调和点列性质
- 格式:doc
- 大小:87.00 KB
- 文档页数:3
极点极线调和点列在圆锥曲线中的应用
圆锥曲线的极点极线和调和点列是解析几何中的重要概念,它们有着广泛的应用。
极点极线在圆锥曲线上的应用是,利用极点极线可以确定圆锥曲线上任意一点的位置。
具体来说,对于圆锥曲线上的一点P,其极点极线定义为过P点且垂直于焦点连线的直线。
然后,将该直线与另外两个焦点连线的中垂线的交点连接,得到的交点Q就是圆锥曲线上P点的对称点。
因此,我们可以通过极点极线来确定P点的位置。
调和点列是圆锥曲线上任意四点(不在同一直线上)的一种组合方式。
具体来说,对于任意四点A、B、C、D,将它们两两相连得到的线段AB、AC、AD、BC、BD、CD各自相交于E、F、G、H、I、J,则E、F、G、H、I、J构成的点列就是调和点列。
调和点列在圆锥曲线中有着广泛的应用,例如利用调和点列可以确定圆锥曲线上任意两点连线的中垂线,以及求出关于圆锥曲线上给定点的对称点等。
因此,在解析几何中,极点极线和调和点列是研究圆锥曲线的重要工具,可以帮助我们更深入地理解圆锥曲线的性质和应用。
调和点列的定义调和点列是数学中的一个概念,用于描述数列中的一种特殊关系。
在数学中,点列是由一系列有序的点构成的集合。
而调和点列则是指一个数列中的每一项与其前后两项的调和平均数相等的数列。
调和平均数是指两个数的倒数的平均数的倒数。
具体而言,对于两个非零实数a和b,它们的调和平均数h可以表示为h = 2/(1/a + 1/b)。
调和平均数的主要特点是当a和b相等时,调和平均数也等于它们的值;而当a和b不相等时,调和平均数总是小于它们的算术平均数。
在调和点列中,每一项与其前后两项的调和平均数相等。
换句话说,对于一个调和点列a1, a2, a3, ...,对于任意的正整数n,我们有1/a(n-1) + 1/a(n+1) = 2/a(n)。
这个等式表明调和点列中的每一项可以通过其前后两项的调和平均数来确定。
调和点列的一个重要性质是它的项与斐波那契数列有关。
斐波那契数列是一个数列,其前两项为0和1,后续的每一项都是它前面两项的和。
调和点列中的前两项也可以选择为0和1,后续的每一项都可以通过前面两项的调和平均数来确定。
因此,调和点列可以看作是斐波那契数列的一种推广。
调和点列在数学中有着广泛的应用。
它们在数值计算和逼近算法中具有重要的作用。
调和点列的性质使得它们可以用来逼近一些特殊函数的值,例如调和级数。
此外,调和点列还可以用于解决一些特殊的数学问题,如求解某些方程或优化问题等。
调和点列是数学中的一个重要概念,用于描述数列中的一种特殊关系。
它们与调和平均数和斐波那契数列有着密切的联系,具有广泛的应用价值。
通过研究和应用调和点列,人们可以更好地理解数学中的一些基本概念和方法,并将其应用于实际问题的求解中。
完全四边形调和点列证明完全四边形调和点列是指在平面上给定4个不共线的点A、B、C、D及它们的共轭点A'、B'、C'、D',并且这8个点满足调和性质,即(ABCD)=-1。
其中,ABCD表示A与B连线、C与D连线的交点。
调和性质可以表示为以下等式:(AA')/(AC') * (BD')/(BA') = -1(BB')/(BD') * (CA')/(CB') = -1(CC')/(CA') * (DB')/(DC') = -1(DD')/(DB') * (AC')/(AD') = -1对于完全四边形调和点列的证明,我们可以从多个角度进行阐述。
一、几何证明方法:1.利用平行线性质证明:在平面上,如果一组平行线通过一个调和四边形的对角线,则它们必定也通过该调和四边形的共轭对角线。
根据这个性质,我们可以得出扩展的拉美定理(扩展的拉美定理表示:如果A、B、C是一条直线上的三个点,D、E、F是另一条直线上的三个点,那么如果AD、BE、CF交于一点,则AE、DF和BC也必定交于一点)。
利用扩展的拉美定理,可以证明完全四边形调和点列中的任意四个点满足调和性质。
2.利用交比性质证明:在平面几何中,交比是指若干条线段的比值,可以用于表示调和性质。
对于完全四边形调和点列,我们可以使用逆向交比等式进行证明,具体通过运用调和性质的定义和多个交比定义来推导。
二、代数证明方法:可以使用代数运算进行证明,通过直线与坐标系的关系来推导出调和点列的性质。
具体可以通过线的方程来证明四个点的交点满足调和性质,并通过坐标的代数运算来证明三、向量证明方法:利用向量的加法与减法、数量积和矢积等定义和性质进行证明。
具体可以通过定义向量的坐标映射,利用向量的线性叠加性质进行证明。
四、复数证明方法:可以利用复数与几何的关系进行证明。
极点极线调和点列在圆锥曲线中的应用
极点极线和调和点列是圆锥曲线中的两个重要概念,它们在解决圆锥曲线问题中具有重要的应用价值。
我们来了解一下极点极线的概念。
在平面直角坐标系中,如果有一点P(x,y),那么以该点为极点的极线就是过该点的直线L,它与x轴的夹角为θ,那么该点的极坐标就是(r,θ),其中r为点P到极点的距离。
极点极线的应用非常广泛,比如在求解圆锥曲线的方程时,可以通过极点极线的性质来确定圆锥曲线的类型。
接下来,我们来了解一下调和点列的概念。
在平面直角坐标系中,如果有四个点A、B、C、D,那么如果它们满足AC和BD的交点E 在直线AB上,那么这四个点就构成了一个调和点列。
调和点列的性质非常有用,比如在求解圆锥曲线的焦点和直径时,可以通过调和点列的性质来确定。
在圆锥曲线中,极点极线和调和点列的应用非常广泛。
比如在求解椭圆的焦点和直径时,可以通过极点极线的性质来确定椭圆的方程,然后再通过调和点列的性质来求解椭圆的焦点和直径。
同样,在求解双曲线的焦点和直径时,也可以通过极点极线的性质来确定双曲线的方程,然后再通过调和点列的性质来求解双曲线的焦点和直径。
极点极线和调和点列是圆锥曲线中非常重要的概念,它们的应用价值非常高。
在解决圆锥曲线问题时,我们可以通过这两个概念来确
定圆锥曲线的方程、焦点和直径等重要参数,从而更好地理解和应用圆锥曲线。
圆锥曲线专题:调和点列-极点极线一、问题综述(一)概念明晰(系列概念):1.调和点列:如图,在直线l上有两基点A,B,则在l上存在两点C,D到A,B两点的距离比值为定值,即AC BC =ADBD=λ,则称顺序点列A,C,B,D四点构成调和点列(易得调和关系2AB=1AC+1AD)。
同理,也可以C,D为基点,则顺序点列A,C,B,D四点仍构成调和点列。
所以称A,B和C,D称为调和共轭。
2.调和线束:如图,若A,C,B,D构成调和点列,O为直线AB外任意一点,则直线OA,OC,OB,OD称为调和线束。
若另一直线截调和线束,则截得的四点A ,C ,B ,D 仍构成调和点列。
3.阿波罗尼斯圆:如图,A,B为平面中两定点,则满足APBP=λ(λ≠1)的点P的轨迹为圆O,A,B互为反演点。
由调和点列定义可知,圆O与直线AB交点C,D满足A,C,B,D四点构成调和点列。
4.极点极线:如图,A,B互为阿圆O反演点,则过B作直线l垂直AB,则称A为l的极点,l为A的极线.2024高考数学专项复习5.极点极线推广(二次曲线的极点极线):(1).二次曲线Ax 2+By 2+Cxy +Dx +Ey +F =0极点P (x 0,y 0)对应的极线为Ax 0x +By 0y +Cx 0y +y 0x 2+D x 0+x2+E y 0+y 2+F =0x 2→x 0x ,y 2→y 0y ,xy →x 0y +y 0x 2,x →x 0+x2,y →y 0+y 2(半代半不代)(2)圆锥曲线的三类极点极线(以椭圆为例):椭圆方程x 2a 2+y 2b 2=1①极点P (x 0,y 0)在椭圆外,PA ,PB 为椭圆的切线,切点为A ,B 则极线为切点弦AB :x 0xa 2+y 0yb 2=1;②极点P (x 0,y 0)在椭圆上,过点P 作椭圆的切线l ,则极线为切线l :x 0x a 2+y 0y b 2=1;③极点P (x 0,y 0)在椭圆内,过点P 作椭圆的弦AB ,分别过A ,B 作椭圆切线,则切线交点轨迹为极线x 0xa 2+y 0yb 2=1;(3)圆锥曲线的焦点为极点,对应准线为极线.(二)重要性质性质1:调和点列的几种表示形式如图,若A ,C ,B ,D 四点构成调和点列,则有AC BC =AD BD =λ⇔2AB =1AD +1AC⇔OC 2=OB ⋅OA ⇔AC ⋅AD =AB ⋅AO ⇔AB ⋅OD =AC ⋅BD性质2:调和点列与极点极线如图,过极点P作任意直线,与椭圆及极线交点M,D,N则点M,D,N,P成调和点列(可由阿圆推广)性质3:极点极线配极原则若点A的极线通过另一点D,则D的极线也通过A.一般称A、D互为共轭点.推广:如图,过极点P作两条任意直线,与椭圆分别交于点MN,HG,则MG,HN的交点必在极线上,反之也成立。
调和点列与极点极线知识与方法以极点极线为背景的题目经常出现在高考和各级竞赛试题之中, 如圆锥曲线的切线、切点弦、圆锥曲线内接四边形两对边延长线的交点轨迹等, 是圆锥曲线的常考问题, 这些问题大多和极点极线与调和点列的性质有关.熟悉调和点列与极点极线基本性质, 能抓住此类问题的本质,明确问题的目标, 能更高效地解决问题. 下面介绍交比、调和点列、完全四边形、Apollonius圆、极点和极线等射影几何的重要概念及性质, 溯本求源,揭示此类与极点极线有关的问题的来龙去脉.(一)调和分割的概念“调和分割”又称“调和共轭” , 来源于交比,分“调和线束”和“调和点列”两种, 它是交比研究中的一个重要特例, 也是贯穿《高等几何》课程的一个重要概念.定义1线束和点列的交比:如图, 过点O的四条直线被任意直线l所截的有向线段之比ACAD/BCBD称为线束OA、OC、OB、OD或点列A,C,B,D的交比.定理1交比与所截直线无关.【证明】令线束O a,b,c,d分别交l于A,B,C,D,则ACAD/BCBD=SΔAOCS△AOD/SΔBOCSΔBOD=CO sin∠AOCDO sin∠AOD/CO sin∠COBDO sin∠BOD=sin∠AOCsin∠AOD,sin∠COBsin∠BOD, 又因为各对应向量方向相同, 故交比与所截直线无关.【注】定理说明,点列的交比与其对应线束的交比是相同的. 保持线束不变, 取另一直线l 交线束于A ,B ,C ,D , 可视为对l作射影变换, 所得交比不变, 由此说明交比是射影不变量, 具有射影不变性.定义2调和线束与调和点列:定理1若交比为-1,则称为调和比.交比为-1的线束称为调和线束,点列称为调和点列. 一般地,若AC=λCBAD=-λDB(λ>0且λ≠1,则A,C,B,D四点构成“调和点列”;①A,B叫做“基点”,C,D叫做“(内、外)分点”.根据定义可得:如果点C内分线段AB,点D外分线段AB, 且ACCB=ADDB, 那么称点C,D调和分割线段AB.亦称A,C,B,D为调和点列. 线段端点和内外分点, 依次构成调和点列.即:调和点列⇔内分比=外分比.②也可以以D,C为基点, 则四点D,B,C,A仍构成调和点列, 故称A,B与C,D调和共轭.③如图, 若A,C,B,D构成调和点列,O为直线AB外任意一点, 则四直线OA,OC,OB,OD为调和线束;若另一直线截此调和线束, 则截得的四点A ,C ,B ,D 仍构成调和点列(由定理1可知).定理2调和点列的性质:若A,C,B,D为调和点列, 即ACCB=ADDB,则:(1)调和性:1AC+1AD=2AB证明:CACB=DADB⇒CBCA=DBDA⇒AB-CACA=DA-ABDA⇒ABCA-1=1-ABDA⇒ABCA+ABDA=2⇒1AC+1AD=2AB(2)共轭性:若A,C,B,D构成调和点列, 则D,B,C,A也构成调和点列.即:若1AC+1AD=2AB成立, 则1DB+1DA=2DC也成立;(3)等比性:①CACB=DADB=λ②记线段AB的中点为M, 则有MA|2=MB|2=MC⋅MD.③记线段CD的中点为N, 则有NC|2=ND|2=NA⋅NB.(同2可证)证明:CACB=DADB⇒MA+MCMA-MC=MD+MAMD-MA⇒MA+MCMD+MA=MA-MCMD-MA由等比性质可知:MA+MC+MA-MCMD+MA+MD-MA=MA+MC-MA- MC∣MD+MA-MD-MA⇒2MA2MD=2MC2MA⇒MA|2=MB2=MC⋅MD同理可得NC|2=ND|2=NA⋅NB.定理3斜率分别为k1,k2,k3的三条直线l1,l2,l3交于x轴外的点P, 过P作x轴的垂线l4, 则k1,k2,k3成等差数列的充要条件为l1,l2、l3,l4成调和线束.分析:不妨设k1、k2、k3均为正数, 其它情况同理可证.【证明】如图, 设l1,l2、l3,l4与x轴分别交于A,B,C,D四点, 则2k2=k1+k3⇔2DB=1DA+1DC⇔DADC=BABC⇔A,B,C,D成调和点列⇔l1,l3,l2,l4成调和线束.定理4已知F为椭圆的焦点,l为F相应的准线, 过F任作一直线交椭圆于A,B两点, 交l于点M, 则A,B,F,M成调和点列.(说明:此处图像应修正:B点在椭圆上,BB1虚线应往上移一点)【证明】如图, 分别过A,B作l的垂线, 垂足为A1,B1,则由椭圆的第二定义及平行线的性质可得:AF BF=AA1BB1=AMBM, 故A,B,F,M成调和点列.定义3阿波罗尼斯Apollonius圆:到两定点A、B距离之比为定值k(k>0且k≠1)的点的轨迹为圆, 称为Apollonius圆(简称阿氏圆),为古希腊数学家Apollonius最先提出并解决.【证明】如图, 由AP=kPB, 则在AB直线上有两点C、D满足ACBC=ADBD=APBP, 故PC、PD分别为∠APB的内外角平分线, 则CP⊥DP, 即P的轨迹为以CD为直径的圆(圆心O为线段CD的中点).由ACBC=ADBD可知, 图中A,C,B,D为调和点列.定义4完全四边形:我们把两两相交, 且没有三线共点的四条直线及它们的六个交点所构成的图形, 叫做完全四边形. 如图,凸四边形ABCD各边延长交成的图形称为完全四边形ABCDEF,AC、BD、EF称为其对角线.定理5完全四边形对角线所在直线互相调和分割. 即AGCH、BGDI、EHFI分别构成调和点列.【证明】HEHF⋅IFIE=S△AECS△AFC⋅SΔBDFS△BDE=S△AECSΔACD⋅SΔACDSΔAFC⋅SΔBDFSΔBEF⋅SΔBEFSΔBDE=ECCD⋅ADAF⋅DCEC⋅AFAD=1,即HEHF=IEIF, 所以EHFI为调和点列. 其余的可由线束的交比不变性得到.(二)极点和极线的概念1. 极点和极线的几何定义如图,P为不在圆锥曲线Γ上的点, 过点P引两条割线依次交圆锥曲线于四点E,F,G,H, 连接EH ,FG交于N, 连接EG,FH交于M, 我们称点P为直线MN关于圆锥曲线Γ的极点, 称直线MN为点P关于圆锥曲线Γ的极线. 直线MN交圆锥曲线Γ于A,B两点, 则PA,PB为圆锥曲线Γ的两条切线. 若P在圆锥曲线Γ上, 则过点P的切线即为极线.(1)自极三角形:极点P一一极线MN;极点M一一极线PN;极点N一一极线MP;即△PMN中,三个顶点和对边分别为一对极点和极线, 称△PMN为“自极三角形”.(2)极点和极线的两种特殊情况(1)当四边形变成三角形时:曲线上的点E F,M,N对应的极线, 就是切线PE;(2)当四边有一组对边平行时, 如:当FH⎳EG时, EG和FH的交点M落在无穷远处;点P的极线NM2和点N的极线PM1满足:FH⎳NM2⎳EG⎳PM1.2. 极点和极线的代数定义对于定点P x0,y0与非退化二次曲线Γ:Ax2+Cy2+Dx+Ey+F=0,过点P作动直线与曲线Γ交于点A与点B, 那么点P关于线段AB的调和点Q的轨迹是什么?可以证明:点Q在一条定直线l:Ax0x+Cy0y+D x+x02+Ey+y02+F=0上,如下图. 我们称点P为直线l关于曲线Γ的极点;相应地, 称直线l为点P关于曲线Γ的极线.一般地, 对于圆锥曲线Γ:Ax2+Bxy+Cy2+Dx+Ey+F=0,设极点P x0,y0, 则对应的极线为l:Ax0x+B x0y+y0x2+Cy0y+Dx0+x2+Ey0+y2+F=0【注】替换规则为:x2→xx0, y2→yy0,xy→x0y+y0x2,x→x+x02,y→y+y02.(1)椭圆x 2a 2+y 2b2=1(a >b >0)的三类极点极线(1)若极点P x 0,y 0 在椭圆外, 过点P 作橢圆的两条㘦线, 切点为A ,B , 则极线为切点弦所在直线AB :x 0xa 2+y 0yb 2=1;(2)若极点P x 0,y 0 在椭圆上, 过点P 作椭圆的切线l , 则极线为切线x 0xa 2+y 0yb 2=1;(3)若极点P x 0,y 0 在橢圆内, 过点P 作椭圆的弦AB , 分别过A ,B 作椭圆切线, 则切线交点轨迹为极线x 0xa 2+y 0yb 2=1由此可得椭圆极线的几何作法:(2)对于双曲线x 2a 2-y 2b 2=1, 极点P x 0,y 0 对应的极线为x 0x a 2-y 0y b 2=1;(3)对于拋物线y 2=2px , 极点P x 0,y 0 对应的极线为y =p x 0+x .3. 极点和极线的性质(1)引理:已知椭圆方程为x 2a 2+y 2b 2=1(a >b >0), 直线l 的方程为x 0x a 2+y 0y b 2=1, 点P x 0,y 0 不与原点重合. 过点P 作直线交椭圆于A ,B 两点,M 点在直线AB 上,则“点M 在直线l 上"的充要条件是"P ,M 调和分割A ,B ", 即AP PB =AMMB.【证明】先证必要性. 设M 点的坐标为x 1,y 1 , 则有x 0x 1a 2+y 0y 1b 2=1. 设直线AB 的参数方程为x =x 0+tx 11+ty =y 0+ty 11+t(t 为参数)与椭圆方程联立, 得x 21a 2+y 21b 2-1 t 2+2x 0x 1a 2+y 0y 1b 2-1 t +x 20a 2+y 20b2-1=0,即x21a2+y21b2-1t2+x20a2+y20b2-1=0, 该方程有两个不等实根, 设为t1,t2, 则t1+t2=0.即P,M调和分割A,B, 也即APPB=AMMB.将以上证明过程反向推导,即得充分性成立.设P是圆锥曲线Γ的一个极点, 它对应的极线为l, 过P任意引一条直线, 交Γ于点A,B, 交l于点Q, 若点A是位于P,Q间的点, 结合引理可得如下极点和极线的三个调和性质:(1)调和性1 PA +1PB=2PQ(2)共轨性B,Q,A,P四点也构成“调和点列”, 即1BQ+1BP=2BA.(3)等比性(1)点Q、P是线段AB的内、外分点,PAPB=QAQB=λ.(2)若Γ为椭圆或双曲线,当直线AB经过曲线中心O时, OP⋅OQ=OA|2=OB|2.4. 配极原则若P点关于圆锥曲线Γ的极线通过另一点Q, 则Q点的极线也通过P, 称P、Q关于Γ调和共轭.【证明】设点P x P,y P,则相应的极线为l P:x p xa2+y P yb2=1,点Q x Q,y Q,相应的极线为l Q:x Q xa2+y Q y b2=1. 因为l P过点Q,Q坐标满足方程x P xa2+y P yb2=1, 即x P x Qa2+y P y Qb2=1;则P点坐标满足方程x Q xa2+y Q yb2=1, 这也说明, 也就是l Q过点P.配极原则说明:l P过点Q⇔l Q过点P, 由此可得下面推论:推论1:共线点的极线必然共点(A、G、D、E四点共线, 它们的极线a、g,d、e共交点F);共点线的极点必然共线(直线a、g,d、e共交点F, 它们的极点A、G,D、E四点共线).推论2:如下图, 过极点P作两条直线, 与桞圆分别交于点A,B和C,D, 则直线AD,BC的交点T必在极线上.5. 椭圆的极点与极线的常用性质对于椭圆x2a2+y2b2=1, 极点P x0,y0(不是原点)对应的极线为x0xa2+y0yb2=1, 有如下性质:性质1:“类焦点"与“类准线”当极点P m,0m≠0在x轴上时,对应的极线x=a2m平行于y轴,当极点P0,nn≠0在y轴上时对应的极线y=b2n平行于x轴;特别地, 当极点P为椭圆的焦点时, 极线为相应的准线.性质2:平方模型如下图, 射线OP与椭圆交于点D, 与点P的极线交于点C, 则|OP|⋅|OC|=|OD|2;当点P在x轴上时, |OP|⋅|OC|=a2;当点P在y轴上时, |OP|⋅|OC|=b2.性质3:共轭方向设极点P x0,y0不在坐标轴上, 则直线OP的斜率为k OP=y0x0, 极线l:x0xa2+y0yb2=1的斜率k=-b2x0a2y0,则k OP⋅k=y0x0⋅-b2x0a2y0=-b2a2.【注】性质3表明:椭圆内一点P的极线方向与以极点P为中点的弦的方向相同,称OP与极线方向共轭. 当极点P x0,y0在椭圆内时,极线l平行于以P为中点的弦所在直线EF(用点差法易证). 设直线OP与椭圆相交于点D, 过点D作椭圆的切线l1, 则以P为中点的弦所在直线EF、过点D的切线l1、极点P的极线l, 三线互相平行, 如下图.性质4:平行如下图, 设四边形ABCD为椭圆的内接梯形, AC⎳BD,AD∩BC=Q, 则点P的极线过Q, 且与直线AC、BD平行. 特别地, 若BC⎳AD⎳y轴时, 点P的极线平行y轴, 且与x轴的交点R 也是AC、BD交点, 有|OR|⋅|OP|=|OF|2=a2.性质5:垂直设圆锥曲线Γ的一个焦点为F, 与F相应的准线为l, 若过点F的直线与圆雉曲线Γ相交于M ,N两点, 则Γ在M,N两点处的切线的交点Q在准线l上, 且FQ⊥MN.【证明】以椭圆为例证明, 双曲线与拋物线类似处理.设P x0,y0, 则P x0,y0对应的极线为MN:x0xa2+y0yb2=1, 由F(c,0)在直线MN上得cx0a2=1, 所以x0=a2c, 故Q在准线l:x=a2c上. 由P a2c,y0, 易证k MN⋅k QF=-1, 所以FQ⊥MN.性质6:等角定理如下图, A,B是椭圆Γ的一条对称轴l上的两点(不在Γ上), 若A,B关于Γ调和共轭, 过A 任作Γ的一条割线, 交Γ于P,Q两点, 则∠PBA=∠QBA.证明:因Γ关于直线l对称, 故在Γ上存在P,Q的对称点P ,Q . 若P 与Q重合, 则Q 与P 也重合, 此时P,Q关于l对称, 有∠PAB=∠QAB;若P 与Q不重合, 则Q 与P也不重合, 由于A,B关于Γ调和共轭, 故A,B为Γ上完全四点形PQ QP 的对边交点, 即Q 在P A上也在PB上, 故BP,BQ关于直线l对称, 也有∠PBA=∠QBA.【注】事实上, 性质6对于圆锥曲线都成立. 我们还可以得到下列结论:(1)直线PB与椭圆的另一交点为Q , 则Q 与Q关于l对称;(2)∠PAO=∠QAB=∠Q AB;(3)k AP+k AQ =0.典型例题类型1:判断位置关系【例1】已知点M (a ,b )在圆O :x 2+y 2=1外, 则直线ax +by =1与圆O 的位置关系是()A.相切B.相交C.相离D.不确定【答案】B .【解析】因为 ax +by =1 是圆 x 2+y 2=1 的切点弦方程, 所以直线与圆相交, 故选 B .类型2:求极线方程【例2】过椭圆x 29+y 24=1内一点M (1,2), 作直线AB 与椭圆交于点A ,B , 作直线CD 与椭圆交于点C ,D , 过A ,B 分别作椭圆的切线交于点P , 过C ,D 分别作椭圆的切线交于点Q , 求P ,Q 连线所在的直线方程.【答案】 x9+y 2=1.【解析】该题实质上就是求椭圆 x 29+y 25=1 内一点 M (1,2) 对应的极线方程,答案为 x9+y 2=1.【例3】设椭圆C :x 2a 2+y 2b2=1(a >b >0)过点M (2,1), 且左焦点为F 1(-2,1).(1)求敉圆C 的方程;(2)当过点P (4,1)的动直线l 于椭圆C 相交于两不同点A ,B 时, 在线段AB 上取点Q , 满足|AP |⋅|QB|=|AQ |⋅|PB |, 证明:点Q 总在某定直线上.【答案】 (1)x 24+y 22=1;(2) 见解析.【解析】(1)由题意得:c 2=22a 2+1b 2=1c 2=a 2-b 2 ,解得a 2=4b 2=2 ,所求椭圆方程为x24+y 22=1.(2) 解法 1: 定比点差法设点 Q 、A 、B 的坐标分别为 (x ,y ),x 1,y 1 ,x 2,y 2由题设知 |AP |,|PB |,|AQ |,|QB | 均不为零, 记 λ=|AP ||PB |=|AQ||QB |, 则 λ>0 且 λ≠1又 A ,P ,B ,Q 四点共线, 从而 AP =-λPB ,AQ=λQB 于是 4=x 1-λx 21-λ,1=y 1-λy 21-λ,x =x 1+λx 21+λ,y =y 1+λy 21+λ,从而:4x =x 21-λ2x 221-λ2⋯⋯⋯⋯(1)y =y 21-λ2y 221-λ2⋯⋯⋯.. (2)又点 A 、B 在椭圆 C 上,即:x 21+2y 21=4⋯⋯⋯⋯⋯(3)x 22+2y 22=4⋯⋯⋯⋯⋯(4)(1)+(2)×2, 并结合(3)(4)得 4x +2y =4,即点 Q (x ,y ) 总在定直线 2x +y -2=0 上.解法 2:构造同构式设点 Q (x ,y ),A x 1,y 1 ,B x 2,y 2 ,由题设知 |AP |,|PB |,|AQ |,|QB | 均不为零, 记 λ=|AP ||PB |=|AQ||QB |,又 A ,P ,B ,Q 四点共线, 可设 PA =-λAQ ,PB =λBQ(λ≠0,±1)于是 x 1=4-λx 1-λy 1=1-λy 1-λ (1), x 2=4+λx 1+λy 2=1+λy 1+λ(2)由于 A x 1,y 1 ,B x 2,y 2 在椭圆 C 上, 将(1)(2)分别代入 C 的方程 x 2+2y 2=4,整理得:x 2+2y 2-4 λ2-4(2x +y -2)λ+14=0(3)x2+2y 2-4 λ2+4(2x +y -2)λ+14=0(4)(4)-(3)得:8(2x +y -2)λ=0,∵λ≠0,∴2x +y -2=0,即点 Q (x ,y ) 总在定直线 2x +y -2=0 上.解法 3:极点极线由 |AP |⋅|QB |=|AQ |⋅|PB | 可得 AP PB =AQ QB,说明点 P ,Q 关于桞圆调和共轭, 点 Q 在点 P 对应的极线上,此极线方程为4⋅x4+1⋅y 2=1, 化简得 2x +y -2=0.故点 Q 总在直线 2x +y -2=0 上.【注】点 Q 的轨汖方程为 2x -y -2=0( 在椭圆内的部分)类型3:证明直线过定点或三点共线【例4】如图, 过直线l :5x -7y -70=0上的点P 作椭圆x 225+y 29=1的切线PM 和PN , 切点分别为M ,N , 连结MN .(1)当点P 在直线l 上运动时, 证明:直线MN 恒过定点Q ;(2)当MN ⎳l 时, 定点Q 平分线段MN .【答案】见解析.【解析】解法 1: 常规解法(1) 证明:设 P x 0,y 0 ,M x 1,y 1 ,N x 2,y 2 .则椭圆过点 M ,N 的切线方程分别为:x 1x 25+y 1y 9=1,x 2x25+y 2y 9=1.因为两切线都过点 P, 则有:x1x025+y1y09=1,x2x025+y2y09=1.这表明 M,N 均在直线 x0x25+y0y9=1 (1)上.由两点确定一条直线知, 式(1)就是直线 MN 的方程, 其中 x0,y0满足直线 l 的方程.当点 P 在直线 l 上运动时,可理解为 x0 取遍一切实数,相应的 y0 为 y0=57x0-10 .代入(1)消去 y0 得 x025x+5x0-7063y-1=0 (2)对一切 x0∈R 恒成立.变形可得 x0x25+5y63-10y9+1=0 ,对一切 x0∈R 恒成立,故有x25+5y63=010y9+1=0⇒x=2514y=-910故直线 MN 恒过定点 Q2514,-910 .(2)当 MN⎳l 时,由式(2)知 x0255-5x0-7063-7≠-1-70. 解得 x0=4375533 . 代入(2),得 MN 的方程5x-7y-53335=0 (3)将此方程与椭圆方程联立,消去 y 得 53325x2-5337x-1280681225=0 .由此可得, 此时 MN 截圆所得弦的中点横坐标恰好为点 Q2514,-910的横坐标, 即x=x1+x22=--53372×53325=2514代入(3)式可得弦中点纵坐标恰好为点 Q2514,-910的纵坐标,即y=57×2514-5337×35=1491252-5332=-910这就是说, 点 Q2514,-910平分线段 MN.解法 2:(1) 动点 P 在定直线 l 上, 则相应的切点弦过定点, 可知定点 Q 必为极点,于是只需求极点即可:由 5x-7y-70=0⇔x14-y10=1, 得到极点坐标 Q2514,-910, 即为所求定点.(2) 由椭圆内一点极线方向与以极点为中点弦的方向相同, 也即 OQ 与极线方向共轭, 即得结论 (2).【注】“极点在已知直线上,则极线过定点”. 这是一类常考的直线过定点问题.【例5】已知A,B分别为椭圆E:x2a2+y2=1(a>1)的左、右顶点, G为E的上顶点, AG⋅GB=8,P为直线x=6上的动点, PA与E的另一交点为C,PB与E的另一交点为D.(1)求E的方程;(2)证明:直线CD过定点.【答案】(1)x29+y2=1;(2) 见解析【解析】(1)易得椭圆 E 的方程为 x29+y2=1;(2)利用极点极线角度 1: 如下图, 设 CD 交 AB 于 Q,AD 交 CB 于 R, 则 QR 为 P 对应的极线,即点 Q 在点 P 对应的极线上. 极点 P(6,t) 对应的极线方程为 6x9+ty=1,即 2x3+ty=1, 极线恒过定点32,0, 故直线 CD 也过定点 32,0.角度 2: 如图, 设 CD 交 AB 于 Q(m,0),则点 P(6,t) 在点 Q(m,0) 对应的极线上,极点 Q(m,0) 对应的极线方程为 mx9+0⋅y=1, 即 x=9m, 由9m=6 得 m=32, 所以直线 CD 过定点 Q32,0.角度 3: 如图, 设直线 x=6 交 x 轴于点 H, 由极点极线的性质可知: |OQ|⋅|OH|=|OB|2即 6|OQ|=32, 所以 |OQ|=32, 故直线 CD 过定点 Q32,0.【注】本题的背景是极点极线, 上面解法从三个不同角度进行了“秒杀”,令人回味无穷. 极点极线 是高等几何中的内容, 高中数学教材中虽然没有介绍相关的定义及性质, 但是以此为背景的高考和竞赛试 题层出不穷、常考常新. 我们用其他解法求解本题时,可以用求极线对应极点的解法得到这个定点, 目标 已然心中有数, 那么就能降低运算难度,避免计算错误.类型4:证明两直线垂直【例6】已知A(-2,0),B(2,0), 点C是动点, 且直线AC和直线BC的斜率之积为-3 4.(1)求动点C的轨迹方程;(2)设直线l 与(1)中轨迹相切于点P , 与直线x =4相交于点Q , 且F (1,0), 求证:∠PFQ =90∘.【答案】 (1)x 24+y 23=1(y ≠0);(2) 证明见解析.【解析】(1)设 C (x ,y ), 则依题意得 k AC ⋅k BC =-34, 又 A (-2,0),B (2,0),所以有 y x +2⋅y x -2=-34(y ≠0),整理得 x 24+y 23=1(y ≠0), 即为所求轨迹方程.(2)解法 1:设直线 l :y =kx +m , 与 3x 2+4y 2=12 联立得3x 2+4(kx +m )2=12 ,即 3+4k 2 x 2+8km x +4m 2-12=0 ,依题意 Δ=(8km )2-43+4k 2 4m 2-12 =0, 即 3+4k 2=m 2,∴x 1+x 2=-8km 3+4k 2, 得 x 1=x 2=-4km 3+4k2,∴P -4km 3+4k 2,3m 3+4k2 , 而 3+4k 2=m 2, 得 P -4k m ,3m , 又 Q (4,4k +m ),又 F (1,0), 则 FP ⋅FQ =-4k m -1,3m ⋅(3,4k +m )=0. 知 FP⊥FQ , 即 ∠PFQ =90∘.解法 2:设 P x 0,y 0 ,则曲线 C 在点 P 处切线 PQ :x 0x 4+y 0y 3=1 , 令 x =4 ,得 Q 4,3-3x 0y 0, 又 F (1,0) , ∴FP ⋅FQ =x 0-1,y 0 ⋅3,3-3x 0y 0 =0 ,知 FP ⊥FQ , 即 ∠PFQ =90∘ . 解法 3:x =4 为椭圆的右准线, 椭圆右焦点为 F (1,0),由椭圆极点极线性质 5 可知:PF ⊥FQ , 即 ∠PFQ =90∘.【注】模型:已知椭圆 C :x 2a 2+y 2b 2=1(a >b >0) 的右焦点为 F , 直线 l 与椭圆 C 相切于 P , 且与右准线交于点 Q , 则有 PF ⊥FQ .类型5:证明向量数量积(或线段长度之积)为定值【例7】如图, 椭圆有两顶点A (-1,0),B (1,0), 过其焦点F (0,1)的直线l 与椭圆交于C 、D 两点, 并与x 轴交于点P , 直线AC 与直线BD 交于点Q .(1)当|CD |=322时, 求直线l 的方程A (-1,0);(2)当点P 异于A 、B 两点时, 求证:OP ⋅OQ为定值.【答案】 (1)y =±2x +1; (2) 定值为 1 .【解析】解法 1:设 P (t ,0), 则点 P 的极线过 Q . 易得椭圆方程 x 2+y 22=1, 则 P 的极线为 0⋅y 2+tx =1, 即 x =1t .于是点 Q 在直线 x =1t 上, 设 Q 1t ,y 0 , 则 OP ⋅OQ =(t ,0)⋅1t ,y 0 =t ⋅1t+0⋅y 0=1.解法 2:根据极点极线几何性质, 点 p 关于敉圆 x 2+y 22=1 的极线为过点 Q 且与 x 轴垂直的直线上.设该直线交 x 轴于 Q , 由 “调和点列” 的 “等比性” , 可知 OQ ⋅OP =OB 2, 从而 OP ∙OQ=1.类型6:与斜率有关的定值问题【例8】设P x 0,y 0 为桞圆x 24+y 2=1内一定点(不在坐标轴上), 过点P 的两条直线分别与椭圆交于点A ,C 和B 、D , 且AB ⎳CD .(1)证明:直线AB 的斜率为定值;(2)过点P 作AB 的平行线, 与椭圆交于E 、F 两点, 证明:点P 平分线段EF .【答案】见解析【解析】(1)因为 AB ⎳CD , 所以点 P 对应的极线 x 0x4+y 0y =1 平行于 AB ,即 AB 的斜率是 -y 04x 0(定值);(2) 直线 EF :y =-x 04y 0x -x 0 +y 0, 代入椭圆x 24+y 2=1, 得x 24+-x 04y 0x -x 0 +y 02=1x 20+4y 2016y 20⋅x 2-x 0x 20+4y 20 8y 20⋅x +x 4016y 20+x 202+y 20-1=0则x E +x F =--x 0x 20+4y 20 8y 20x 0x 20+4y 28y 20=2x 0此时点 P 是 EF 中点, 即点 P 平分线段 EF .【例9】如图, 椭圆E :x 2a 2+y 2b2=1(a >b >0的离心率为22, 直线l :y =12x 与椭圆E 相交于A 、B 两点, AB =25,C 、D 是椭圆E 上异于A 、B 的任意两点, 且直线AC 、BD 相交于点M , 直线AD 、BC 相交于点N , 连结MN .(1)求椭圆E 的方程;(2)求证:直线MN 的斜率为定值.【答案】 (1)x 26+y 23=1;(2) 见解析.【解析】 (1)x 26+y 23=1.( 过程略)(2) 设点 N 的坐标为 (m ,n ), 直线 DC 与 BA 交于点 P ,则 MP 为点 N 对应的极线, 其方程为 mx 6+ny 3=1. 结合 y =12x , 得到 P 点坐标为 6m +n ,3m +n . 所以, 点 P 对应的极线 MN 的方程为 16⋅6m +n x +13⋅3m +n x =1, 即 x +y =m +n ,所以直线 MN 的斜率为定值 -1.【注】本题需要极点、极线之间的两次转化, 通过点 P 在点 N 对应的极线上, 以及 MN 是点 P 对应的 极线, 使问题得以解决.【例10】四边形ABCD 是椭圆x 23+y 22=1的内接四边形, AB 经过左焦点F 1,AC ,BD 交于右焦点F 2, 直线AB 与直线CD 的斜率分别为k 1,k 2.(1)证明:k 1k 2为定值;(2)证明:直线CD 过定点, 并求出该定点的坐标.【答案】见解析.【解析】(1)设 A x 1,y 1 ,B x 2,y 2 ,C x 3,y 3 ,D x 4,y 4则直线 AC 的方程为 x =x 1-1y 1y +1, 代入椭圆方程 x 23+y 22=1 整理得2-x 1 y2+x 1-1 y 1y -y 21=0∵y 1⋅y 3=-y 212-x 1,∴y 3=y 1x 1-2, 从而 x 3=x 1-1y 1y 3+1=2x 1-3x 1-2,故点 C 2x 1-3x 1-2,y 1x 1-2, 同理,点 D 2x 2-3x 2-2,y 2x 2-2 . 因为三点 A 、F 1,B 共线,所以 y 1x 1+1=y 2x 2+1, 从而 x 1y 2-x 2y 1=y 1-y 2.从而k 2=y 4-y 3x 4-x 3=y 2x 2-2-y 1x 1-22x 2-3x 2-2-2x 1-3x 1-2=y 2x 1-2 -y 1x 2-2 2x 2-3 x 1-2 -2x 1-3 x 2-2=x 1y 2-x 2y 1 +2y 1-y 2x 1-x 2=3y 1-y 2 x 1-x 2=3k 1故k 1k 2=13 .(2)解法 1:由(1)知:C 2x 1-3x 1-2,y 1x 1-2,D 2x 2-3x 2-2,y 2x 2-2,设直线 CD 交 x 轴于点 M x 0,y 0 ,则x 0=x 3y 4-x 4y 3y 4-y 3=2x 1-3x 1-2⋅y 2x 2-2-2x 2-3x 2-2⋅y 1x 1-2y 2x 2-2-y 1x 1-2=2x 1-3 y 2-2x 2-3 y 1y 2x 1-2 -y 1x 2-2 =2x 1y 2-x 2y 1 +3y 1-y 2 x 1y 2-x 2y 1 +2y 1-y 2=5y 2-y 1 3y 1-y 2 =53故直线 CD 过定点 53,0.解法 2:设 AB ,DC 交于点 P , 则 P 在 F 2 对应的极线1⋅x 3+0⋅y 2=1 即 x =3 上,可设 P (3,m ),由对称性可知:直线 CD 过定点必在轴上,不妨设定点为 T (t ,0), 则 k 1=k PF 1=m 4,k 2=k PT =m3-t,由(1)知 k 1k 2=13, 得 3-t 4=13⇒t =53, 所以 T 53,0 , 故直线 CD 过定点 53,0 .类型7:等角问题【例11】设椭圆C :x 22+y 2=1的右焦点为F , 过F 的直线l 与C 交于A ,B 两点,点M 的坐标为(2,0).(1)当l 与x 轴垂直时, 求直线AM 的方程;(2)设O 为坐标原点, 证明:∠OMA =∠O MB .【答案】(1)AM 的方程为 y =-22x +2 或 y =22x -2;(2) 证明见解析.【解析】(1)由已知得 F (1,0),l 的方程为 x =1.由已知可得, 点 A 的坐标为 1,22 或 1,-22 . 所以 AM 的方程为 y =-22x +2 或 y =22x -2.(2)解法 1:设直线 l 的方程为:x =my +1,A x 1,y 1 ,B x 2,,y 2 ,k AM =y 1-0x 1-2,k BM =y 2-0x 2-2联立方程组得:x =my +1x 22+y 2=1, 消去 x 并整理得:m 2+2 y 2+2my -1=0(1)因为点 F 为椭圆的右焦点, 所以方程(1)有两个实数根分别为 y 1,y 2.由韦达定理可得:y 1+y 2=-2m 2+m 2,y 1y 2=-12+m 2因为:k AM +k BM =y 1-0x 1-2+y 2-0x 2-2=y 1my 1-1+y 2my 2-1=2my 1y 2-y 1+y 2 my 1-1 my 2-1整体代入可得:k AM +k BM =2my 1y 2-y 1+y 2 my 1-1 my 2-1 =-2m 2+m 2+2m2+m 2my 1-1 my 2-1 =0则直线 AM 的倾斜角与直线 BM 的倾斜角互补, 故 ∠OMA =∠O MB .解法 2:过点 A ,B 分别作椭圆右准线的垂线, 垂足分别为 A 1,B 1(如图所示)由椭圆的第二定义可得: e =AF AA 1=BF BB 1, 所以有: AFBF =AA 1BB 1(1),因为 AA 1⎳x 轴⎳ BB 1 ,所以 AFBF =A 1M B 1M(2) 由(1)(2)得AA 1BB 1=A 1M B 1M ,即有 AA 1A 1M=BB 1B 1M 且 ∠AA 1M =∠BB 1M , 所以 △AA 1M ∼ΔBB 1M , 即可得 ∠AMA 1=∠B MB 1,故 ∠OMA =∠O MB .【例12】如图, 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F , 点-1,32 在椭圆C 上, 过原点O 的直线与椭圆C 相交于M 、N 两点, 且|MF |+|NF |=4.(1)求椭圆C 的方程;(2)设P (1,0),Q (4,0), 过点Q 且斜率不为零的直线与椭圆C 相交于A 、B 两点, 证明:∠APO =∠BPQ【答案】(1)x24+y2=1;(2) 见解析.【解析】(1) 如图, 取椭圆 C 的左焦点 F , 连 MF ,NF , 由椭圆的几何性质知 |NF|=MF, 则MF+|MF|=2a=4, 得 a=2, 将点 -1,3 2代入椭圆 C 的方程得:1a2+34b2=1, 解得:b=1, 故椭圆C 的方程为:x24+y2=1.(2) 设点 A 的坐标为 x1,y1, 点 B 的坐标为 x2,y2解法 1:y1x1-4=y2x2-4⇒y21x1-42=y22x2-42⇒1-x214x1-42=1-x224x2-42⇒4-x21x2-42=4-x22x1-42⇒2x1x2x1-x2-5x21-x22+8x1-x2=0因为 x1≠x2, 所以 2x1x-5x1+x2+8=0所以k x1-4x1-1+k x2-4x2-1=k x1-4x2-1+k x2-4x1-1x1-1x2-1=k2x1x2-5x1+x2+8x1x2-x1+x2+1=0所以直线 AP 与 BP 的斜率互为相反数, 故 ∠APO=∠BPQ.解法 2:设直线 AB 的方程为 x=ty+4, 联立方程x2+4y2=4x=ty+4, 消去 x 得:t2+4y2+8ty+12=0则y1+y2=-8tt2+4y1y2=12t2+4, 所以y1y2y1+y2=-32t, 所以 2ty1y2=-3y1+y2所以k AP+k BP=y1x1-1+y2x2-1=y1ty1+3+y2ty2+3=2ty1y2+3y1+y2ty1+3ty2+3=-3y1+y2+3y1+y2ty1+3ty2+3=0所以直线 AP 与 BP 的斜率互为相反数, 故 ∠APO=∠BPQ.类型8:三斜率成等差数列引理:二次曲线Γ:Ax2+Bxy+Cy2+Dx+Ey+F=0与直线PQ交于点P,Q, 定点O在直线PQ 上, PQ 与O 点关于曲线C 的极线交于点R . 曲线C 上有两动点A ,B , 且直线AO 、BO 分别交曲线Γ于点C , D , 直线AB ,CD 分别交PQ 于点M ,N . 则M ,O ,N ,R 成调和点列.【证明】延长XO 交BC 于点E , 由定理5可知:B ,E ,C ,Y 成调和点列(完全四边形中的调和点列), 故M ,O ,N ,R 也成调和点列(调和点列在射影变换下的不变性).【例13】椭圆C :x 2a 2+y 2b2=1,P 的坐标是x 0,0 ,Q 点在P 关于椭圆的极线x =a 2x 0上. 过P 作直线交椭圆于点A ,B . 求证:直线AQ ,PQ ,BQ 的斜率成等差数列.该结论对于拋物线, 双曲线同样适用. 特别地,当Q 点在x 轴上时, 就是等角线, 此时PQ 斜率为0 , PQ 平分∠AQB .【答案】见解析.【解析】 解法 1:作出以下辅助线:作 PR ⊥x 轴于 R , 设 AB 与 CD 交于点 P , 由引理可知:M 、P 、N 、R 成调和点列,于是有:1RM +1RN =2RP所以k AQ +k cQ =k MQ +k NQ =QR RM +QR RN =2QR RP =2k PQ 即直线 AQ ,PQ ,BQ 的斜率成等差数列.解法 2:由 A 、P 、B 共线可得: k PA =k PB , 即y A x A -x 0=y B x B -x 0所以y2Ax A-x02=y2Bx B-x02即a2b2-b2x2Aa2x A-x02=a2b2-b2x2Ba2x B-x02化简可得:2x0x A x B-x20+a2x A+x B+2a2x0=0恒等变形后得到:x0a2-x0x A+x0a2-x0x B=2x0a2-x20注意到恒等变形:x0a2-x0x A-x0a2-x20=-x20x0-x Aa2-x0x Aa2-x20于是我们将 (1)式等号的右边的式子移到左边, 还可以得到一个与(1)式等价的(2)式:x0-x Aa2-x0x A+x0-x Ba2-x0x B=0则y Ax Q-x A+y Bx Q-x B=y Aa2x0-x A+y Ba2x0-x B=x0y Aa2-x0x A+x0y Ba2-x0x Bk AQ+k BQ=y Q-y Ax Q-x A+y Q-y Bx Q-x B=y Q⋅1x Q-x A+1x Q-x B-y A xQ-x A+y Bx Q-x B所以=y Q⋅x0a2-x0x A+x0a2-x0x B-k AB⋅x0⋅x0-x Aa2-x0x A+x0-x Ba2-x0x B=y Q⋅x0a2-x0x A+x0a2-x0x B=2y Q x0a2-x20=2y Qx Q-x0=2k PQ故直线 AQ,PQ,BQ 的斜率成等差数列.【例14】如图, 已知椭圆C:x2a2+y2b2=1(a>b>0), 过焦点F任作一直线交椭圆C于A,B两点, 交F相应的准线于点M,P为过F与x轴垂直的直线上的任意一点, 则直线PA,PM,PB的斜率成等差数列.【答案】见解析【解析】易知 A,B,F,M 成调和点列, 从而直线 PA,PB,PF,PM 成调和线束, 又因为 PF⊥x 轴, 故由定理 3 知 k1,k2,k3 成等差数列.【注】类似地, 可得下面结论成立:已知椭圆 C:x2a2+y2b2=1(a>b>0), 过点 E(t,0)(0<t<a) 任作一直线交椭圆 C 于 A,B 两点, 交直线 l:x=a2t 于点 M,P 为椭圆上的点且满足 PE⊥x 轴, 则直线 PA、PM、PB 的斜率成等差数列.【例15】如下图, 椭圆x 2a 2+y 2b2=1(a >b >0)的左右顶点为A 1,B 1,Q 为直线x =m 上一点, QA 1,QB 1分别于椭圆交于点A ,B , 过点P 作直线交桞圆于A ,B 两点, 直线AB 与x 轴交于点P , 与直线x =m 交于点M , 记直线QA 1,QB 1,QP 的斜率分别为k 1,k 2,k 0, 则:(1)k 1,k 0,k 2成等差数列;(2)x P xQ =a 2.【答案】见解析.【解析】由完全四边形性质可知 Q 在 P 的极线 x =m 上, 则 P ,H 调和分割 A 1B 1.而 k 1+k 2=2k 0⇔QH A 1H+QH B 1H =2×QH PH ⇔A 1H HB 1=A 1P PB 1⇔P ,H 调和分割 A 1B 1⇔|OP |⋅|OH |=OB 1 2⇔x P x Q =a 2, 于是(1)(2)成立.【注】设与直线 AB 与直线 x =m 交于点 M , 则 P ,M 调和分割 BA .【例16】椭圆x 2a 2+y 2b2=1(a >b >0)经过点M 1,32 , 离心率e =12.(1)求椭圆的方程;(2)设P 是直线x =4上任意一点, AB 是经过椭圆右焦点F 的一条弦(不经过点M ). 记直线PA ,PF ,PB 的斜率依次为k 1,k 2,k 3. 问:是否存在常数λ, 使得k 1+k 3=λk 2. 若存在, 求λ的值;若不存在, 说明理由.【答案】 (1)x 24+y 23=1; (2) 见解析【解析】(1)易知椭圆为 x 24+y 23=1.(2) 设直线 AB 方程为 x =ty +1, 点 A x 1,y 1 ,B x 2,y 2 ,由 x 24+y 23=1x =ty +1消去 x , 整理得:3t 2+4 y 2+6ty -9=0.则 y 1,y 2 为上述方程的根, 设 s =y 1+y 2=-6t 3t 2+4,p =y 1y 2=-93t 2+4 于是 s p =6t 9, 即有:t =3s 2p 设点P 的坐标为 (4,m ), 则 k 2=m 3,k 1+k 3=m -y 14-x 1+m -y 24-x 2=m -y 13-ty 1+m -y 23-ty 2=6m -(3+mt )y 1+y 2 +2ty 1y 29-3t y 1+y 2 +t 2y 1y 2=6m -3+m 3s 2p s +23s 2p p 9-33s 2p s +3s 2p2p =6m -3ms 22p 91-s 24p=2m 3=2k 2这表明存在常数 λ=2, 使得 k 1+k 3=λk 2.【注】本题中, 点 P 所在直线刚好为椭圆的右准线. 如图, 设直线 PA ,PB 与 x 轴交于 C ,D , 准线与 x 轴交于点 E . 则本题结论用图中线段可表示为 EP CE +EP DE =2⋅EP FE , 即 2EF =1EC+1ED . 这表明 (C ,D ;F ,E )为 调和点列, 由定理 3 知 k 1,k 2,k 3 成等差数列, 即 k 1+k 3=2k 2.。
用调和点列圆锥曲线大题
调和点列圆锥曲线题目是一道典型的几何题目,需要我们熟练掌握圆锥曲线的知识,同时还需要运用调和点的概念来解决问题。
下面我们来一步步分析这道题目。
步骤一:了解圆锥曲线
圆锥曲线分为椭圆、双曲线和抛物线三种类型,它们的特点分别是:
椭圆:离心率小于1,是由一个锥体和一个平面截面所得的曲线。
双曲线:离心率大于1,是由一个锥体和一个平面截面所得的曲线,与直角双曲线相似。
抛物线:离心率等于1,是由一个锥体和一个平面截面所得的曲线,与直角双曲线相似。
步骤二:了解调和点
调和点指的是直线上任意两点的中垂线与这两点的交点。
它具有如下性质:
1. 调和点与两点的距离相等。
2. 调和点将这两点分成相等的两段。
3. 直线上任意取点向两个端点的连线相交于这个点的中垂线上的点,该点就是这两个端点的调和点。
步骤三:圆锥曲线大题的解法
当出现圆锥曲线大题时,我们需要通过已知条件使用调和点的概念来解题。
例如,题目可能要求我们证明给定的点在圆锥曲线上,或者要求我们找到圆锥曲线上满足特定条件的点。
我们可以使用如下步骤解决圆锥曲线大题:
1. 使用已知条件连接两点,并求出它们的中点。
2. 求出这两点的中垂线,然后找到这条中垂线上的调和点。
3. 判断调和点是否在圆锥曲线上,或者找到满足题目要求的圆锥曲线上的点。
4. 根据题目要求给出答案。
总之,圆锥曲线大题需要我们熟练掌握圆锥曲线和调和点的概念,以及能够正确运用这些概念来解决问题。
通过不断地练习和掌握相关知识,相信我们一定能够轻松应对圆锥曲线大题。
关于调和点列的若干证明
关于调和点列表的若干证明引起了普遍的关注,其实,调和点列表本身
就存在于比较简单的数学表达式中。
调和点列表是指等距取样,即每个数据
点之间差值相等的一组数据。
本文讨论的是调和点列表的性质,以下展开讲解:
首先,它是周期性的,每个数据点之间的距离相等,而且数据点的位置
也准确无误。
例如:给定一个调和序列,那么其中一个数据点定位到另一个
数据点上,两个数据点之间的距离相同,而这种特性也决定了它构成的是一
个周期性的序列。
其次,它的和总是定值。
调和点列表的和可以用求和算式来表示:
Sn=n(2a+(n-1)d)/2,其中,n为序列项数,a为序列的首项,d为项的公差。
求和算式表明,无论调和点列表的首项和公差怎样,它的和总是定值。
最后,它的方差总是零。
调和点列表数据具有完全一样的间隔,因此,
数据中心点自然也是此序列中心,其方差为零。
综上,调和点列表也是一种非常有用的数据,由于它拥有上述证明的特性,因此,在统计学、抽样和数据分析领域,调和点列表也得到了广泛应用。
高三数学圆锥曲线调和点列在高中数学中,圆锥曲线是一个重要的概念。
其中,调和点列是圆锥曲线研究中的一个有趣且具有深度的概念。
通过学习和理解调和点列的特性,可以帮助我们更好地理解圆锥曲线的性质。
首先,我们来介绍什么是调和点列。
在平面直角坐标系中,设直线L经过圆锥曲线的一个焦点F,该直线和另一焦点F'的连线与圆锥曲线交于点A。
如果对称于点A的点A'恰好也在圆锥曲线上,那么点A和点A'就构成了一个调和点列。
简单来说,调和点列就是在圆锥曲线上取两点A和A',使得直线L通过其中一个焦点,并且对称于点A的点A'也在圆锥曲线上。
接下来,让我们来研究调和点列的性质。
首先,我们考虑椭圆。
在椭圆上,对任意取定的直线L,过椭圆两个焦点的直线与直线L交于A、A'两点。
根据椭圆的性质,可以证明A和A'构成一个调和点列。
而且,不仅仅是在椭圆上,对任何一对构成调和点列的点,它们所在的直线都必定与椭圆的两个焦点相交。
这个性质可以帮助我们更好地理解椭圆的几何性质。
然后,我们来研究另一种圆锥曲线——双曲线。
在双曲线上,调和点列的性质也是有趣的。
通过分析可以发现,在双曲线上取两点A和A',使得直线L通过其中一个焦点,并且对称于点A的点A'也在双曲线上,构成的调和点列,直线L必定未与双曲线相交。
这个性质与椭圆上的性质有所不同,我们可以通过这个性质来区分椭圆和双曲线。
除了椭圆和双曲线,调和点列还可以应用于抛物线的研究。
在抛物线上,调和点列的性质与椭圆和双曲线有所不同,但同样有趣。
在抛物线上取两点A和A',使得直线L通过其中一个焦点,并且对称于点A的点A'也在抛物线上,构成的调和点列,直线L与抛物线的准线平行。
这个性质可以帮助我们更好地理解抛物线的形态。
通过对圆锥曲线调和点列的研究,我们不仅可以更好地理解椭圆、双曲线和抛物线的性质,还可以帮助我们解决一些圆锥曲线相关的问题。
四点构成调和点列。
其中A 、C 和B 、D 称为调和共轭。
性质1:如图,A 为圆O 外一点,AB 、AC 为圆O 的切线,ADEF 截圆
O 与D 、F ,交BC 与点E 则A 、D 、E 、F 四点调和。
证明:A D E F AD AF DE FE ⇔=、、、四点调和 AD DE
AF FE
⇔=
① 又**
AD AD AC BD DC
AF AB AF BF CF
== 而
**sin **sin BDC BFC
S
DE BD CD BDC BD CD
FE S
BF FC BFC BF FC
∠==
=∠
故①成立。
得证!
推广:如图,椭圆外一点A 关于椭圆的两条切线的切点所在的直线为BC (此直线也叫极线),过A 的任意一条直线ADEF 截椭圆
于D 、F ,交BC 与E 则A 、D 、E 、F 成调和点列。
证明:暂略。
性质2:112
A B C D AB AD AC
⇔
+=
、、、调和 证明:
而
即证。
推论:已知A 、B 、C 、D 四点调和,O 为A 、C 中点,则OD OB OA ⋅=2.
反过来也成立,若A 、B 、C 、D 四点共线,O 为A 、C 中点,且OD OB OA ⋅=2
,则A 、B 、C 、D 四点调和。
性质3:若A 、B 、C 、D 成调和点列,且平面上有点M 满足AM MC ⊥
则必有MC 平分BMD ∠,MA 外角平分BMD ∠. 这是调和点列应用中相当重要的一个性质。
112112a+b+c ()()()b c AB AD AC a a b a a b a b a b c b c a a b c
a a
b
c b c +=⇔+=⇔=+++++++⇔=⇔=++A
M
B
证明:反证法。
反设MC 不平分BMD ∠,作MC ’平分角BMD ∠交BD 与C ’,MA ’外角平分角BMD ∠交DB 延长线与A ’ ,则''MC MA ⊥
由内角平分线定理,
'
'BC BM
C D MD = 有外角平分线定理,'
'BA BM
A D
MD
=
所以''''BA BC A D C D =
② 由A 、B 、C 、D 成调和点列知BC BA
CD AD
=
注意到
'''BC BC BC BC
C D CD BD BD >⇔>
成立 '''BA BA BA BA
A D AD BD BD <⇔<
成立 所以''BA BA BC BC BD BD BD BD <=<
与②矛盾! 所以MC 平分BMD ∠,MA 外角平分BMD ∠
A
M
B
A'。