纵断面设计 竖曲线
- 格式:ppt
- 大小:4.33 MB
- 文档页数:31
纵断面设计——竖曲线设计纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。
竖曲线的形状,通常采用平曲线或二次抛物线两种。
在设计和计算上为方便一般采用二次抛物线形式。
纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。
当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。
一、竖曲线如图所示,设相邻两纵坡坡度分别为i1 和i2,则相邻两坡度的代数差即转坡角为ω= i1-i2 ,其中i1、i2为本身之值,当上坡时取正值,下坡时取负值。
当i1- i2为正值时,则为凸形竖曲线。
当i1 - i2 为负值时,则为凹形竖曲线。
(一)竖曲线基本方程式我国采用的是二次抛物线形作为竖曲线的常用形式。
其基本方程为:若取抛物线参数为竖曲线的半径,则有:(二)竖曲线要素计算公式竖曲线计算图示1、切线上任意点与竖曲线间的竖距通过推导可得:2、竖曲线曲线长:L = Rω3、竖曲线切线长:T= TA =TB ≈ L/2 =4、竖曲线的外距:E =⑤竖曲线上任意点至相应切线的距离:式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m;R—为竖曲线的半径,m。
二、竖曲线的最小半径(一)竖曲线最小半径的确定1.凸形竖曲线极限最小半径确定考虑因素(1)缓和冲击汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。
(2)经行时间不宜过短当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。
因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。
(3)满足视距的要求汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。
为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。
竖曲线
为使路线平顺,行车平稳,必须在路线竖向转坡点处设置平滑的竖曲线将相邻直线坡段衔接起来。
因纵断面上转折坡点处是凹形或凸形不同而分为凹形曲线与凸形曲线。
纵坡转折处是否设置凸曲线,取决于转坡角大小尺寸与要求视距的长度之间的关系。
一般规定:当主要及一般交通干道两相邻纵坡代数差ω>0.5%,区干道的(ω>1.0%,其他道路的ω>1.5%时,需设置凸形竖曲线。
对凹形转折处,当主要交通干道两相邻纵坡代数差ω>0.5%,交通干道的ω>0.7%,其他道路的~>1.0%时,则需要设置凹形曲线。
城市道路设计时一般希望平曲线与竖曲线分开设置。
如果确实需要重合设置时,通常要求将竖曲线设置在乎曲线内,而不应交错。
为了保持平面和纵断面的线形平顺,一般取凸形竖曲线的半径为平曲线半径的10~20倍。
应避免将小半径的竖曲线设在长的直线段上。
竖曲线长度一般至少应为20m。
其取值—般为20m的倍数。
城市道路排水
形式:明式、暗式、混合式。
雨水管网布置原则:利用地形,分区就近排入水体,沿排水区低处布置,合理选择与布置出水口
例题:道路纵断面设计要求包括(BC)
A平行于城市等高线;
B线性平顺;
C道路及两侧街坊排水良好;
D形成两测优美的天际轮廓线。
线路纵断面测量设计第一节基平测量与中平测量线路的纵断面测量设计就是把线路的各点中桩的高程测量出来,并绘制到一定比例尺的图上进行纵断面的拉坡设计、竖曲线设计、设计高程计算等。
一、基平测量当线路较长时,为保证测量中桩各点高程的准确性,通常需要把已知的高程点引测到整条线路的附近,每隔一定的距离引测一点,作为线路的基平点。
在此点附近的线路中桩高程都可以用此点作为基础高程进行测量。
这个引测得过程就称为基平测量。
如下图:图2-1实线为线路中心线,虚线为水准仪测量的路线。
BM0为已知水准高程点,BM1、BM2、……为线路基本点。
1、2、3、……为水准仪的测站点。
L1、L2、L3、……为高程传递点。
注意事项:1、水准仪在摆站时要注意整平,点位尽量落在与前视后视距离相近的位置,确保消除仪器的内部误差。
2、瞄准后视读数后,立即转向瞄准前视,这时还必须保持整平状态,若此时精平水准泡错开,则瞄准前视后,还必须在此状态下进行精平,然后再读数。
3、为确保测量的准确性,要求往返测量,精度在普通测量学的要求以内,读数方可使用。
也可以用双面尺的方法进行校核,在测量中尽量每站进行校核。
4、基平测量的数据应进行平差处理后方可使用。
具体平差方法见普通测量知识。
5、测量时,水准尺应该垂直,读数时应首先消除视差,司仪者读中丝卡位的最小数据,以保证读数最准确。
6、立尺的测量员必须保证尺的底端不带泥土,用塔尺时要注意尺间不脱节。
二、中平测量中平测量就是在基平测量的基础上,基平时引测的高程点作为基准高程,用水准仪测出每个中桩的地面高程,又称中桩抄平。
图2-2三、记录记录时应该注意的是要保证填写准确,判断哪些是前视,哪些是中视,哪些是后视。
传递高程的点应该既有前视也有后视,只有中视的点没有传递高程。
例题:按下图填写表格,并计算高程,1点高程100.00。
图2-3表2-1第二节拉坡设计拉坡设计就是在中平测量的基础上,利用中平测量的每个中桩高程的数据进行地面线的设计,由此计算各中桩的设计高程。
道路竖曲线高程计算公式在道路工程中,竖曲线高程的计算可是个相当重要的环节。
说起这竖曲线高程计算公式,那可真是让不少人头疼,但别怕,咱们一起来把它弄明白。
我还记得有一次在一个道路施工的现场,我亲眼目睹了因为竖曲线高程计算不准确而导致的问题。
当时,工人们正在铺设一段新的道路,一切看起来都有条不紊地进行着。
可是,当铺设到一处竖曲线的位置时,问题出现了。
原本应该顺滑过渡的路面,却出现了明显的高低差,车辆行驶在上面颠簸得厉害。
经过一番调查,发现就是因为竖曲线高程的计算出现了偏差。
那到底什么是竖曲线高程计算公式呢?简单来说,竖曲线是在道路纵断面上两个坡段的转折处,为了行车的平稳和安全而设置的一段曲线。
而计算竖曲线高程,就是要确定在这个曲线上不同位置的高度。
竖曲线高程的计算公式主要涉及到一些关键的参数,比如竖曲线的半径、切线长、外距等等。
其中,最常用的公式是:竖曲线高程 = 切线高程 ±竖距而切线高程 = 变坡点高程 ±坡度 ×坡长这里的“±”要根据竖曲线的凹凸情况来确定,如果是凸形竖曲线就用“-”,凹形竖曲线就用“+”。
比如说,我们有一个道路的变坡点高程为 100 米,坡度为 5%,坡长为 200 米,竖曲线半径为 5000 米。
首先计算切线高程,切线高程 = 100 + 0.05 × 200 = 110 米。
接下来计算竖距,竖距 = (坡长的平方)÷(2 ×竖曲线半径)= (200×200)÷(2×5000)= 4 米。
如果这是一个凸形竖曲线,那么竖曲线高程 = 110 - 4 = 106 米。
在实际应用中,可不能马虎。
就像我在前面提到的那个施工现场,一点点的偏差都可能导致严重的后果。
而且,不同的道路设计要求和地形条件,都会对竖曲线高程的计算产生影响。
有时候,计算竖曲线高程还需要考虑到一些特殊情况。
比如说,如果道路有多个变坡点,那就需要依次计算每个竖曲线的高程,确保整个路段的过渡都平稳顺畅。
一、设置竖曲线的要求铁路线路所包含的坡度除平坡外,有上坡、下坡。
所谓坡度,即铁路线路的高程变化率,用千分率表示,就是每1000m水平距离高程上升或下降的数值,通常用符号“+、-、0”依次表示上坡、下坡或平坡。
在进行纵断面设计时,相邻两坡段的交点叫变坡点,两变坡点之间的水平距离叫坡段长度。
《铁路线路设计规范》规定:工、Ⅱ级铁路相邻坡段坡度的代数差大于3%0和Ⅲ级铁路相邻坡段坡度的代数差大于4‰时,需用竖曲线连接。
竖曲线的形状主要分为圆曲线形和抛物线形两种。
《新建客货共线铁路设计暂行规定》规定:纵断面宜设计为较长的坡段,相邻坡段的连接宜设计为较小的坡度差。
旅客列车设计行车速度为200 km/h的路段,最小坡段长度不宜小于600m,困难条件下最小坡段长度不应小于400m,且最小坡段长度不得连续使用2个以上。
旅客列车设计行车速度为160km/h的路段,最小坡段长度不宜小于400m,且最小坡段长度不宜连续使用2个以上。
竖曲线不得与缓和曲线、相邻竖曲线重叠设置,也不得设在明桥面和正线道岔内。
二、竖曲线的计算方法1.圆曲线形竖曲线计算《铁路线路设计规范》规定:Ⅰ、Ⅱ级铁路竖曲线半径为10000m Tv=5 X △i ,Ⅲ级铁路竖曲线半径为5000m。
Tv=2.5 X △i(1)竖曲线的切线长Tv=Rv ×tan a/2 = Rv/2 ×tan a= Rv/2000 × △i △i=△i2-△i1 的绝对值Tv-竖曲线的切线长(m);Rv--竖曲线半径,a----竖曲线转角,△i-相邻坡段坡度的代数差(‰)。
(2)竖曲线的曲线长C≈2T。
(3)竖曲线的纵距竖曲线的纵距即竖曲线上任意点与切线上相邻点的标高差,用y表示,即y=x2/2Rv式中Y-竖曲线的纵距(m);x-竖曲线上任意点距竖曲线始点或终点的距离(m);(4)竖曲线标高H=Hp±y 式中H-竖曲线标高(m);Hp-计算点坡度线标高,【例题】某一级铁路,有一圆曲线形竖曲线(如图3-20所示),竖曲线中点里程为K24+400,标高为65.7 m,上坡i1=+2‰,下坡i2=-4‰,试计算竖曲线上每20 m点的标高。