带电体在电场和重力场中的运动中需注意的几个问题
- 格式:pdf
- 大小:723.83 KB
- 文档页数:1
用“等效法”处理带电粒子在电场和重力场中的运动1.等效重力法将重力与电场力进行合成,如图所示,则F 合为等效重力场中的“重力”,g ′=F 合m 为等效重力场中的“等效重力加速度”,F 合的方向等效为“重力”的方向,即在等效重力场中的“竖直向下”方向. 2.物理最高点与几何最高点在“等效力场”中做圆周运动的小球,经常遇到小球在竖直平面内做圆周运动的临界速度问题.小球能维持圆周运动的条件是能过最高点,而这里的最高点不一定是几何最高点,而应是物理最高点.几何最高点是图形中所画圆的最上端,是符合人眼视觉习惯的最高点.而物理最高点是物体在圆周运动过程中速度最小的点.【题型1】在水平向右的匀强电场中,有一质量为m 、带正电的小球,用长为l 的绝缘细线悬挂于O 点,当小球静止时,细线与竖直方向夹角为θ,如图所示,现给小球一个垂直于悬线的初速度,小球恰能在竖直平面内做圆周运动,试问:(1)小球在做圆周运动的过程中,在哪一位置速度最小?速度最小值多大? (2)小球在B 点的初速度多大?【题型2】如图所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,带负电荷的小球从高为h 的A 处由静止开始下滑,沿轨道ABC 运动并进入圆环内做圆周运动.已知小球所受电场力是其重力的34,圆环半径为R ,斜面倾角为θ=60°,s BC =2R .若使小球在圆环内能做完整的圆周运动,h 至少为多少?(sin 37°=0.6,cos 37°=0.8)【题型3】如图所示,一质量为m1=1 kg,带电荷量为q=+0.5 C的小球以速度v0=3 m/s,沿两正对带电平行金属板(板间电场可看成匀强电场)左侧某位置水平向右飞入,极板长0.6 m,两极板间距为0.5 m,不计空气阻力,小球飞离极板后恰好由A点沿切线落入竖直光滑圆弧轨道ABC,圆弧轨道ABC的形状为半径R<3 m的圆截去了左上角127°的圆弧,CB为其竖直直径,在过A点竖直线OO′的右边界空间存在竖直向下的匀强电场,电场强度为E =10 V/m.(取g=10 m/s2)求:(1)两极板间的电势差大小U;(2)欲使小球在圆弧轨道运动时不脱离圆弧轨道,求半径R的取值应满足的条件.【题型4】如图所示,竖直平面内的直角坐标系O–xy中,第二象限内有一半径为R的绝缘光滑管道,其圆心坐标为(0,R),其底端与x轴相切于坐标原点处,其顶端与y轴交于B点(0,2R);第一象限内有一与x轴正方向夹角为45°、足够长的绝缘光滑斜面,其底端坐标为(R,0);x轴上0≤x≤R范围内是水平绝缘光滑轨道,其左端与管道底端相切、右端与斜面底端平滑连接;在第二象限内有场强大小E1=3mg、方向水平向右的匀强电场区域Ⅰ;在第一象限内x≥R范围内有场强大小E2=mgq、方向水平向左的匀强电场区域Ⅱ。
带电粒子在电场和重力场的复合场中的运动教学目标:(一)知识与技能1.带电粒子在复合场中的运动处理方法。
2. 将力学中的研究方法,灵活地迁移到复合场中,分析解决力、电综合问题。
(二)过程与方法培养学生综合运用力学和电学知识,分析解决带电粒子在复合场中的运动能力。
(三)情感态度与价值观培养学生综合分析问题的能力,体会物理知识的实际应用。
教学重点:用力和运动的观点来分析带电体的运动模型。
教学难点:带电粒子在复合场中的运动规律教学过程:引入:我们本节课所讲的复合场指的是重力场和电场并存。
带电粒子在复合场中运动,物理情景比较复杂,是每年高考命题的热点;这部分内容从本质上讲是一个力学问题,应根据力学问题的研究思路和运用力学的基本规律求解。
带电粒子在复合场中运动的基本类型和解法归纳如下。
一:求解带电粒子在复合场中运动的基本思路1:带电粒子在电场中的运动问题,实质是力学问题,其解题的一般步骤仍然为:2:确定研究对象;3:进行受力分析(注意重力是否能忽略);4:根据粒子的运动情况,运用牛顿运动定律结合运动学公式、动能定理或能量关系列方程式求解.二:带电粒子在复合场中运动的受力特点(1)重力的大小为,方向竖直向下.重力做功与路径无关,其数值除与带电粒子的质量有关外,还与始末位置的高度差有关。
(2)电场力的大小为,方向与电场强度E及带电粒子所带电荷的性质有关,电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与始末位置的电势差有关。
重力、电场力可能做功而引起带电粒子能量的转化。
三:带电粒子在复合场中运动的物理模型类型一:带电粒子在复合场中的直线运动1、当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.例1:带电粒子静止在电场中。
(1)带电粒子带什么电?(2)若给初速度以下情况下带电粒子将做什么运动?2:当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动例题2如图所示,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连。
带电粒子在电磁场中的受力分析和运动分析一、带电粒子在电场中的受力分析和运动分析1、静电场中的平衡问题静电场中的“平衡”问题,是指带电粒子的加速度为零的静止或匀速直线运动状态,都属于“静力学”的范畴,我们只是在分析带电粒子所受的重力、弹力、摩擦力等力时,还需多加一种电场力而已。
解题的一般程序为:明确研究对象;将研究对象隔离出来,分析其所受的全部外力,其中电场力,要根据电荷的正负及电场的方向来判断;根据平衡条件0=合F 或0,0x ==Y F F 列出方程;解方程求出结果。
2、电场中的加速问题带电粒子在匀强电场中的加速问题,一般属于粒子受到恒力(重力一般不计)作用的运动问题。
处理的方法有两种:根据牛顿第二定律和运动学公式结合求解;根据动能定理与电场力做功结合运动学公式求解。
在非匀强电场中的加速问题,一般属于物粒子受变力作用的运动问题。
处理的方法只能根据动能定理与电场力做功,结合运动学公式求解。
3、电场中的偏转问题受力及运动分析:带电粒子垂直于匀强电场的场强方向进入电场后,受到恒定的电场力作用,且与初速度方向垂直,因而做匀变速曲线运动——类平抛运动如1(设极板间的电压为U ,两极板间的距离为d ,极板长度为L )。
运动特点分析:在垂直电场方向做匀速直线运动 0v v x = ,t v x 0=在平行电场方向,做初速度为零的匀加速直线运动at v y =,221at y =, dmUq m Eq a == 通过电场区的时间:0v L t = 粒子通过电场区的侧移距离:2022mdv UqL y = 图1粒子通过电场区偏转角:20mdv UqL tg =θ 带电粒子从极板的中线射入匀强电场,其出射时速度方向的反向延长线交于入射线的中点。
所以侧移距离也可表示为:θtg L y 2= 。
4、粒子在交变电场中的往复运动当电场强度发生变化时,由于带电粒子在电场中的受力将发生变化,从而使粒子的运动状态发生相应的变化,粒子表现出来的运动形式可能是单向变速直线运动,也可能是变速往复运动。
带电粒子在等效重力场中的运动一、知识要点(一)等效思维法等效思维法是将一个复杂的物理问题,等效为一个熟知的物理模型或问题的方法。
对于这类问题,若采用常规方法求解,过程复杂,运算量大。
若采用“等效法”求解,则能避开复杂的运算,过程比较简捷。
(二)方法应用这类题常考小球在竖直面内做圆周运动,处理方法是:先求出重力与电场力的合力,将这个合力视为一个“等效重力”,将a=F合m视为“等效重力加速度”,如此便建立起“等效重力场”,找到等效的最低点和最高点,再将物体在重力场中的运动规律迁移到等效重力场中分析求解即可(如图1所示)。
二、经典例题例1.(多选)如图2甲所示,匀强电场方向水平向右,场强为E,丝线长为L.上端系于O 点,下端系质量为m、带电量为+q的小球,已知Eq=mg.现将小球从最低点A由静止释放,则下列说法正确的是()A.小球可到达水平位置B.当悬线与水平方向成45°角时小球的速度最大C.小球在运动过程中机械能守恒D.小球速度最大时悬线上的张力为(32-2)mg【答案】ABD解析:如图2乙所示,等效重力F=√2mg,等效最低点在B点。
由对称性知,从A点释放,可到达C点,且在B点速度最大。
运动过程中,因为电场力做功,所以机械能不守恒。
A到B,由动能定理:qELsin450-mgL(1-cos450)=mv2/2在B点,由牛顿第二定律:T-√2mg=mv2/L联立解得:T=(3√2−2)mg.例2.(多选)如图3甲所示,在竖直平面内有水平向右、场强E=1×104N/C的匀强电场。
在匀强电场中有一根长L=2m的绝缘细线,一端固定在O点,另一端系一质量为0.08kg的带电小球,它静止时细线与竖直方向成37°角,若小球获得初速度恰能绕O点在竖直平面内做圆周运动,取小球在静止时的位置为电势能零点和重力势能零点,cos37°=0.8,g取10m/s2。
下列说法正确的是()A.小球的带电荷量q=6×10-5CB.小球动能的最小值为1JC.小球在运动至圆周轨迹上的最高点时机械能最小D.小球绕O点在竖直平面内做圆周运动的电势能和机械能之和保持不变,且为4J【答案】AB.解析:如图3乙所示,等效最低点为A点,等效最高点为B点,等效重力F=mg/cos370=1N.在A点,tan370=qE/mg,得q=6*10-5C,在B点动能最小,由牛顿第二定律得:F=m V B2/L得E kB=m V B2/2=FL/2=1J.机械能最小时,电势能最大,应在C点而不是最高点。
带电粒子在电场中的运动一、难点突破策略:带电微粒在电场中运动是电场知识和力学知识的结合,分析方法和力学的分析方法是基本相同的:先受力分析,再分析运动过程,选择恰当物理规律解题。
处理问题所需的知识都在电场和力学中学习过了,关键是怎样把学过的知识有机地组织起来,这就需要有较强的分析与综合的能力,为有效突破难点,学习中应重视以下几方面:1.在分析物体受力时,是否考虑重力要依据具体情况而定。
(1)基本粒子:如电子、质子、α粒子、离子等,除有说明或有明确的暗示以外一般都忽略不计。
(2)带电颗粒:如尘埃、液滴、小球等,除有说明或有明确的暗示以外一般都不能忽略。
“带电粒子”一般是指电子、质子及其某些离子或原子核等微观的带电体,它们的质量都很小,例如:电子的质量仅为0.91×10-30千克、质子的质量也只有1.67×10-27千克。
(有些离子和原子核的质量虽比电子、质子的质量大一些,但从“数量级”上来盾,仍然是很小的。
)如果近似地取g=10米/秒2,则电子所受的重力也仅仅是meg=0.91×10-30×10=0.91×10-29(牛)。
但是电子的电量为q=1.60×10-19库(虽然也很小,但相对而言10-19比10-30就大了10-11倍),如果一个电子处于E=1.0×104牛/库的匀强电场中(此电场的场强并不很大),那这个电子所受的电场力F=qE=1.60×10-19×1.0×104=1.6×10-15(牛),看起来虽然也很小,但是比起前面算出的重力就大多了(从“数量级”比较,电场力比重力大了1014倍),由此可知:电子在不很强的匀强电场中,它所受的电场力也远大于它所受的重力——qE>>meg 。
所以在处理微观带电粒子在匀强电场中运动的问题时,一般都可忽略重力的影响。
但是要特别注意:有时研究的问题不是微观带电粒子,而是宏观带电物体,那就不允许忽略重力影响了。
带电粒子(带电体)在电场中的运动问题目录一、考向分析二、题型及要领归纳热点题型一 优化场区分布创新考察电偏转热点题型二 利用交变电场考带电粒子在运动的多过程问题热点题型三 借助电子仪器考带电粒子运动的应用问题热点题型四 带电粒子(带电体)在电场和重力场作用下的抛体运动热点题型五 带电粒子(带电体)在电场和重力场作用下的圆周运动三、压轴题速练考向分析1.本专题主要讲解带电粒子(带电体)在电场中运动时动力学和能量观点的综合运用,高考常以计算题出现。
2.学好本专题,可以加深对动力学和能量知识的理解,能灵活应用受力分析、运动分析(特别是平抛运动、圆周运动等曲线运动)的方法与技巧,熟练应用能量观点解题。
3.用到的知识:受力分析、运动分析、能量观点。
4.带电粒子在电场中的运动(1)分析方法:先分析受力情况,再分析运动状态和运动过程(平衡、加速或减速,轨迹是直线还是曲线),然后选用恰当的规律如牛顿运动定律、运动学公式、动能定理、能量守恒定律解题。
(2)受力特点:在讨论带电粒子或其他带电体的静止与运动问题时,重力是否要考虑,关键看重力与其他力相比较是否能忽略。
一般来说,除明显暗示外,带电小球、液滴的重力不能忽略,电子、质子等带电粒子的重力可以忽略,一般可根据微粒的运动状态判断是否考虑重力作用。
5.用能量观点处理带电体的运动对于受变力作用的带电体的运动,必须借助能量观点来处理。
即使都是恒力作用的问题,用能量观点处理也常常更简捷。
具体方法有:(1)用动能定理处理思维顺序一般为:①弄清研究对象,明确所研究的物理过程。
②分析物体在所研究过程中的受力情况,弄清哪些力做功,做正功还是负功。
③弄清所研究过程的始、末状态(主要指动能)。
④根据W=ΔE k列出方程求解。
(2)用包括电势能和内能在内的能量守恒定律处理列式的方法常有两种:①利用初、末状态的能量相等(即E1=E2)列方程。
②利用某些能量的减少等于另一些能量的增加列方程。
带电粒子在电磁场中的运动带电粒子在电磁场中的运动包括带电粒子在匀强电场、交变电场、匀强磁砀及包含重力场在内的复合场中的运动问题,是高考必考的重点和热点。
纵观近几年各种形式的高考试题,题目一般是运动情景复杂、综合性强,多把场的性质、运动学规律、牛顿运动定律、功能关系以及交变电场等知识有机地结合,题目难度中等偏上,对考生的空间想像能力、物理过程和运动规律的综合分析能力,及用数学方法解决物理问题的能力要求较高,题型有选择题,填空题、作图及计算题,涉及本部分知识的命题也有构思新颖、过程复杂、高难度的压轴题。
带电粒子在电磁场中的运动问题属于场的性质和力学规律及能量观点的综合应用,解决此类问题以力学思路为主线,突出场的性质,实现场、力和能的结合。
针对带电粒子在电磁场中的运动为核心的专题,可设置从运动和力的观点解决带电粒子在电场中的加速和偏转问题;从能量的观点解决带电粒子中的加速与偏转问题;从运动和力的观点解决带电粒子在磁场中的圆周运动问题。
近几年物理高考题总有一些似曾相识的题目。
所以应根据高考命题的热点改造试题、变换设问方式,克服思维定势。
同时设计出一些贴近高考的新颖试题:比如理论联系实际的题目、设计性的实验题目等,以使训练贴近高考。
一.带电粒子在电场中运动高考命题涉及的电场有匀强电场,也有非匀强电场和交变电场。
带电粒子在电场中的运动可分为三类:第一类为平衡问题;第二类为(包括有往复)问题;第三类为偏转问题。
解题的基本思路是:首先对带电粒子进行受力分析,再弄清运动过程和运动性质,最后确定采用解题的观点(力的观点、能的观点和动量观点)。
平衡问题运用物体的平衡条件;直线运动问题运用运动学公式、牛顿运动定律、动量关系及能量关系;偏转问题运用运动的合成和分解,以及运动学中的抛体运动规律等。
例1、如图所示,电子在电势差为U 1的加速电场中由静止开始运动,然后射入电势差为U 2的两块平行金属板间的电场中,板长为l ,板间距离为d ,入射方向跟极板平行。
复习第六章电场——带电粒子在电场中的运动电容器二. 重点、难点:(一)带电粒子在电场中的运动1. 带电粒子沿与电场线平行的方向进入匀强电场,受到的电场力与运动方向在同一条直线上,做匀加(减)速直线运动。
2. 带电粒子(若重力不计)由静止经电场加速如图所示,可用动能定理:表达式为3. 带电粒子在匀强电场中的偏转(重力不计),如图所示。
(1)侧移:结合加速时的表达式可得:,可知在加速电压、偏转极板的长度和极板间距不变的情况下,侧向位移y 与偏转电压成正比。
(2)偏角:注意到,说明穿出时刻的末速度的反向延长线与初速度延长线交点恰好在水平位移的中点。
这一点和平抛运动的结论相同。
两样,在加速电压、偏转极板的长度和极板间距不变的情况下,偏角的正切与偏转电压成正比。
(3)穿越电场过程的动能增量:(注意,一般来说不等于)(二)电容器1. 电容器:两个彼此绝缘又相隔很近的导体都可以看成一个电容器。
2. 电容器的电容:电容是表示电容器容纳电荷本领的物理量,定义式(比值定义法),电容是由电容器本身的性质(导体大小、形状、相对位置及电介质)决定的。
3. 平行板电容器的电容的决定式是:,其中,k为静电力常量,S为正对面积,是电介质的介电常数。
4. 两种不同变化:电容器和电源连接如图,改变板间距离、改变正对面积或改变板间电解质材料,都会改变其电容,从而可能引起电容器两板间电场的变化。
这里一定要分清两种常见的变化:(1)电键K保持闭合,则电容器两端的电压U恒定(等于电源电动势),这种情况下带电荷量,而,。
(2)充电后断开K,保持电容器带电荷量Q恒定,这种情况下。
5. 常用电容器有:固定电容器和可变电容器,电解电容器有正负极,不能接反。
【典型例题】电场中常见问题:(一)平行板电容器的动态分析平行板电容器动态分析这类问题关键在于弄清哪些是变量,哪些是不变量,在变量中哪些是自变量,哪些是因变量。
讨论电容器动态变化问题时一般分两种基本情况:1. 充电后仍与电源连接,则两极板间电压U保持不变。