数字万用表的设计
- 格式:docx
- 大小:653.69 KB
- 文档页数:25
单片机数字万用表设计一、引言单片机数字万用表是一种多功能仪器,可以用于测量电压、电流、电阻等电气参数,广泛应用于电子工程、通信工程、无线电工程等领域。
本文旨在设计一款单片机数字万用表,结合单片机技术和模拟电路设计,实现功能齐全、精准度高、便携性强的数字万用表。
二、设计原理单片机数字万用表的核心部分是其测量模块,该模块能够接收被测电路的输入信号,并通过ADC(模数转换器)将模拟信号转换为数字信号,然后经过单片机处理和显示模块的处理,最终将结果显示在液晶显示屏上。
整个设计流程主要包括以下几个方面:1.信号输入:设计合适的信号输入接口,能够接收被测电路的电压、电流、电阻等信号,并将其传输给ADC。
2.模数转换:通过ADC将模拟电信号转换为数字信号,通常选择12位或16位的ADC,以保证高精度的测量结果。
3.单片机处理:单片机接收ADC传输的数字信号,并进行处理计算,以得出测量结果。
4.显示模块:将测量结果显示在LCD液晶显示屏上,包括数值显示、单位显示等。
5.供电模块:提供适当的电源供电,保证仪器的正常工作。
基于以上设计原理,我们可以开始具体的设计工作。
三、电路设计1.信号输入接口信号输入接口是单片机数字万用表的核心部分之一,它需要能够接收不同类型的信号,包括电压、电流、电阻等。
为了实现这一功能,我们需要设计相应的信号接收电路,可以通过选择不同的接收电阻和放大电路,使之能够适应不同的输入信号。
对于电压信号的输入,可以设计一个简单的分压电路,将被测电路的电压信号转换为适合ADC输入的电压范围。
同时,为了避免输入电阻对被测电路的影响,可以选择高输入阻抗的运放作为信号接收器。
对于电流信号的输入,可以设计一个电流-电压转换电路,将电流信号转换为相应的电压信号,再进行ADC采集。
对于电阻信号的输入,可以设计一个简单的电桥电路,测量电阻值并将其转换为电压信号,再通过ADC进行采集。
2.模数转换模数转换部分选择12位或16位的ADC芯片,可以根据精度需求做适当选择。
ANYANG INSTITUTE OF TECHNOLOGY 本科毕业设计数字万用表的研究与设计The Design of Digital Multimeter系(院)名称:电子信息与电气工程学院QQ 号:309810851目录中文摘要、关键词 (Ⅰ)英文摘要、关键词 (Ⅱ)引言 (1)第一章课题的研究背景 (2)1.1数字万用表研究的目的和意义 (2)1.2国内外的研究动态及发展趋势 (3)1.2.1国内研究概况 (3)1.2.2国外研究概况 (4)1.3数字万用表设计重点解决的问题 (4)第二章数字万用表的总体设计方案 (5)2.1课题设计的基本思路 (5)2.2数字万用表的测量原理及电路平台 (5)2.3数字万用表的硬件系统总体设计框图 (10)2.4硬件电路设计方案及选用芯片介绍 (11)2.4.1 AT89S52芯片功能特性描述 (12)2.4.2模数转换模块介绍 (13)2.4.3显示模块介绍 (15)2.4.4电源模块介绍 (15)2.5数字万用表的硬件设计 (16)第三章系统软件及流程图及仿真过程 (22)3.1软件设计整体思路 (22)3.2系统总流程图 (23)3.3物理采集流程图 (24)3.4系统仿真过程 (24)结论 (26)致谢 (27)参考文献 (28)附录A (29)附录B (33)数字万用表的研究与设计摘要:本次设计用单片机芯片AT89S52设计一个数字万用表,能够测量交、直流电压值、直流电流、直流电阻以及电容,四位数码显示。
此系统由分流电阻、分压电阻、基准电阻、电容测试芯片电路、单片机最小系统、显示部分、报警部分、AD转换和控制部分组成。
为使系统更加稳定,使系统整体精度得以保障,本电路使用了AD0809数据转换芯片,单片机系统设计采用AT89S52单片机作为主控芯片,配以RC上电复位电路和11.0592MHZ震荡电路,显示芯片用TEC612驱动8位数码管显示。
数字万用表设计实验By 金秀儒物理三班Pb05206218实验题目:数字万用表设计实验 学号:pb05206218姓名:金秀儒实验目的:1.掌握数字万用表的工作原理、组成和特性2.掌握数字万用表的校准方法和使用方法3.掌握分压及分流电路的连接和计算4.了解整流滤波电路和过压过流保护电路的功用实验仪器:1. DM-Ⅰ数字万用表设计性实验仪2. 三位半或四位半数字万用表实验原理:数字万用表的基本组成图1 数字万用表的基本组成模数(A/D )转换与数字显示电路数字信号与模拟信号不同,其幅值(大小)是不连续的。
将被测量与最小量化单位比较,并把结果四舍五入取整后变为十进制起段显码显示出来。
一般N ≥1000即可满测量精度要求。
常见数字表头最大示数为1999,称为三位半(213)数字表。
数字测量仪表的核心是模/数(A/D )转换、译码显示电路。
A/D 转换一般又可分为量化、编码两个步骤。
本实验用实验仪,核心为一个三位半数字表头,由数字表专用A/D 转换译码驱动集成电路和外围元件、LED 数码管构成。
该表头有7个输入端,包括2个测量电压输入端(IN +、IN-)、2个基准电压输入端(V REF+、V REF -)和3个小数点驱动输入端。
数字显示屏(LED 或液晶)模数转换,译码驱动基准电压 小数点驱动(配合被测量与量程)过压过流保护过压过流保护分档电阻(量程转换)分压器(量程转换)分流器(量程转换)交流直流变换器 (放大、整流、滤波)直流 被测量 输 入交流V REF电流电压电阻 V IN直流电压测量电路在数字电压表头前加分压器,可扩展直流电压测量的量程。
如图:分压比为 2120rr r U U i += 扩展后的量程为 02210U r r r U i +=考虑到电压表的输入阻抗,设计实用分压电路如图:R 总=R1 +R2 +R3 +R4 +R5各档的分压比为:200mV:( R1 +R2 +R3 +R4 +R5)/ R 总=12 V:( R2 +R3 +R4 +R5)/ R 总=0.1 20V:( R3 +R4 +R5)/ R 总=0.01 200V:( R4 +R5)/ R 总=0.0012000V: R5/ R 总=0.0001出于耐压和安全考虑,最高电压限为 1000V 。
8.12 设计数字万用表【实验目的】1.了解数字电表的基本原理、常用双积分模数转换芯片外围参数的选择原则及电表的校准原则;2.了解数字万用表的特性、组成及工作原理;3.掌握分压、分流电路的原理;4.设计制作多量程直流电压表、电流表及电阻表;5.了解交流电压、三极管和二极管相关参数的测量。
【设计要求及实验内容】1.设计制作多量程直流数字电压表,并进行校准(自拟校准表格,量程为:200mv、2v);2.设计制作多量程直流数字电流表,并进行校准(自拟校准表格,量程为:200mA、20mA);3.设计制作多量程数字欧姆表,并进行校准(自拟校准表格,量程为:200Ω、2kΩ、20 k Ω);4.设计制作多量程交流数字电压表,并进行校准(自拟校准表格,量程为:AC, 200mv、2v);5.二极管正向压降的校准和测量;6.三极管h FE参数的测量。
以上实验,在1至3中选择2~3个实验题目为必做内容,4至6为选做内容。
【主要实验器材】1.DH6505数字电表原理及万用表设计实验仪;2.四位半通用数字万用表;3.标准电阻箱。
【实验原理、方法提示】1. 数字电表原理常见的物理量都是幅值大小连续变化的所谓模拟量,指针式仪表可以直接对模拟电压和电流进行显示。
而对数字式仪表,需要把模拟电信号(通常是电压信号)转换成数字信号,再进行显示和处理。
(1)双积分模数转换器(ICL7107)的基本工作原理我们将完成从模拟电信号转换成数字信号的电路称为模数转换器(AD转换器)。
数字万用表常用的转换器为双积分AD转换器。
双积分模数转换电路的原理比较简单,当输入电压为Vx 时,在一定时间T1内对电量为零的电容器C 进行恒流(电流大小与待测电压Vx 成正比)充电,这样电容器两极之间的电量将随时间线性增加,当充电时间T1到后,电容器上积累的电量Q 与被测电压Vx 成正比(式1);接着让电容器恒流放电(电流大小与参考电压Vref 成正比),这样电容器两极之间的电量将线性减小,直到T2时刻减小为零。
数字万用表设计实验报告实验名称:数字万用表设计 实验日期 ____________温度___________压力___________ 同组者 ___________一、实验预习部分(实验前完成,并检查,教师签名) 1,实验目的:1, 掌握数字万用表的工作原理、组成和特性。
2, 掌握数字万用表的校准和使用。
3, 掌握多量程数字万用表分压、分流电路计算和连接;学会设计制作、使用多量程数 字万用表。
2,实验原理:1、直流电压测量电路在数字电压表头前面加一级分压电路(分压器),可以扩展直流电压测量的量程。
数字万用表的直流电压档分压电路如图(2)所示,它能在不降低输入阻抗的情况下,达到准确的分压效果。
例如:其中200 V 档的为分压比为:001.010*********==+++++MKR R R R R R R其余各档的分压比分别为:图(2)实用分压器电路档位 200mV 2V 20V 200V 2000V 分压比 1 0.1 0.010.001 0.0001实际设计时是根据各档的分压比和总电阻来确定各分压电阻的,如先确定M R R R R R R 1054321=++++=总再计算200V 档的电阻:K R R R 10001.054==+总,依次可计算出3R 、2R 、1R 等各档的分压电阻值。
更换量程是需要调整小数点的显示,使用者可方便地读出测量结果。
2、直流电流的测量测量电流是根据欧姆定律,用合适的取样电阻把待测电流转换为相应的电压,再进行测量。
如图(3)图(3)电流测量原理实用数字万用表的直流电流档电路,如图(4)所示。
图(4)实用分流器电路图(4)中各档分流电阻是这样计算的,先计算最大电流档(2A )的分流电阻5R (数字电压表最大输入为200mV ))(1.022.0505Ω===A V I U R m ,再计算200mA 档的4R :)(9.01.02.02.05404Ω=-=-=R I U R m 依次可以计算出3R 、2R 和1R ,请同学们自己练习。
数字万用表设计性实验赵龙宇 PB06005068一、实验目的1.掌握数字万用表的工作原理、组成和特性2.掌握数字万用表的校准方法和使用方法3.掌握分压及分流电路的连接和计算4.了解整流滤波电路和过压过流保护电路的功用二、实验仪器1.DM-Ⅰ数字万用表设计性实验仪一台2.三位半或四位半数字万用表一台三、实验原理1.数字万用表的特性与指针式万用表相比较,数字万用表有如下优良特性:⑴高准确度和高分辨力三位半数字式电压表头的准确度为±0.5%,四位半的表头可达±0.03%,而指针式万用表中使用的磁电系表头的准确度通常仅为±2.5%。
分辨力即表头最低位上一个字所代表的被测量数值,它代表了仪表的灵敏度。
通常三位半数字万用表的分辨力可达到电压0.1mV、电流(指电流强度,下同)0.1μA、电阻0.1Ω,远高于一般的指针式万用表。
⑵电压表具有高的输入阻抗电压表的输入阻抗越高,对被测电路影响越小,测量准确性也越高。
三位半数字万用表电压挡的输入阻抗一般为10MΩ,四位半的则大于100MΩ。
而指针式万用表电压挡输入阻抗的典型值是20~100kΩ/V。
⑶测量速率快数字表的速率指每秒钟能完成测量并显示的次数,它主要取决于A/D转换的速率。
三位半和四位半数字万用表的测量速率通常为每秒2~4次,高的可达每秒几十次。
⑷自动判别极性指针式万用表通常采用单向偏转的表头,被测量极性反向时指针会反打,极易损坏。
而数字万用表能自动判别并显示被测量的极性,使用起来格外方便。
⑸全部测量实现数字式直读指针式万用表尽管刻画了多条刻度线,也不能对所有挡进行直接读数,需要使用者进行换算、小数点定位,易出差错。
特别是电阻挡的刻度,既反向读数(由大到小)又是非线性刻度,还要考虑挡的倍乘。
而数字万用表则没有这些问题,换挡时小数点自动显示,所有测量挡都可以直接读数,不用换算、倍乘。
⑹自动调零由于采用了自动调零电路,数字万用表校准好以后使用时无需调校,比指针式万用表方便许多。
实验⼆⼗⼋数字万⽤表设计性实验实验⼆⼗⼋数字万⽤表设计性实验⼀、实验内容:1、制作量程200mA的微安表(表头);2、设计制作多量程直流电压表;3、设计制作多量程直流电流表;⼆、实验仪器:三位半数字万⽤表三、实验原理1、数字万⽤表的组成数字万⽤表的组成见图28.1。
图28.1 数字万⽤表的组成数字万⽤表其核⼼是⼀个三位半数字表头,它由数字表专⽤A/D转换译码驱动集成电路和外围元件、LED数码管构成。
该表头有7个输⼊端,包括2个测量电压输⼊端(IN+、IN-)、2个基准电压输⼊端(V REF+、V REF -)和3个⼩数点驱动输⼊端。
2、直流数字电压表头“三位半数字表头”电路单元的功能:将输⼊的两个模拟电压转换成数字,并将两数字进⾏⽐较,将结果在显⽰屏上显⽰出来。
利⽤这个功能,将其中的⼀个电压输⼊作为公认的基准,另⼀个作为待测量电压,这样就和所有量具或仪器的测量原理⼀样,能够对电压进⾏测量了。
见图28.2。
图28.2 200mV(199.9mV)直流数字电压表头及校准电路3、多量程直流数字电压表在数字电压表头前⾯加⼀级分压电路(分压器),可以扩展直流电压测量的量程。
如图28.3所⽰,U 0为电压表头的量程(如200mV),r 为其内阻(如10M Ω),r 1、r 2为分压电阻,U i0为扩展后的量程。
图28.3 分压电路原理图28.4多量程分压器原理电路多量程分压器原理电路见图28.4。
图28.5 实⽤分压器电路采⽤图28.4的分压电路虽然可以扩展电压表的量程,但在⼩量程档明显降低了电压表的输⼊阻抗,这在实际使⽤中是所不希望的。
所以,实际数字万⽤表的直流电压档电路为图5所⽰,它能在不降低输⼊阻抗的情况下,达到同样的分压效果。
数字电压表 0~U 00~U i0 r 1r 2 r IN+IN-U 动U4、多量程直流数字电流表测量电流的原理是:根据欧姆定律,⽤合适的取样电阻把待测电流转换为相应的电压,再进⾏测量。
ICL7106设计题目:专业:班级:姓名:学号:分数:2013年12月15摘要:数字万用表是由数字电压表配上相应的功能转换电路构成的,它可对交、直流电压,交、直流电流,电阻,电容以及频率等多种参数进行直接测量。
本文主要通过对现有通用数字万用表的测量理论和实现电路的研究,详细分析了直流电压、直流电流、交流电压、直流电阻的测量理论和实现电路,研究了模拟量转变为数字量的误差问题,详细阐述了现有通用数字万用表测电压的误差问题,设计出1种数字万用表的测量电路——由ICL 7106构成的3 1/2位自动量程数字万用表电路。
此电路量程广,并且具有手动/自动量程两种模式和读数保持、相对值测量、蜂鸣器驱动等功能,能显示超量程、负极性、低电压指示符以及各种标志符(含单位符号),并且功耗小。
关键字:数字万用表;模拟量;数字量;A/D 转换目录摘要: (2)第1章绪论 (4)1.1 数字万用表的主要特点 (5)1.2 万用表发展趋势 (7)第2章数字万用表总体设计方案 (8)2.1数字万用表的基本原理 (8)2.2系统设计方案 (9)2.3ICL7106介绍 (9)2.3.1 ICL7106简介 (9)2.3.2 ICL7106管脚排列 (10)2.3.3 ICL7106数字电路 (10)第3章智能型数字式多用表硬件设计 (11)3.1A/D转换电路 (11)3.2ICL7106各测量电路 (12)3.2.1直流电压测量电路 (12)3.2.2交流电压测量电路 (13)3.2.3直流电流测量电路 (14)3.2.4电阻测量电路 (15)3.2.5二极管测试电路 (15)3.3数字万用表原理图 (16)第4章用数字万用表的检测 (16)4.1测量电压 (16)4.2测电流 (17)4.3测电阻 (18)4.4测二极管 (18)4.5注意事项 (19)第1章绪论随着微电子技术的高速发展,单片机的功能集成化,智能仪器也发展到了一个新的阶段。
DT830B万用表设计报告班级:通信101姓名:学号:完成日期:2010年7月8 日1、摘要:DT-830B型数字万用表是利用模拟-数字(A/D)转换原理,将被测模拟量转换为数字量,并用数字显示测量结果的一种电测仪表。
这种表是当前广为流行的一种,和其他数字万用表相比,除功能选择开关结构不同外,其核心部分-A/D 转换器基本相同;数字万用表与普通指针式万用表相比,具有测量精度高,速度快,显示直观,读数准确方便,输入阻抗高等一系列优点。
Abstract:DT-830B Digital Multimeter is the use of analog - digital (A / D) conversion theory, will be tested for analog digital conversion, and figures show the measurement results of an electrical measuring instrument. This table is a widely popular, and compared to other digital multimeter, with the exception of function selector switch structure, the core of the-A / D converter is basically the same; digital multimeter Analog multimeter and general compared with measurement accuracy, high speed, showing an intuitive, easy and accurate readings, a number of advantages of higher input impedance. Key words:Digital multimeters, DT830B type, principle.关键词:数字万用表,DT830B型,原理。
数字万用表电路方案一、电路功能概述。
对于电压测量功能,它得能够测量不同范围的直流电压和交流电压。
比如说,咱们日常生活中的电池电压,像1.5V、9V的这种,还有家里电器用到的220V交流电压,都要能准确测量。
电流测量方面,不管是小电流,像电子设备里面的微小电流,还是大电流,像一些电器工作时的较大电流,电路都得能搞定。
电阻测量就更不用说啦,从几欧姆的小电阻到几千欧姆甚至更大的电阻,都要测量得妥妥当当。
二、电路组成部分。
1. 模数转换(ADC)电路。
这可是整个数字万用表电路的核心部分之一哦。
它就像一个翻译官,把咱们要测量的模拟电信号(比如电压、电流这些连续变化的信号)转换成数字信号,这样后面的电路才能识别和处理。
ADC的精度直接影响到整个万用表测量的准确性。
咱们得选一个合适的ADC芯片,要那种分辨率高、转换速度快的。
比如说,12位或者16位分辨率的ADC芯片就很不错。
分辨率高意味着它能把模拟信号分得更细,测量结果就更精确。
2. 电压测量电路。
这个电路主要是用来调整输入电压的大小,使它能够适应ADC的输入范围。
它可能会用到一些分压电阻之类的元件。
咱们要根据不同的电压测量范围,合理选择分压电阻的阻值。
就像给不同身高的人准备合适高度的凳子一样,要让输入到ADC的电压刚刚好。
而且这个电路还得考虑对不同类型电压(直流和交流)的处理,交流电压还需要经过整流、滤波等环节,把它变成直流电压再进行测量。
3. 电流测量电路。
电流测量就有点小麻烦啦。
因为咱们不能直接把电流表串到电路里去测量,这样会对原电路产生很大的影响。
所以呢,这个电路会用到一些电流传感器或者分流电阻。
如果是小电流测量,可能会用那种高灵敏度的电流传感器;如果是大电流测量,分流电阻就比较合适啦。
通过测量分流电阻两端的电压,根据欧姆定律就可以算出电流的大小。
4. 电阻测量电路。
电阻测量电路通常会用到一个恒流源。
给被测电阻提供一个恒定的电流,然后测量电阻两端的电压,再根据欧姆定律算出电阻值。
数字万用表毕业设计数字万用表是一种常见的电子测量工具,广泛应用于工程技术领域。
在我即将毕业的时候,我选择了数字万用表作为我的毕业设计课题。
通过设计和制作一个功能强大的数字万用表,我希望能够提高测量精度和效率,满足工程师们的需求。
首先,让我们来了解一下数字万用表的基本原理和功能。
数字万用表主要由一个数字显示屏和多个测量功能模块组成,例如电压、电流、电阻、频率等。
它可以通过选择不同的测量模式,来测量不同的电气参数。
数字万用表还具有自动量程切换、数据保存和传输等功能,使得测量更加简便和准确。
在我的毕业设计中,我希望能够改进数字万用表的测量精度和稳定性。
首先,我选择了高精度的测量芯片和元器件,以确保测量结果的准确性。
其次,我设计了一个精密的校准电路,可以校正测量误差,提高测量精度。
此外,我还添加了温度补偿电路,以消除温度对测量结果的影响。
通过这些改进,我相信我的数字万用表将能够提供更加可靠和准确的测量结果。
除了测量精度,我还关注数字万用表的使用便捷性和人机交互性。
在设计过程中,我注重界面的友好性和操作的简便性。
我采用了大尺寸的液晶显示屏,以便用户能够清晰地看到测量结果。
同时,我设计了直观的按键布局和菜单导航系统,使得用户能够快速选择和切换不同的测量模式。
此外,我还添加了声音和光线提示功能,以便用户能够及时了解测量状态和结果。
在设计数字万用表的过程中,我还考虑了其可靠性和耐用性。
我选择了高质量的元器件和材料,以确保产品的长期稳定运行。
我进行了严格的电磁兼容性和抗干扰性测试,以保证数字万用表在复杂的电磁环境下仍能正常工作。
此外,我还进行了严格的可靠性测试,包括温度循环、振动和冲击等,以验证产品在各种恶劣环境下的可靠性。
除了以上的技术改进,我还考虑了数字万用表的市场竞争性和商业可行性。
我进行了市场调研和竞争分析,了解了当前数字万用表市场的需求和趋势。
我根据市场需求,增加了一些附加功能,如数据记录和导出功能,以提高产品的竞争力。
单片机数字万用表设计单片机数字万用表是一种现代化的计算工具,它能够测量各种电信号参数,比如电压、电流、电阻等。
由于其小巧精致,使用方便等优点而备受电子爱好者、电子工程师和电子技术爱好者的喜爱。
那么,今天我们就来了解一下单片机数字万用表的设计吧。
一、单片机数字万用表的基本构成单片机数字万用表主要由单片机模块、测量模块、显示模块、键盘输入模块组成。
1.单片机模块单片机模块是单片机数字万用表的主要控制中心,它是整个数字万用表系统的核心。
它通过接收来自测量模块的输入信号,进行运算,计算出相应的电信号参数。
通过与显示模块之间的通讯,向用户展示测量结果。
2.测量模块测量模块是单片机数字万用表的重要组成部分,它主要用于采集被测量的电压、电流、电阻等电信号参数,并将其转换为数字信号脉冲,然后通过单片机模块进行数字处理。
3.显示模块显示模块是单片机数字万用表中的一个非常重要的组成部分,它主要负责将经过单片机处理的结果展示给用户。
显示模块通常采用液晶、LED等现代电子显示技术,以实现明确、清晰、易读的数字显示。
4.键盘输入模块键盘输入模块是单片机数字万用表中另一个重要的组成部分,它使用户可以通过按键操作实现选择不同的测量功能、设置参数等。
二、单片机数字万用表的特点1.精准度高由于单片机数字万用表的设计采用数字化技术进行测量和计算,效果相对于传统的模拟万用表更加精准,因此可以提高测量精度。
在实际应用中,一些精密测量场合,如医疗电器、科学研究中都能够应用数字万用表实现更精准的测试。
2.智能化由于单片机模块的应用,数字万用表具备自动识别、自动范围、自动修整和自动校准等功能。
通过人机接口,数字万用表可以根据被测电信号的实际情况,实现智能感应和智能调整。
3.使用方便数字万用表设计紧凑,小巧轻便,便于携带和使用。
而且,数字万用表的人机界面友好,通过LED或LCD显示屏幕显示结果,使得用户一目了然,并且方便上手。
三、单片机数字万用表的应用场景1.电器故障排查在电器故障排查中,最常见的是在物体电路中提取不同的电信号参数,通过分析来定位故障原因。
低功耗数字万用表的设计数字万用表亦称数字多用表,简称DMM(Digtial Multimeter)。
它是采用数字化测量技术,把连续的模拟量转换成不连续的、离散的数字形式并加以显示的仪表。
本设计以STC89LE52RC为核心,设计制作了低功耗数字万用表并完成了直流电压、交流电压和电阻、电容、温度的測量,具有测量精度高,抗干扰能力强等特点。
整个系统采用9V方电池供电,由电源模块、直流和交流电压测量模块、电阻测量模块、电容测量模块、温度测量模块、液晶显示模块等组成。
标签:STC89LE52RC;低功耗;测量;万用表1、总体方案设计根据设计要求,制定了整体的设计方案:将直流供电电源模块、信号采集与AD转换电路、直流电压测量电路、交流电压测量电路、电阻测量电路、电容测量电路、温度测量电路和LCD显示电路和键盘控制电路等器件集成在一片模板上,创建一个在STC89LE52RC最小系统版上可编程片上系统。
通过测量,用LCD液晶将各种所需信息实时显示。
2、硬件电路设计根据实际的测量需要,在本电路设计中,采用模块化设计思路。
对整个电路以模块为单位,进行方案的分析、比较和论证。
2.1 主控模块(单片机的选择)方案一:AT89S51是一个低功耗,高性能CMOS 8位单片机,片内含4k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型计算机的AT89S51可为许多嵌入式控制应用系统提供高性价比的解决方案。
方案二:STC89LE52RC是宏晶科技有限公司生产的以51为内核的系列单片机的一种,是高速、超低功耗、超强干扰的新一代8051单片机,指令代码完全兼容传统的8051,但速度快8-10倍;价格低,使用范围广等优点。
基于51单片机的数字万用表设计摘要本文介绍一种以AT89S52单片机为核心的智能型数字式多用表,该系统采用AD0808为采样元件,对待测交直流电压信号进行实时采样,数据处理,输出显示,并可以直流电流和电阻,且具有键盘选择测量对象、量程和自动量程转换功能。
关键词:A/D转换器,单片机,模拟开关,自动量程转换第一章前言功能:实现交直流测量,量程自动转换,过电压自动报警。
仿真及编译软件:Proteus,Keil ,Wave主要元件:AT89C52,CD4511,AD0808,7段数码管(8个),蜂鸣器预定性能指标:直流电压:范围-40—+50V,精度20mv,实时无间断测量,4%。
交流信号:测量范围-5—+5V,频率范围:300Hz到100Khz误差5%。
初步方案及进展:小组成员及任务分配:组长:陈文豹硬件电路设计参数确定与调试组员:庞明软件程序设计邓玉龙资料查询并辅助电路设计数字万用表设计分析本设计可以分为直流电压测量电路;交流/直流转换电路;电流/电压转换电路;电阻/电压转换电路;功能控制和数据显示电路这五个的主要电路模块。
在设计直流电压测量电路时,利用反相比例运算电路,加上自己设计的四选一模拟开关,组成了一个直流电压测量电路。
但该电路在实践中存在问题,不能实现预期的结果。
做了适当的修改,改为由电阻、模拟开关和运放组成放大倍数可调的比例电路。
由于无论是指针式万用表还是普通的真有效值或平均值响应的数字万用表,其交流电压档的频率特性都较差,一般只能测量几十赫兹到几千赫兹的低频电压。
我发现对于指针式万用表造成频率特性较差的原因主要是万用表的分压电阻采用精密电阻器,其本身的分布电容较大,在对高频电压信号进行测量时,由于分布电容的容抗大为减少使得测量值明显低于实际电压值,而对于数字万用表除上述原因以外,另一主要原因是受平均值响应,转换器本身频率特性的限制。
但此缺陷可通过采用宽频带运算放大器加以改善。
因此,消除分压电阻器分布电容的影响就可以提高万用表工作频率的上限,大大改善其频率特性。
数字万用表的设计单片机数字万用表的设计一、引言数字万用表是一种多用途电子测量仪器。
它采用数字化测量技术,把实际测量的模拟量,转化为离散的数字量进行输出显示,主要用于物理、电气、电子等测量领域,一般包含电流表(安培计)、电压表(伏特计)、电阻表(欧姆计)等功能,也称为万用计、多用计、多用电表或万用电表。
万用表是电子和电气技术领域必备的测量仪器,用于测量电子电路中的各种物理量(电压、电流、电阻等),常作为基本故障诊断的便携式装置,也有放置在工厂或实验室工作台上作为桌上型装置。
有的万用电表分辨率能达到七、八位数,常用在实验室,作为电压或电阻的基准,或用来调校多功能标准器的性能。
相比传统的指针式万用表,数字万用表具有以下的主要优点:(1)数字显示直观准确,无视觉误差,读数准确;(2)测量精度和分辨率都很高;(3)输入阻抗高,减少对被测电路的工作影响;(4)电路集成度高,便于组装和维修;(5)测量功能齐全,测量速率快;(6)保护功能齐全,有过压、过流保护电路;(7)功耗低,抗干扰能力强;(8)便于携带,使用方便。
本次设计的任务是制作一个数字万用表,可实现如下的功能及要求:(1)可以测量直流电压、直流电流和电阻;(2)能将测量得到的数值直观、准确地显示出来,并标明相应的单位;(3)具有超量程时的报警提示。
二、系统硬件分析与设计数字万用表的基本功能是,能够测量直流电压、电流以及电阻的阻值,数字万用表的基本组成由图1所示,其中,模数转换是数字万用表的核心:图1. 数字万用表的基本原理图如图2所示,本设计将由以下几大部分组成。
包括:复位电路、震荡电路、A/D转换和控制、测量值输出、超量程报警和档位选择。
其中,复位电路用于单片机上电复位使系统清零;震荡电路为单片机提供精确的时钟频率,使电路工作更加稳定;A/D转换和控制部分负责模数转换及输入输出信号的控制;测量值输出则负责显示待测物理量大小的数值;超量程报警用于超出量程范围时的报警提示,提醒使用者更换量程。
图2. 硬件系统总体设计框图1、STC的89C52单片机的特点及功能介绍(1)89C52单片机的主要特点及功能特性89C52是一款低电压,高性能的8位CMOS型单片机,片内有8k字节以Flash闪存为介质的,能擦写的只读程序存储器及256字节的随机存取数据存储器。
89C52型单片机仍属于51单片机家族群,都支持一个共同的指令集(MSC-51),但各自拥有不同的存储器容量及端口设置等内置资源,使其更符合成本效益的需要,满足特定的场合的生产需求。
该单片机在嵌入式控制应用系统中有着广泛的应用。
89C52具有以下几个主要特点:a.体积小但集成度高、可靠性较高:该单片机把各个功模块集成在一块芯片上,内部采用总线结构,将各种信号的通道封装在同一个芯片中,减少了与其他芯片之间的连线,大大提高了可靠性与线路的抗干扰能力。
b.控制能力较强:一般单片机的指令系统中均有极为丰富的转移指令、存储器读写指令、I/O 口的逻辑操作以及位处理功能,满足工业控制的各种要求。
c.易于扩展:单片机片内已经具有计算机正常运行时所必需的部件,但仍然预留了很多片外扩展用的引脚(各种总线,并行/串行的输入/输出),易于组成更庞大计算机系统完成更复杂的任务。
d.内部功能较强:单片机有着各种的内部资源,功能强大。
e.低功耗、低电压,便于生产便携式产品。
下面介绍89C52单片机的主要功能特性:a.兼容标准的MCS-51的指令系统;b.内置8k字节可擦写的闪存ROM(Read-Only Memory);c.4组共32个双向I/O口;d.256×8位大小的内部RAM;e.3个16位可编程定时/计数器中断;f.支持3.5-12/24/33MHz多种时钟频率;g.1个全双工可编程的UART(Universal Asynchronous Receiver/Transmitte)串行口;h.6个中断源,4级优先级中断结构;i.2个W/R(Write/Read)读写中断口,3级加密位;j.低功耗空闲和掉电节省模式,带有软件设置睡眠及相应的唤醒功能;k.有PDIP及PLCC两种封装形式。
(2)89C52单片机的引脚功能图3. 89C52单片机微架构图图4. 89C52单片机引脚图下面介绍89C52单片机引脚主要功能:4组I/O口P0口:一组8位漏极开路的准双向并行I/O口,扩展片外存储时的地址/数据总线复用口。
作为输出口用时,每位能驱动8个LS型TTL负载,对端口P0写“1”时,可作为高阻抗输入端用。
P0口与其他几组I/O口的最大区别是其内部不带有上拉电阻。
P1口:是一组带内置上拉电阻的8位双向并行I/O 口,P1的输出缓冲级可驱动4个TTL 负载。
对端口写“1”,通过内部的上拉电阻把端口拉至高电平后,可作输入口。
作输入口使用时,因为内部存在上拉电阻,引脚被外部信号拉低时会输出电流。
另外,P1的P1.0和P1.1口存在第二功能,见下表。
表1. P1口的第二功能引脚号功能特性P1.0 T2(定时/计数器2的外部计数输入),时钟输出P1.1 T2EX(定时/计数器2的捕捉/重载触发信号和方向控制)P2口:是一组带有内部上拉电阻的8 位双向I/O并行口,P2 的输出缓冲级可驱动4个TTL负载。
作输入及输出口时,情况与P1口相似。
扩展片外存储时,作为低8位地址总线口。
P3口:是一组带有内部上拉电阻的8 位双向并行I/O 口。
P3口输出缓冲级可驱动4个TTL负载。
作为输入及输出口时,情况与P1口相似。
P3 口还能接收一些用于Flash存储器编程和程序校验的控制信号。
P3 口除了作为一般的I/O 口线外,更重要的用途是它的第二功能,见表2。
其他引脚RST:复位输入。
当振荡器工作时,RST引脚出现两个机器周期以上高电平将使单片机复位。
EA/VPP:外部访问允许。
要让CPU只访问外部程序存储器(地址为0000H —FFFFH),EA 端必需保持低电平(或接地)。
当EA端为高电平(接Vcc端)时,CPU会执行内部程序存储器中的指令。
XTAL1:振荡器反相放大器的及内部时钟发生器的输入端。
XTAL2:振荡器反相放大器的输出端。
VCC:接电源+5V。
GND:接地端。
表2. P3口的第二功能引脚号功能特性P3.0 RXD(串行输入)P3.1 TXD(串行输出)P3.2 INT0(外部中断0)P3.3 INT1(外部中断1)P3.4 T0(定时器0外部输入)P3.5 T1(定时器1外部输入)P3.6 WR(外部数据存储器写有效)P3.7 RD(外部数据存储器读有效)2、模数转化电路实际的物理量都是幅值大小连续变化的模拟量,或称为模拟信号。
旧式的指针万用表可以直接对模拟电压、电流进行测量并显示。
对于数字万用表,则需要把模拟量(多是电压量)转换为数字信号的形式,通过相关的处理(包括存储、传输、计算等)再进行显示。
数字信号是量化的模拟信号,若将最小的量化单位记为Δ,那么数字信号的大小一定为Δ的整数倍。
该倍数可以用二进制数码表示,但为了便于直观地读数,通常把数码进行译码后,由数码管或液晶屏幕显示。
当模拟信号经过量化之后,还需要进行编码处理,是用二进制码组表示固定电平的量化值。
目前普遍使用的是非线性的8位二进制编码,可以将输入的幅度范围分成256个量化级。
由此可知,数字万用表测量的核心步骤是模数转换以及译码显示,其中模数转换又可以分为量化及编码两大步骤。
(1)PCF8591芯片的主要功能特征PCF8591是一个单片集成、单独供电、低功耗及8位CMOS工艺制造的AD-DA器件。
PCF8591具有4个模拟输入、1个模拟输出和1个串行I2C总线接口。
PCF8591的3个地址引脚A0、A1和A2可用于硬件地址编程。
在PCF8591器件上输入输出的地址、控制和数据信号都是通过双线双向I2C总线以串行的方式进行传输。
图5. PCF8591的内部原理图PCF8591芯片的引脚功能图6. PCF8591的引脚图图6所示为PCF8591的引脚图。
AIN0~AIN3:模拟信号输入端;A0~A2:引脚地址端;VDD、VSS:电源端(2.5-6V);SDA、SCL:I2C总线的数据线、时钟线;OSC:外部时钟输入端,内部时钟输出端;EXT:内部、外部时钟选择线,采用内部时钟时EXT接地;AGND:模拟信号地;AOUT:数模转换输出端;VREF:基准电源端。
图7. 模数转换部分原理图图7所示为模数转换部分。
PCF8591芯片作为ADC芯片,使用I2C总线与单片机通讯,SCL是串行时钟,SDA是串行数据线,输出转换后的数字量。
待测模拟量从AIN0进入,其余模拟输入口因本设计不需使用而接地。
AGND端是模拟地,接上0Ω电阻,而VDD接上接地电容,有效分割模拟地和数字地,减少高频数字信号的干扰。
(2)多量程数字电压表设计图8. 分压电路的原理如图8所示,在基准数字电压表头前加上一级电压信号衰减电路(分压电路),可以扩展直流电压测量的量程。
图中,V o为输出电压,基准电压表的量程为2V,四个分压电阻串联值为10MΩ,则第4个开关接入时输入电压V i可以达到2000V,同理可得其他档位量程分别为2V、20V、200V、200V。
但基于测试安全性,第4档测试电压不应高于500V。
图9.电压衰减电路原理图如图9所示,R1和R2是分压电阻,其阻值均为按档位需要计算后所得,可以将20V的直流电压衰减为2V输出,配合20V的直流电压挡。
(3)多量程数字电流表设计图10. 分流电路的原理如图10电路所示,万用表测量电流的原理是,用合适的取样电阻,将待测的电流量根据欧姆定律转换为电压量,才能进行测量。
若取样电阻阻值为R,根据欧姆定律,可以获得被测电流I i的值。
在基准数字电流表头前在加上电流信号衰减电路(分流电路),即可实现直流电流测量量程的扩展。
如上图所示,四个电阻串联值是1kΩ,若选取第1挡,并使输出电压不超过2V,即可计算出I i必须小于等于2mA。
同理可计算出其他档位的满量程电流分别为20mA、200mA、2A。
图11.电流衰减电路原理图如图11所示,R15和R16是分流电阻,其阻值均为按档位需要计算后所得,可以将2A的直流电流衰减为200mA,并将电流变换成电压以供模数转换器测量,配合2A的直流电流档使用。
(4)电阻测量设计图12.电阻-电压变换电路的原理数字万用表通常采用电阻-电压变换电路来测量电阻(欧姆档)。
如图7所示电路,VD Z1是2.7V稳压管,是一种用特殊工艺制造的硅半导体二极管(康华光,2006)。
VT1、VT2、VD Z1组成恒流源,保持V3的值恒定不变。
V3的值等于V1电压减去V DZ1上的电压,约为2.3V。
VT3的基极电压亦保持不变,若VT3基极和发射极之间的电压为0.5V,则可知V2的值恒为2.8V左右,并可得出VT3集电极电流的I C3也是恒定的。