高中数学选择填空破题(椭圆的进阶性质):椭圆焦点三角形的一个面积公式-Word版含答案
- 格式:doc
- 大小:343.50 KB
- 文档页数:3
椭圆焦点三角形的面积公式
椭圆焦点三角形也叫椭圆酉三角形,三角形一般由椭圆上两个焦
点O1和O2以及椭圆周上一点P构成。
椭圆焦点三角形的面积公式为:S = |OO1 × OO2 × a| / 6,其中OO1和OO2分别表示椭圆上两个焦
点之间的距离,a表示椭圆的长轴半径。
椭圆焦点三角形的形成有很多种情况:
一、当椭圆上的三点共线时,椭圆焦点三角形的面积为零,因为
在此情况下三点重合,没有三角形的形成。
二、当三点不共线时,根据椭圆焦点三角形的面积公式,可以计
算出这三角形的面积。
三、如果椭圆的两个焦点落在三点的延长线上时,椭圆焦点三角
形的面积也为零,因为此时三角形边长小于椭圆两个焦点間的距离,
因此不存在三角形,即三角形面积为零。
四、如果椭圆的两个焦点分别落在三角形的三条边上,则椭圆焦
点三角形的面积等于三角形的面积。
椭圆焦点三角形的面积公式是求解椭圆焦点三角形面积的有效工具,可用于几何分析和图形计算。
该公式既适用于共线的情况,也适
用于不共线的情况,可以让我们准确求得椭圆焦点三角形的面积,这
在几何图形分析中非常有用。
理解椭圆焦点三角形的特性并应用面积
公式可以让我们更好地分析几何图形。
今天我们介绍椭圆的通径。
椭圆通径是过椭圆的一个焦点垂直于长轴的弦。
过椭圆焦点的所有弦中,通径最短。
先看例题:例:已知椭圆C: 22221(0)yx a b a b 的右顶点为A (1,0),过C 的焦点且垂直长轴的弦长为1.求椭圆C 的方程.所以M 、N 坐标可表示为22(,),(,)b b M c N c a a由已知弦长为1得:21,2 1.b b ag △从而2,1.a b △因此,所求的椭圆方程为2214yx .焦点在x 轴的椭圆22221(0)xy a b a b 的通径:再看一个例题,加深印象例:已知椭圆221123x y 的左、右焦点分别是1F 、2F ,点P 在椭圆上. 如果线段1PF 的中点在y 轴上,那么1||PF 是2||PF 的()A. 7倍B. 5倍C. 4倍D. 3倍再由椭圆的性质可知:122373||2-||437||22PF a PF PF 即本题选 A.总结:1.椭圆通径是过椭圆的一个焦点垂直于长轴的弦。
2.过椭圆焦点的所有弦中,通径最短。
练习:1. 设椭圆22221(0)xy a b a b 的左焦点为F ,离心率为33,过点F 且与x 轴垂直的直线被椭圆截得的线段长为433.(Ⅰ)求椭圆的方程;(Ⅱ)设A, B 分别为椭圆的左、右顶点,过点F 且斜率为k 的直线与椭圆交于C ,D 两点.若8AC DB AD CB u u u r u u u r u u u r u u u r ,求k 的值.2. 已知F 1(-1,0),F 2(1,0)是椭圆C 的两个焦点,过F 2且垂直于x 轴的直线交C 于A ,B 两点,且|AB |=3,则C 的方程为( )A.2212x y B. 22132x y C. 22143x yD. 22154x y3.已知椭圆191622y x 的左、右焦点分别是1F 、2F ,点P 在椭圆上. 若P 、1F 、2F 是一个直角三角形的三个顶点,则点P 到x 轴的距离为()A. 59B. 779C. 49D. 49或7793.97h,.779h 故答案选 D.。
椭圆的焦点三角形面积公式
1、椭圆的焦点三角形面积公式:
椭圆的焦点三角形面积公式,指的是针对椭圆的一种特殊形状的三角形,是其面积计算公式。
具体计算公式为:S=1/2ab*sqrt(1-e2),其中a、b、e分别表示椭圆长轴、短轴以及离心率,即椭圆椭圆小周长与大周
长之比,由此可以得出动态椭圆的焦点三角形面积。
2、离心率的计算方法:
离心率是指椭圆小周长与大周长之比,计算方法也很简单,通过将椭
圆的两个焦点到长轴上的距离除以长轴的长度,即可得到离心率的值。
这里要注意的是,离心率的值不能大于1,否则椭圆的小周长就大于大周长,椭圆就变成了另一种不同的形状了。
3、椭圆的焦点三角形面积计算实例:
具体计算实例,假设我们有一个椭圆,长轴长度为a=30,短轴长度为
b=20,离心率为e=0.6,则该椭圆的焦点三角形的面积计算公式为:
S=1/2ab*sqrt(1-e2),其中的a、b、e分别表示椭圆的长轴、短轴以及离
心率,则本例中的面积计算结果为S=216,即椭圆的焦点三角形的面
积为216。
2023年高考数学椭圆焦点三角形的面积问题【考点梳理】焦点三角形:椭圆上的点P (x 0,y 0)与两焦点构成的△PF 1F 2叫做焦点三角形.r 1=|PF 1|,r 2=|PF 2|,∠F 1PF 2=θ,△PF 1F 2的面积为S ,则在椭圆x 2a 2+y 2b2=1(a >b >0)中:①焦点三角形的周长为2(a +c );②4c 2=r 21+r 22-2r 1r 2cos θ;③当r 1=r 2时,即点P 的位置为短轴端点时,θ最大;④S =12r 1r 2sin θ=b 2tan θ2=c |y 0|,当|y 0|=b 时,即点P 的位置为短轴端点时,S 取最大值,最大值为bc .【题型归纳】一、求椭圆焦点三角的面积1.已知点P 是椭圆22:1259x y C +=上一点,12,F F 是其左右焦点,且1260F PF ∠=,则三角形12F PF △的面积为_________2.已知点P 是椭圆221259x y +=上的点,点12,F F 是椭圆的两个焦点,若12F PF △中有一个角的大小为3π,则12F PF △的面积为______.3.设12,F F 是椭圆2241496x y +=的两个焦点,P 是椭圆上的点,且12||:||4:3PF PF =,则12PF F △的面积为()A .22B .42C .4D .64.设12,F F 是椭圆2211224x y +=的两个焦点,P 是椭圆上一点,且1213cos F PF ∠=.则12PF F △的面积为()A .6B .62C .8D .825.已知点F 1,F 2分别是椭圆22:14x C y +=的左右焦点,点M 在椭圆C 上,且满足1223MF MF += ,则12MF F △的面积为___________.6.已知椭圆()2222:10x y C a b a b+=>>的焦点为1F ,2F ,若椭圆C 上存在一点P ,使得120PF PF ⋅= ,且△12F PF 的面积等于4.则实数b 的值为___________.二、椭圆焦点三角形面积的最值问题7.已知1F 、2F 为椭圆22:14xy Γ+=的左、右焦点,M 为Γ上的点,则12MF F △面积的最大值为()A .3B .2C .23D .4三、已知椭圆焦点三角形面积求边8.设1F 、2F 是椭圆22:110x C y +=的两个焦点,O 为坐标原点,点P 在C 上,且12PF F △的面积为7,则OP =()A .3B .73C .83D .39.已知12,F F 分别是椭圆2222:1(0)x y C a b a b+=>>的左,右焦点,点M 是椭圆C 上的一点,且1212,2F MF F MF π∠= 的面积为1,则椭圆C 的短轴长为()A .1B .2C .22D .4四、与内切圆相结合10.已知椭圆2212516x y +=两焦点1F 、2F ,P 为椭圆上一点,若123F PF π∠=,则12F PF △的内切圆半径为______五、与平面向量相结合11.已知P 是椭圆221259x y +=上的点,1F 、2F 分别是椭圆的左、右焦点,若1212PF PF PF PF ⋅=⋅12,则12F PF △的面积为()A .33B .93C .3D .912.已知1F 、2F 是椭圆()2222:10x y C a b a b+=>>的两个焦点,P 为椭圆C 上一点,且12PF PF ⊥ .若12PF F △的面积为9,求实数b 的值.【巩固训练】一、单选题13.已知点P 在椭圆221164x y +=上,1F 与2F 分别为左、右焦点,若1223F PF π∠=,则12F PF △的面积为()A .43B .63C .83D .13314.已知椭圆C :221259x y +=,1F ,2F 分别为它的左右焦点,A ,B 分别为它的左右顶点,点P 是椭圆上的一个动点,下列结论中错误的是()A .离心率45e =B .12F PF △的周长为18C .直线PA 与直线PB 斜率乘积为定值925-D .若1290F PF ︒∠=,则12F PF △的面积为815.已知椭圆2221(10)y x b b +=>>的左、右焦点分别为1F ,2F ,点M 是椭圆上一点,点A 是线段12F F 上一点,且121223F MF F MA π∠=∠=,3||2MA =,则该椭圆的离心率为()A .32B .12C .223D .33二、多选题16.椭圆22:143x y C +=的左、右焦点分别为1F ,2F ,点P 在椭圆C 上,若方程340mx y m ++-=所表示的直线恒过定点M ,点Q 在以点M 为圆心,C 的长轴长为直径的圆上,则下列说法正确的是()A .椭圆C 的离心率为12B .12PF PF ⋅的最大值为4C .12PF F △的面积可能为2D .2PQ PF -的最小值为256-17.已知椭圆22:14x M y +=,若P 在椭圆M 上,1F 、2F 是椭圆M 的左、右焦点,则下列说法正确的有()A .若12PF PF =,则1230PF F ∠=B .12F PF △面积的最大值为3C .12PF PF -的最大值为23D .满足12F PF △是直角三角形的点P 有4个18.已知椭圆22:143x y C +=的左、右焦点分别是1F ,2F ,04,3M y ⎛⎫ ⎪⎝⎭为椭圆C 上一点,则下列结论正确的是()A .12MF F △的周长为6B .12MF F △的面积为153C .12MF F △的内切圆的半径为159D .12MF F △的外接圆的直径为321119.双曲线22:1124x y C -=的左,右焦点分别为1F ,2F ,点P 在C 上.若12PF F △是直角三角形,则12PF F △的面积为()A .833B .433C .4D .220.已知P 是椭圆C :2216x y +=上的动点,过11,4Q ⎛⎫ ⎪⎝⎭直线与椭圆交于,M N 两点,则()A .C 的焦距为5B .当Q 为MN 中点时,直线MN 的斜率为3-C .C 的离心率为306D .若1290F PF ︒∠=,则12F PF △的面积为121.设椭圆22:12x C y +=的左右焦点为1F ,2F ,P 是C 上的动点,则下列结论正确的是()A .离心率62e =B .12PF F △面积的最大值为2C .以线段12F F 为直径的圆与直线20x y +-=相切D .12PF PF ⋅的最小值为0三、填空题22.设12F F ,是椭圆22196x y +=的两个焦点,P 是椭圆上的点,且1221PF PF =::,则12F PF △的面积等于_______.23.已知F 1,F 2是椭圆2214x y +=的两个焦点,点P 在椭圆上,2PF ⊥x 轴,则12PF F 的面积为_________.四、解答题24.设椭圆()2222:10x y C a b a b+=>>的左、右焦点分别为1F 、2F ,点P ,Q 为椭圆C 上任意两点,且()110PF QF λλ=< ,若2PQF 的周长为8,12PF F △面积的最大值为2.(1)求椭圆C 的方程;(2)设椭圆C 内切于矩形ABCD (椭圆与矩形四条边均相切),求矩形ABCD 面积的最大值.25.已知椭圆C 的两焦点分别为()11,0F -、()21,0F ,P 为椭圆上一点,且12122F F PF PF =+.(1)求椭圆C 的标准方程;(2)若点P 在第二象限,12120F PF ∠=︒,求△12PF F 的面积.26.已知圆22:(3)64M x y ++=圆心为M ,定点(3,0)N ,动点A 在圆M 上,线段AN 的垂直平分线交线段MA 于点P(1)求动点P 的轨迹C 的方程;(2)若点Q 是曲线C 上一点,且60QMN ∠=︒,求 QMN 的面积.参考答案1.33【分析】由椭圆方程可得,,a b c ,利用椭圆定义和余弦定理可构造方程求得12PF PF ⋅,由三角形面积公式可求得结果.【详解】由椭圆方程知:5a =,3b =,则22216c a b =-=;由椭圆定义知:12210PF PF a +==,由余弦定理得:222121212122cos F F PF PF PF PF F PF =+-⋅∠,()2212121243100364c PF PF PF PF PF PF ∴=+-⋅=-⋅=,解得:1212PF PF ⋅=,12121213sin 63322F PF S PF PF F PF ∴=⋅∠=⨯= .故答案为:33.2.33或63##63或33【分析】由椭圆方程可求得,,a b c ;当123F PF π∠=时,由焦点三角形面积公式可求得12F PF S ;当123PF F π∠=时,利用余弦定理可构造方程求得1PF ,由三角形面积公式可得结果.【详解】由椭圆方程知:5a =,3b =,则224c a b =-=;若123F PF π∠=,则12212tan9tan 3326F PF F PF S b π∠=== ;若123PF F π∠=,设1PF m =,则2210PF a m m =-=-,由余弦定理得:22222112112122cos 648PF PF F F PF F F PF F mm =+-⋅∠=+-=()210m -,解得:3m =,1211212113sin 3863222F PF S PF F F PF F ∴=⋅∠=⨯⨯⨯= ;同理可得:当21π3PF F Ð=时,1263F PF S = .综上所述:12F PF △的面积为33或63.故答案为:33或63.3.D【分析】根据椭圆的定义求出12||4,||3PF PF ==,从而判断出12PF F △为直角三角形,然后即可求出12PF F △的面积.【详解】易知2494a =,26b =,所以222254c a b =-=,72a =,即52c =,由椭圆的定义,知12||||27PF PF a +==,又因为12||:||4:3PF PF =,所以12||4,||3PF PF ==,又1225F F c ==,所以12PF F △为直角三角形,所以13462ABC S =⨯⨯=△.故选:D.4.B【分析】利用椭圆的几何性质,得到12246PF PF a +==,12243F F c ==,进而利用1213cos F PF ∠=得出1218PF PF ⋅=,进而可求出12S PF F 【详解】解:由椭圆2211224x y +=的方程可得2224,12a b ==,所以22212c a b =-=,得26,23a c ==且12246PF PF a +==,12243F F c ==,在12PF F △中,由余弦定理可得222221212121212121212||||||(||||)2||||||cos 2||||2||||PF PF F F PF PF PF PF F F F PF PF PF PF PF +-+--∠==22212121212442||||42||||2||||2||||a c PF PF b PF PF PF PF PF PF ---==12124122||||2||||PF PF PF PF ⨯-=,而121cos 3F PF ∠=,所以,1218PF PF ⋅=,又因为,121cos 3F PF ∠=,所以1222sin 3F PF ∠=,所以,1212121122sin 1862223S PF F PF PF F PF =⋅∠=⨯⨯= 故选:B 5.1【分析】设00(,)M x y ,则可得1200(2,2)MF MF x y +=-- ,再由1223MF MF += 可得22003x y +=,而点00(,)M x y 在椭圆上,则有220014x y +=,求出0y ,从而可求出12MF F △的面积【详解】由题意可得2,1,3a b c ===,则12(3,0),(3,0)F F -,设00(,)M x y ,则12000000(3,)(3,)(2,2)MF MF x y x y x y +=---+--=--,因为1223MF MF +=,所以22004412x y +=,所以22003x y +=,因为点00(,)M x y 在椭圆上,所以220014x y +=,解得033y =,所以12MF F △的面积为1323123⨯⨯=,故答案为:16.2【分析】由三角形面积公式、向量数量积的坐标表示及P 在椭圆上列方程可得||4P c y =、2||P b y c=,即可求参数b .【详解】由题设,12||||42P P c y c y ⨯⨯==,且(,)(,)0P P P P c x y c x y ---⋅--=,可得222P P x c y =-,又222222222:1P P P Px y c y y C a b a b-+=+=,则2||P b y c =,综上,24b =,又0b >,则2b =.故答案为:27.A【分析】由于12F F 为定值,所以当点M 到12F F 的距离最大时,12MF F △面积取得最大值,即当M 与短轴的一个端点重合时,12MF F △面积的最大【详解】由2214x y +=,得224,1a b ==,所以222,1,3a b c a b ===-=,由椭圆的性质可知当M 与短轴的一个端点重合时,12MF F △面积的最大,所以12MF F △面积的最大值为1211231322F F b =⨯⨯=,故选:A 8.A【分析】根据三角形12PF F △的面积可求得点P 的坐标,由此可求得OP 的值.【详解】在椭圆C 中,10a =,1b =,则223c a b =-=,所以,1226F F c ==,12121372PF F P P S F F y y =⋅==△,所以73P y =,所以253P x =,则223P P OP x y =+=,故选:A.9.B【分析】首先分别设1MF x =,2MF y =,再根据椭圆的定义和性质列出等式,即可求解椭圆的短轴长.【详解】设1MF x =,2MF y =,所以22221124x y a xy x y c+=⎧⎪⎪=⎨⎪+=⎪⎩,即()222222244x y x y xy x y a +=++=++=,即22444c a +=,得2221b a c =-=,短轴长为22b =.故选:B 10.233##233【分析】根据椭圆的方程求得c ,得12||F F ,设出11||PF t =,22||PF t =,利用余弦定理可求得12t t 的值,得到△12F PF 的面积,再由等面积法求出△12F PF 内切圆的半径.【详解】由题意方程可得,5a =,4b =,223c a b ∴=-=,即12||6F F =,设11||PF t =,22||PF t =,则根据椭圆的定义可得:1210t t +=,①在12F PF △中,123F PF π∠=,∴根据余弦定理可得:22212122cos 63t t t t π+-⋅=,②联立①②得12643t t ⋅=,∴121211643163sin 232323F PF S t t π=⋅=⨯⨯= ,设△12F PF 内切圆半径为r ,△12F PF 的周长为10616L =+=,面积为1633S =,则1112F PF S Lr =,2233S r L ∴==,故答案为:23311.A【分析】由已知可得12F PF ∠,然后利用余弦定理和椭圆定义列方程组可解.【详解】因为121212121212cos 1cos 2PF PF F PF PF PF F PF PF PF PF PF ⋅∠⋅==∠=⋅⋅,120F PF π∠≤≤所以123F PF π∠=,又224c a b =-=记12,PF m PF n ==,则222464210m n mn c m n a ⎧+-==⋅⋅⋅⎨+==⋅⋅⋅⎩①②,②2-①整理得:12mn =,所以12113sin 12332322F PF S mn π==⨯⨯= 故选:A12.3b =【分析】由题意以及椭圆的几何性质列方程即可求解.【详解】因为12PF PF ⊥,所以1290F PF ∠=︒,所以12F PF △为直角三角形,22212(2)PF PF c +=,122PF PF a +=,()2221212122PF PF PF PF PF PF +=+-⋅,即()()221212242c a PF PF =-⨯⋅,1212192F PF S PF PF =⋅=△,所以2244490c a =-⨯=,所以2449b =⨯.所以3b =;综上,b =3.13.A【分析】由椭圆的定义结合余弦定理解得1216PF PF =,通过三角形面积公式即可求得答案.【详解】由12222121212128cos 2PF PF PF PF F F F PF PF PF ⎧+=⎪+-⎨∠=⎪⎩,,又1243F F =,解得1216PF PF =,1212121sin 313422162F PF S PF P PF F F =⨯⨯==∠△.故选:A.14.D【分析】根据离心率的定义可判断A ;利用椭圆的定义可判断B ;求出PA PB k k ⋅可判断C ;利用勾股定理以及椭圆的定义求出12PF PF 可判断D.【详解】由221259x y +=,可得5a =,3b =,224c a b =-=,A ,离心率45c e a ==,故A 正确;B ,12F PF △的周长为12122218PF PF F F a c ++=+=,故B 正确.C ,设()00,P x y ,2020002200009125955252525PA PBx y y y k k x x x x ⎛⎫- ⎪⎝⎭⋅=⋅===-+---,故C 正确;D ,1290F PF ︒∠= ,222121264PF PF F F ∴+==,又因为12210PF PF a +==,所以()212100PF PF +=,即2212122100PF PF PF PF ∴++=,解得1218PF PF =,所以1212192F PF S PF PF ==△,故D 错误.故选:D 15.B【分析】由椭圆定义得12MF MF +,由余弦定理可得12MF MF ,再由三角形面积公式得12MF MF +和12MF MF 的关系,从而求得c ,然后可得离心率.【详解】解:设11||MF r =,22||MF r =,则1222r r a +==,由余弦定理得2221212122||||||2||||cos3F F MF MF MF MF π=+-,即222212*********()4c r r r r r r r r r r =++=+-=-,所以21244r r c =-,因为1212F MF F MA AMF S S S =+ ,所以12121211sin ||sin ||sin 232323r r r MA r MA πππ=⋅⋅+⋅⋅,整理得1212()||r r r r MA =+⋅,即234422c -=⨯,整理得214c =,所以12c =,1a =,12c e a ==,故选:B.16.ABD【分析】A :根据椭圆方程可直接求得2a =,3b =,1c =,和离心率ce a=;B :由椭圆的定义可得124PF PF +=,结合不等式22a b ab +⎛⎫≤ ⎪⎝⎭代入运算;C :点P 位于椭圆的上、下顶点时,12PF F △的面积取得最大,计算判断;D :利用椭圆定义和圆的性质转化处理.【详解】对于选项A ,由椭圆C 的方程知2a =,3b =,1c =,所以离心率12c e a ==,故选项A 正确;对于选项B ,由椭圆的定义可得124PF PF +=,所以2121242PF PF PF PF ⎛+⎫⋅≤= ⎪⎝⎭,即12PF PF ⋅的最大值为4,故选项B 正确;对于选项C ,当点P 位于椭圆的上、下顶点时,12PF F △的面积取得最大值123322⨯⨯=<,故选项C 错误;对于选项D ,易知()3,4M -,则圆()()22:344M x y ++-=,所以()21114424256PQ PF PQ PF QF MF -=--≥-≥--=-,故选项D 正确,故选:ABD .17.ABC【分析】利用余弦定理可判断A 选项;利用三角形的面积公式可判断B 选项;利用椭圆的定义可判断C 选项;利用平面向量的数量积可判断D 选项.【详解】在椭圆M 中,2a =,1b =,3c =,且1223F F =,对于A 选项,当12PF PF =时,则122PF PF a ===,由余弦定理可得2221122121123cos 22PF F F PF PF F PF F F +-∠==⋅,因为120180PF F <∠<,所以,1230PF F ∠= ,A 对;对于B 选项,当点P 为椭圆M 的短轴顶点时,点P 到x 轴的距离最大,所以,12F PF △面积的最大值为1232c b bc ⨯⨯==,B 对;对于C 选项,因为2a c PF a c -≤≤+,即22323PF -≤≤+,所以,()1222222223PF PF a PF a a c c -=-≤--==,C 对;对于D 选项,当112PF F F ⊥或212PF F F ⊥时,12PF F 为直角三角形,此时满足条件的点P 有4个,当P 为直角顶点时,设点()00,P x y ,则220044x y =-,()1003,F P x y =+ ,()2003,F P x y =- ,222120003130F P F P x y y ⋅=-+=-= ,所以,033y =±,0263x =±,此时,满足条件的点P 有4个,综上所述,满足12F PF △是直角三角形的点P 有8个,D 错.故选:ABC.18.ABC【分析】求得0y ,进而求得12,MF MF ,由此对选项进行分析,从而确定正确选项.【详解】椭圆22:143x y C +=的左、右焦点分别是()11,0F -,()21,0F ,04,3M y ⎛⎫ ⎪⎝⎭为椭圆C 上一点,220041531,433y y ⎛⎫ ⎪⎝⎭+==,所以2212715884,433333MF MF ⎛⎫⎛⎫=+==-= ⎪ ⎪ ⎪⎝⎭⎝⎭.所以12MF F △的周长为22426a c +=+=,A 正确.12MF F △的面积为001151521233c y c y ⨯⨯=⨯=⨯=,B 正确.设12MF F △的内切圆的半径为r ,则115156,239r r ⨯⨯==,C 选项正确.1212641641199cos 0,8416233F MF F MF +-∠==>∠⨯⨯为锐角,12121135315sin 12561616F MF ∠=-==,所以12MF F △的外接圆的直径为12122323215sin 4531531516F F F MF ===∠,D 选项错误.故选:ABC 19.AC【分析】根据双曲线方程求出c ,再根据对称性只需考虑112PF F F ⊥或12PF PF ⊥.当12PF PF ⊥时,将4x =-代入双曲线方程,求出y ,即可求出三角形面积,当12PF PF ⊥时,由双曲线的定义可知1243PF PF -=,再由勾股定理求出12PF PF ,即可得解;【详解】解:由双曲线22:1124x y C -=可得221244c a b =+=+=.根据双曲线的对称性只需考虑112PF F F ⊥或12PF PF ⊥.当12PF PF ⊥时,将4x =-代入221124x y -=可得233y =±,所以12PF F △的面积为12118323F F PF =.当12PF PF ⊥时,由双曲线的定义可知,12243PF PF a -==,由勾股定理可得()22221212264PF PF F F c +===.因为()222121212264PF PF PF PF PF PF +=-+⋅=,所以128PF PF =,此时12PF F △的面积为12142PF PF ⋅=综上所述,12PF F △的面积为4或833.故选:AC .20.CD【分析】由题知226,1a b ==,25c =,进而根据离心率公式和焦距可判断A ,C ;对于B ,利用中点弦的直线的斜率公式直接计算即可判断;对于D 选项,结合椭圆定义得122PF PF =,进而计算面积即可判断.【详解】解:由题知226,1a b ==,所以2615c =-=,故焦距为225c =,故A 选项错误;对于B 选项,当Q 为MN 中点时,由中点弦公式得2020121364MNb x k a y =-=-=-⨯,故B 选项错误;对于C 选项,椭圆的离心率为53066c e a ===,故C 选项正确;对于D 选项,1290F PF ︒∠=,则12222121226PF PF PF PF F F ⎧+=⎪⎨+=⎪⎩,即()1222121212262PF PF PF PF PF PF F F ⎧+=⎪⎨+-=⎪⎩,代入数据得122PF PF =,所以12F PF △的面积为12112S PF PF ==,故D 选项正确;故选:CD 21.CD【分析】求出离心率可判断A ;计算12PF F △面积的最大值1212F F b ⋅可判断B ;求出圆的方程,再判断圆心到直线的距离与半径的关系可判断C ;设(),P x y 进行数量积的坐标运算结合2212x y +=可判断D ,进而可得正确选项.【详解】对于A :由椭圆22:12x C y +=可知,2a =,1b =,1c =,所以左、右焦点分别为()11,0F -,()21,0F ,离心率22c e a ==,故选项A 错误;对于B :122F F =,当P 点与椭圆的上下顶点重合时,12PF F △面积的最大,所以12PF F △面积的最大值为11221122b ⨯⨯=⨯⨯=,故选项B 错误;对于C :以线段12F F 为直径的圆的圆心()0,0,半径为1,由圆心()0,0到直线20x y +-=的距离222111d c ===+,所以以线段12F F 为直径的圆与直线20x y +-=相切,故选项C 正确;对于D :设(),P x y ,()()121,,1,PF x y PF x y =---=--,2222212111022x x PF PF x y x ⋅=+-=+--=≥ ,则12PF PF ⋅ 的最小值为0,故选项D 正确;故选:CD .22.23【分析】先利用定义求出12F PF △的各边,再求出123sin 2F PF ∠=,即可求出12F PF △的面积.【详解】由126PF PF +=,且1221PF PF =::,12124229623PF PF F F ∴===-=,,又在12PF F △中,cos ∠2221242(23)12422F PF +-==⨯⨯,123sin 2F PF ∴∠=12121S sin 232PF PF F PF ∴=∠=.故答案为:2323.32##132【分析】2PF ⊥x 轴可得P 点横坐标,再根据点P 在椭圆上,求出P 的纵坐标,代入三角形面积公式即可求解.【详解】由题意不妨设1(F ﹣3,0),2(F 3,0),∵P 2F ⊥x 轴,∴P (3,±12),∵△P 12F F 的面积=12|P 2F ||12F F |=12⨯12⨯23=32,故答案为:32.24.(1)22142x y +=(2)12【分析】(1)根据椭圆的定义可知24PQF C a = ,即可求出a ,再根据()12max122PF F S c b =⨯⨯ 及a 、b 、c 的关系计算可得;(2)当矩形ABCD 中有一条边与坐标轴平行时,直接求出矩形的面积,当矩形ABCD 的边都不与坐标轴平行时,设出直线方程,联立直线与椭圆方程,消元、根据0∆=求出2242m k =+,同理得2242n k =+,再由平行线之间的距离公式求出AD ,AB ,即可求出ABCD S ,最后利用基本不等式计算可得;(1)解:由()110PF QF λλ=<得P 、1F 、Q 三点共线,因为三角形2PQF 的周长为8,即22211224PQF C PQ PF QF PF QF PF QF a =++=+++=,所以48a =,则2a =.当P 点为椭圆上或下顶点时12PF F △的面积最大,即121222=⨯⨯== PF F S c b bc ,由222244=-=-b ac b,解得22b =,所以椭圆C 的方程为22142x y +=.(2)解:当矩形ABCD 中有一条边与坐标轴平行时,则另外三条边也与坐标轴平行,矩形ABCD 的两条边长分别为24a =,222b =,此时42282ABCD S =⨯=.当矩形ABCD 的边都不与坐标轴平行时,由对称性,不妨设直线AB 的方程为:y kx m =+,则CD 的方程为:y kx m =-,AD 的方程为:1y x n k =-+,BC 的方程为:1y x n k =--.由22142y kx mx y =+⎧⎪⎨+=⎪⎩,得()()222124220k x kmx m +++-=,令0∆=得2242m k =+,同理得2242n k =+,矩形ABCD 的边长分别为221m AD k =+,2211n AB k =+,∴()22222222821122411111ABCD kk m n mnk k S k kk k⎛⎫++ ⎪⎝⎭=⨯==++++,2211828212142k k=+≤+=++,当且仅当1k =±时取等号,所以矩形ABCD 面积的最大值是12.综上所述,矩形ABCD 面积的最大值是12.25.(1)22143x y +=(2)33【分析】(1)根据椭圆的定义得1,2c a ==,进而得答案;(2)根据余弦定理,结合椭圆定义,解决焦点三角形的面积问题即可.(1)解:∵椭圆C 的两焦点分别为()11,0F -、()21,0F ,∴设椭圆C 的方程为()222210x y a b a b+=>>,1c =,12||||42PF PF a ∴+==,2a ∴=.222413b a c ∴=-=-=,∴椭圆的标准方程为22143x y +=.(2)解:在△12PF F 中,由余弦定理得222121212||||||2||||cos F F PF PF PF PF =+-120︒,即212124(||||)||||PF PF PF PF =+-,212124(2)||||16||||a PF PF PF PF ∴=-=-,12||||12PF PF ∴=,1212113||||sin1201233222PF F S PF PF ∴=︒=⨯⨯= .26.(1)221167x y +=;(2)213.5【分析】(1)根据题意中的几何关系,判断动点P 的轨迹为椭圆,写出其方程即可;(2)利用椭圆定义结合余弦定理,即可求得MQ ,再求三角形面积即可.(1)由已知PN PA =,故8PM PN PM PA AM MN +=+==>,所以P 点轨迹是以M 、N 为焦点的椭圆,设P 点轨迹方程为22221(0)x y a b a b+=>>,则228,3,7a c b ===,所以P 点轨迹方程为221167x y +=.(2)不妨设MQ m =,由椭圆定义可得28QN a m m =-=-,又26MN c ==,则在MNQ 中,由余弦定理可得:()222681cos 212m m QMN m+--∠==,解得145m =.故 QMN 的面积13314213sin 2322255S QMN m c c m =⨯∠⨯⨯=⨯=⨯⨯=.。
今天我们研究椭圆标准方程的整式形式。
根据椭圆的焦点坐标位置不同,标准方程有两种情形。
如果椭圆标准方程的形式不确定,我们可以设椭圆方程的整式形式:221(,0,0)mx ny m n m n +=≠>>,进行求解,避免讨论。
先看例题:例:已知椭圆的中心在原点,以坐标轴为对称轴,且经过两点)2,3(),1,6(21--P P ,求该椭圆的方程.∴61,32 1.m n m n +=⎧⎨+=⎩解得1,91.3m n ⎧=⎪⎪⎨⎪=⎪⎩, 故所求的椭圆标准方程为22193x y +=. 注意:已知两点,椭圆标准方程的形式不确定,可以设椭圆方程的一般形式。
归纳整理:椭圆标准方程的形式不确定,设椭圆方程为221(,0,0)mx ny m n m n +=≠>>;焦点在x 轴上,设椭圆方程为221(0)mx ny n m +=>>;焦点在 y 轴上,设椭圆方程为221(0)mx ny m n +=>>。
再看一个例题,加深印象例:已知中心在原点,长轴在x 轴上的椭圆的两准线间的距离为23,若椭圆被直线x +y +1=0截得的弦的中点的横坐标是32-,求椭圆的方程.整理为:m n n m n x x 234221=-=+-=+即又两准线间的距离为23,有22a c=,即1m = 34,32==∴n m ,椭圆方程为1343222=+y x 总结:1.求椭圆标准方程,若焦点位置不确定,可利用标准方程的整式形式221(,0,0)mx ny m n m n +=≠>>,避免讨论。
2.当焦点位置确定时,利用椭圆标准方程的整式形式,在处理直线和椭圆位置关系的问题时,简化解题过程.3.根据已知条件,列方程组求出两个参数m ,n 的值。
练习:1.求中心在原点,对称轴为坐标轴,且经过)2,3(-A 和)1,32(-B 两点的椭圆方程.2. 已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线y =x +1与椭圆交于P 和Q ,且OP ⊥OQ ,|PQ |=210,求椭圆方程 3.已知椭圆的焦距为2,且过点3(1,)2(1)求椭圆的标准方程;(2)若P 为椭圆上的点,F 为椭圆焦点,点A 的坐标为(1, 1),求|PF |+|PA |的范围.答案2.解:设椭圆方程为mx 2+ny 2=1(m >0,n >0), P (x 1,y 1),Q (x 2,y 2)由⎩⎨⎧=++=1122ny mx x y 得(m +n )x 2+2nx +n -1=0,23x 2+21y 2=1 3.。
椭圆焦点三角形面积公式有哪些性质
椭圆中的焦点三角形面积公式是S=b²·tan(θ/2)。
无论椭圆方程是x²/a²+y²/b²=1还是y²/a²+x²/b²=1;焦点三角形面积公式都是:S=b²·tan(θ/2);θ为焦点三角形的顶角。
如果是双曲线的话:S=b²/tan(θ/2)。
椭圆焦点三角形面积公式
椭圆中的焦点三角形面积公式是S=b²·tan(θ/2)。
分析过程如下:
无论椭圆方程是x²/a²+y²/b²=1还是y²/a²+x²/b²=1;
焦点三角形面积公式都是:S=b²·tan(θ/2);
θ为焦点三角形的顶角。
如果是双曲线的话:S=b²/tan(θ/2)
椭圆中的焦点三角形性质
(1)|PF1|+|PF2|=2a
(2)4c²=|PF1|²+|PF2|²-2|PF1|·|PF2|·cosθ
(3)周长=2a+2c
(4)面积=b^2tanθ/2
(∠F1PF2=θ)
(5)非焦距一侧的旁心在长轴上的射影是同侧端点
焦点三角形周长公式
因为顶点P总在椭圆上,
所以它一定是满足椭圆定义的。
这样的焦点三角形,
其周长就一定是定值。
l=PF1+PF2+F1F2+2a+2c。
今天我们研究利用椭圆的定义求轨迹方程.平面内与两定点的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆。
建立适当的坐标系,求出动点的轨迹方程。
先看例题:例:已知ABC ∆的周长是18,)0,4(),0,4(B A -,求点C 的轨迹方程。
注意:当y =0时,ABC 不构成三角形,所以不符合题意,即y ≠0。
归纳整理:椭圆定义:平面内与两定点的距离之和等于常数(大于21F F )的点的轨迹叫做椭圆.a MF MF 221=+,合理利用椭圆的定义,先定出轨迹名称,再利用椭圆性质求解,可以降低运算量. 两个定点在x 轴上,得轨迹方程22221(0)x y a b a b +=>> 两个定点在 y轴上,得轨迹方程22221(0)y x a b a b +=>>求轨迹方程时,要根据题意,特别注意变量的取值范围。
要留意是否有一些特殊点,或特殊区域不能取到. 再看一个例题,加深印象例:设j i R y x ,,,∈为直角坐标系内y x ,轴正方向的单位向量,,)2(j y i x a ++= j y i x b )2(-+=,且8||||=+b a .求点),(y x M 的轨迹C的方程。
解:由已知可得()()2,2,a x y b x y →→=+=-,,又因为8||||=+→→b a故轨迹C 的方程为2211216x y += 总结:1。
根据已知条件, 得出平面内动点与两定点的距离之和等于常数(大于两定点的距离),符合椭圆的定义.2. 建立适当的坐标系, 注意两个定点的位置,得到不同形式的椭圆的标准方程,同时注意变量的取值范围,求出动点的轨迹方程。
练习:1。
已知ABC ∆的三边长||,||,||CB AB CA 成等差数列,若点,A B 的坐标分别为(1,0),(1,0)-.求顶点C 的轨迹W的方程;2.已知圆221:(1)16F x y ++=,定点2(1,0)F .动圆M 过点F 2,且与圆F 1相内切.求点M 的轨迹C 的方程。
今天我们研究构造齐次方程求椭圆的离心率范围.离心率是描述椭圆“扁平程度”的一个重要数据,它常与“定义”、“焦点三角形”等联系在一起.求椭圆的离心率范围首先从定义出发,利用椭圆上点坐标的范围和焦三角形的三边大小关系,结合参数方程中三角函数有界性和均值不等式,有时也常常转化为一元二次方程利用判别式或者完全平方数(式),具体问题具体对待,贵在转化。
根据题设条件,借助a,b,c 之间的关系,找到a ,c 的不等式,得到关于e 的不等式,从而解得离心率e 的范围.先看例题:例:已知12F F 、是椭圆的两个焦点,P 为椭圆上一点,1260F PF ∠︒=求椭圆离心率的范围.解:设椭圆的焦距为2c ,由椭圆的定义知aPF PF 221=+.在21PF F ∆中,由余弦定理得 =221F F 21212221cos 2PF F PF PF PF PF ∠-+ =212221-PF PF PF PF +=(212213)PF PF PF PF -+ 所以22212122323344a PF PF PF PF c a =⎪⎪⎭⎫ ⎝⎛+≤=- 所以21,422≥≤a c c a 得.又10<<e ,故e 的取值范围是⎪⎭⎫⎢⎣⎡1,21归纳整理:离心率-—刻画椭圆的扁平程度.把椭圆的焦距与长轴长的比称为离心率.先借助a 、b 、c 之间的关系,找到a 、c 的不等式,再得到关于e 的不等式,解得离心率e 的范围。
再看一个例题,加深印象 例:已知椭圆22221x y a b +=(a 〉b >0)的左、右焦点分别为F 1(-c ,0),F 2(c ,0).若椭圆上存在点P 使1221sin sin a c PF F PF F =∠∠,则该椭圆的离心率的取值范围为________. 解:依题意及正弦定理得212121||sin ||sin PF PF F a PF PF F c ∠==∠(注意到P 不与F 1F 2共线),22||2||PF a a PF c =-,则有221||a c PF a -=,又因为2||a c PF a c -<<+,则2221||a c a PF a a c =+>+, 所以整理为:211e e +>+,(e +1)2>2,又因为椭圆离心率范围在0〈e 〈1,11e <<。
1 椭圆的焦点三角形
主标题:椭圆的焦点三角形 副标题:为学生详细的分析椭圆的焦点三角形的高考考点、命题方向以及规律总结。
关键词:椭圆,椭圆的焦点三角形
难度:3
重要程度:4
考点剖析:1.明白什么是椭圆的焦点三角形;
2.会解决有关椭圆的焦点三角形的问题; 命题方向:
1.从考查内容看,椭圆的焦点三角形是高考的重点,也是高考考查的热点.
2.从考查形式看,对椭圆的焦点三角形的考查常以选择题、填空题的形式出现,属中档题. 知识梳理
(1)椭圆上一点与两焦点构成的三角形,称为椭圆的焦点三角形,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理、|PF 1|+|PF 2|=2a ,得到a 、c 的关系. 规律总结: (1)对△F 1PF 2的处理方法⎩⎪⎨⎪⎧ 定义式的平方余弦定理
面积公式⇔
⎩⎪⎨⎪⎧ PF 1|+|PF 22=a 24c 2=|PF 1|2+|PF 2|2-2|PF 1||PF 2|cos θS △=12|PF 1||PF 2|sin θ。
椭圆中焦点三角形的面积公式椭圆中的焦点三角形,是由椭圆的两个焦点和椭圆上的任意一点构成的三角形。
我们可以通过椭圆的长轴、短轴和焦距来推导出该三角形的面积公式。
首先,我们需要知道椭圆的两个焦点的坐标。
设椭圆的长轴为2a,短轴为2b,焦距为2c,椭圆的中心点为O,则左右焦点的坐标分别为(-c,0)和(c,0)。
接下来,设椭圆上任意一点的坐标为(x,y),则该点到两个焦点的距离分别为:d1 = √((x+c)² + y²) 和d2 = √((x-c)² + y²)。
由于椭圆上的点满足椭圆方程,即(x²/a²) + (y²/b²) = 1,我们可以将其转化为:y = b√(1 - x²/a²)。
将上述两个方程代入三角形面积公式S = (1/2)×b×h,其中h为三角形的高,我们有:S = (1/2)×b×(2y) = b²√(1 - (x²/a²)) (①)根据椭圆的性质,我们可以发现椭圆的长轴与短轴满足a² = b² + c²,因此,将上述公式中的b代入为√(a² - c²)后,我们有:S = a²√(1 - (x²/a²)) - c²√(1 - (x²/a²)) = a²√(1 -(x²/a²))(1 - (c²/a²)) (②)上述公式(②) 即为椭圆中焦点三角形的面积公式。
注意到其中的(1 - (c²/a²))是一个小于1的系数,因此面积公式中的主要因素是椭圆的长轴和短轴,也就是椭圆的大小。
当椭圆是一个圆形时,也就是长轴等于短轴,面积公式中的系数即为1。
今天我们研究椭圆焦点三角形的一个面积公式。
椭圆上一点和两个焦点构成的三角形,称之为椭圆焦点三角形。
椭圆大小确定后,椭圆焦点三角形的面积只和焦半径的夹角有关。
先看例题:
例:在椭圆1
2
2
2
2
=
+
b
y
a
x
(a>b>0)中,焦点分别为1F、2F,点P是椭圆上任意一点,θ
=
∠
2
1
PF
F,则
2
tan
2
2
1
θ
b
S
PF
F
=
∆
.
证明:如图,记
2
2
1
1
|
|,
|
|r
PF
r
PF=
=,由椭圆的第一定义得
.
4
)
(
,
22
2
2
1
2
1
a
r
r
a
r
r=
+
∴
=
+
在△
2
1
PF
F中,由余弦定理得:
.
)
2(
cos
22
2
1
2
2
2
1
c
r r
r
r=
-
+θ
配方得:.
4
cos
2
2
)
(2
2
1
2
1
2
2
1
c
r r
r r
r
r=
-
-
+θ
即.
4
)
cos
1(
2
42
2
1
2c
r r
a=
+
-θ
.
cos
1
2
cos
1
)
(22
2
2
2
1θ
θ+
=
+
-
=
∴
b
c
a
r r
由任意三角形的面积公式得:
2
tan
2
cos
2
2
cos
2
sin
2
cos
1
sin
sin
2
1
2
2
2
2
2
1
2
1
θ
θ
θ
θ
θ
θ
θ⋅
=
⋅
=
+
⋅
=
=
∆
b
b
b
r r
S
PF
F
..
2
tan
2
2
1
θ
b
S
PF
F
=
∴
∆
同理可证,在椭圆1
2
2
2
2
=
+
b
x
a
y
(a>b>0)中,公式仍然成立.
归纳整理:
焦点三角形的面积公式:
2211||,||r PF r PF ==,12F PF θ∠=;
2tan 221θb S PF F =∆。
再看一个例题,加深印象
例:已知P 是椭圆19
252
2=+y x 上的点,1F 、2F 分别是椭圆的左、右焦点,若2
1||||212
1=⋅PF PF ,则△21PF F 的面积为( ) A. 33 B. 32 C. 3 D.
33 解:设θ=∠21PF F ,则2
1||||cos 212
1=⋅=PF PF θ,.60︒=∴θ 利用整理出的焦点三角形面积公式,直接可得:
.3330tan 92tan
221=︒==∴∆θb S PF F
所以本题选A.
总结: 1.椭圆焦点三角形是一个很重要的三角形,相关的知识有椭圆的定义、余弦定理等.
2.椭圆大小确定后,椭圆焦点三角形的面积只和焦半径的夹角有关.
练习:
1.椭圆124
492
2=+x y 上一点P 与椭圆两个焦点1F 、2F 的连线互相垂直,则△21PF F 的面积为( )
A. 20
B. 22
C. 28
D. 24
2.椭圆14
22
=+y x 的左右焦点为1F 、2F , P 是椭圆上一点,当△21PF F 的面积为1时,21PF PF ⋅的值为( )
A. 0
B. 1
C. 3
D. 6
答案:
1.
解:24,902
21=︒==∠b PF F θ, ∴2445tan 242tan
221=︒==∆θb S PF F .
故答案选D.
2. 解:设θ=∠21PF F ,Θ 12tan 2tan 221===∆θ
θb S PF F , ∴︒=︒=90,452θθ,021=⋅PF PF .
故答案选A.。