(7)将二次积分22121 2-lny1(1) (,)(,)ey dy f x y dx f x y dx --+⎰⎰⎰⎰改换积分次序,应为______________________ (8)将二次积分dx y x f dy dx y x f dy yy⎰⎰⎰⎰-+3 13 0201),(),( ,改换积分次序,应为_____________________2.计算下列二重积分: (1)22xy Dxye d δ+⎰⎰,其中{}d y c b x a y x D ≤≤≤≤=,),((2)22()Dxy d δ+⎰⎰,其中D 是由直线x y y ==,2,及x y 2=所围成的闭区域.(3)⎰⎰-Ddxdy x y 2,其中20,11≤≤≤≤-y x D :3.计算二次积分11yxdy e dx ⎰4.交换积分次序,证明:⎰⎰⎰--=ax a m adx x f e x a dx x f 0)(0yx)-m(a )()()(e dy5.求由曲面222y x z +=及2226y x z --=所围成的立体的体积.习题9-3利用极坐标计算二重积分1.填空题(1)把下列二重积分表示为极坐标形式的二次积分 ①⎰⎰≤+=+xy x dxdy xyy x f 22222_________________)arctan ,(;②{}⎰⎰=>≤+≤=+Dy x dxdy ex y y x y x D ____________,,41),(2222(2)化下列二次积分为极坐标系下的二次积分①222 0 0()____________,(0)adx f x y dy a+=⎰②11________________;dx f dy =⎰⎰③2(arctan )________________;xydx f dy x=⎰⎰④21(,)________________.x dx f x y dy =⎰⎰2.计算下列二重积分 (1)22ln(1)Dx y d δ++⎰⎰,其中D 是由圆周122=+y x 及坐标轴所围成的在第一象限内的闭区域. (2)⎰⎰+Ddxdy y x 221,其中D 是由曲线2x y =与直线x y =所围成的闭区域.(3)Dδ,其中D 是由圆周Rx y x =+22所围成的闭区域(4)(2)222Dx y d δ+-⎰⎰,其中(2)3:22≤+y x D .3.计算二重积分2()Dy x d δ-⎰⎰,其中D 由不等式0,,222≥≤++≤y R y x x R y 确定(注意选用适当的坐标)4.计算以xoy 面上的圆周22(0)x y ax a +=>围成的区域为底,而以曲面22y x z +=为顶的曲顶柱体的体积微积分练习册[第十章]微分方程与差分方程习题10-1微分方程的基本概念1.填空题(1)方程0ln 3)(42=+'-''x y y y x 称为__________阶微分方程(2)设),,,(21n c c c x y y =是方程y y x y 2+''-'''的通解,则任意常数的个数n=____________ (3)设曲线)(x y y =上任一点),(y x 的切线垂直于此点与原点的连线,则曲线所满足的微分方程____________(4)设曲线)(x y y =上任一点),(y x 的切线在坐标轴间的线段长度等于常数a ,则曲线所满足的微分方程________________(5)某人以本金0p 元进行一项投资,投资的年利率为γ,若以连续复利计,t 年后资金的总额为___________)(=t p(6)方程 0xy x ydx =+⎰可化为形如_______________微分方程2.已知ktce Q =满足微分方程0.03dQQ dt=-,问C 和K 的取值应如何? 3.、若可导函数)(x f 满足方程 0()2()1(1)xf x tf t dt =+⎰,将(1)式两边求导,得)2()(2)( x xf x f ='易知c ce x f x ()(2=为任意常数)是(2)的通解,从而2()x f x ce =为(1)的解,对吗? 4.证明:x x c x c y ln 21+=是微分方程02=+'-''y y x y x 的通解.习题10-2一阶微分方程(一)1.求下列微分方程的通解:(1)2211x y y --=' (2)230y xe y y +'+=(3)0sec )2(tan 32=-+ydy e ydx e x x2.求下列微分方程满足所给初始条件的特解: (1)4,sin cos cos sin 0π===x y xdx y xdy y(2)1,0110==+-+=x y dy xy dx y x3镭的衰变速度与它的现存量R 成正比,有资料表明,镭经过1600年后,只余原始量0R 的一半,试求镭的量R 与时间t 的函数关系微积分练习册[第十章]微分方程与差分方程习题10-2一阶微分方程(二)1.填空题(1)设y *是)()(x Q y x p dx dy=+的一个解,Y 是对应的齐次方程的通解,则该方程的通解为___________ (2)x e x x y 1-=*是方程x xe y y x =+'的一个特解,则其通解为+-=*x e xx y 1___________(3)微分方程0ln 2=-+'x y y y x 作变换____________可化为一阶线性微分方程 (4)0)()(=-+'+y x y y x 的通解为______________(5)(12)2(1)0x x y yxe dx e dy y++-=的通解为______________ 2.求下列微分方程的通解: (1)232++=+'x x y y x(2)0)2(22=+'--y y y xy x3.求下列微分方程满足所给初始条件的特解:cos 2cot 5,4x x dyy x e y dxπ=+==-4.用适当的变量代换将下列方程化为可分离变量的方程,然后求出通解:(1)2)(y x dxdy+= (2))ln (ln y x y y y x +=+'5.已知一曲线过原点,且它在点),(y x 处切线的斜率等于y x +2,求该曲线的方程6.设)(x f 可微且满足关系式[] 02()1()1xf t dt f x -=-⎰,求)(x f习题10-3一阶微分方程在经济学中的应用1.已知某商品的需求价格弹性为)1(ln +-=P P EPEQ,且当P=1时,需求量Q=1 (1)求商品对价格的需求函数(2)当+∞→P 时,需求量是否趋于稳定?2.已知某商品的需求量Q 对价格P 的弹性23P η=,而市场对该商品的最大需求量为1万件,求需求函数 3.已知某商品的需求量Q 与供给量S 都是价格P 的函数:bp S P aQ ==,2其中0,0a b >>为常数,价格P 是时间t 的函数,且满足[]()() (dpk Q p S p k dt=-为正常数) 假设当0=t 时,价格为1,试求:(1) 需求量等于供给量的均衡价格e P (2) 价格函数()p t (3) )(lim t p t +∞→4.在某一人群中推广新技术是通过其中已掌握新技术的人进行的,设该人群的总人数为N ,在0=t 时刻已掌握新技术的人数为N 101,在任意时刻t 已掌握新技术人数为)(t x ,其变化率与已掌握新技术人数和未掌握新技术人数之积成正比,比例常数0>k求)(t x5.某银行帐户,以连续复利方式计息,年利率为5%,希望连续20年以每年12000元人民币的速度用这一帐户支付职工工资。