《微积分》期末复习试题a
- 格式:doc
- 大小:363.50 KB
- 文档页数:5
共 4 页,第 1 页 学生答题注意:勿超黑线两端;注意字迹工整。
共 4页,第 2 页) ()f x 在x a =处可导; (B )()f x 在x a =处不连续; (C)。
lim ()x af x →不存在 ; (D ) ()f x 在x a =处没有定义。
、设lnsin y x =,则dy =( )(A) 1cos x ; (B ) 1cos dx x;(C) cot x dx -; (D) cot x dx 。
6. 若()f x 的一个原函数为2x ,则()f x dx '=⎰( ) (A)12x C + (B ) 2x C + (C) x C + (D ) 2C +7、 1dx =⎰( )(A ) 2; (B ) 2π-; (C ) 0; (D )。
8、对-p 级数∑∞=11n p n ,下列说法正确的是( )(A ) 收敛; (B ) 发散;(C ) 1≥p 时,级数收敛; (D) 级数的收敛与p 的取值范围有关。
9、二元函数在(,)xy f x y ye =点0(1,1)p 可微,则(,)xy f x y ye =在0p 的全微 )00)()limx x f x x→-- .cos x ,求它的微分共 4 页,第 5 页 学生答题注意:勿超黑线两端;注意字迹工整。
共 4页,第 6 页5、(10分)求微分方程()x xe y dx xdy +=在初始条件1|0x y ==下的特解;6、(12分)判断级数211ln(1)n n ∞=+∑的敛散性。
《微积分》课程期末考试试卷参考答案及评分标准(A 卷,考试)一、单项选择(在备选答案中选出一个正确答案,并将其号码填在题目后的括号内.每题3分,共30分)1、(C );2、(D );3、(B);4、(A );5、(D);6、(B);7、(A );8、(D );9、(A); 10、(D)。
二、填空(每题4分,共20分)1、 bx n e a b )ln (;2、 同阶无穷小;3、3- ;4、0;5、2。
北京理工大学微积分a期末试题及答案一、选择题(每题5分,共30分)1. 若函数f(x)=x^2-4x+c,且f(2)=0,则c的值为多少?A. 0B. 2C. 4D. 6答案:C2. 极限lim(x→0) (sin x/x)的值为:A. 0B. 1C. -1D. 2答案:B3. 设函数f(x)=3x^3-2x^2+5x-7,其导数f'(x)为:A. 9x^2-4x+5B. 3x^2-4x+5C. 9x^2-4xD. 3x^2+5x-7答案:A4. 曲线y=x^3在点(1,1)处的切线方程为:A. y=3x-2B. y=3xC. y=xD. y=3x+2答案:B5. 定积分∫(0到1) x^2 dx的值为:A. 1/3B. 1/2C. 2/3D. 1/4答案:B6. 微分方程dy/dx+y=0的通解为:A. y=e^(-x)B. y=e^xC. y=e^(-2x)D. y=e^(2x)答案:A二、填空题(每题5分,共20分)1. 若函数f(x)=x^3-3x,其在x=1处的导数为______。
答案:02. 设函数f(x)=x^2+3x+2,其在x=-1处的定积分值为______。
答案:13. 函数y=ln(x)的导数为______。
答案:1/x4. 微分方程dy/dx-2y=0的通解为______。
答案:y=e^(2x)三、计算题(每题10分,共40分)1. 求函数f(x)=x^3-6x^2+11x-6的极值点。
答案:首先求导数f'(x)=3x^2-12x+11,令f'(x)=0,解得x=1或x=11/3。
通过二阶导数测试或分析f'(x)的符号变化,可得x=1为极大值点,x=11/3为极小值点。
2. 计算定积分∫(1到2) (x^3-2x+1) dx。
答案:首先求出被积函数的原函数F(x)=1/4x^4-x^2+x,然后计算F(2)-F(1)=5/4-2+2-1/4+1=1。
微积分期末考试试题及答案一、选择题(每题2分,共20分)1. 函数 \( f(x) = x^2 \) 在 \( x = 0 \) 处的导数是()A. 0B. 1C. 2D. -1答案:A2. 曲线 \( y = x^3 - 2x^2 + x \) 在 \( x = 1 \) 处的切线斜率是()A. 0B. 1C. -1D. 2答案:B3. 函数 \( f(x) = \sin(x) \) 的原函数是()A. \( -\cos(x) \)B. \( \cos(x) \)C. \( x - \sin(x) \)D. \( x + \sin(x) \)答案:A4. 若 \( \int_{0}^{1} f(x) \, dx = 2 \),且 \( f(x) = 3x^2 +1 \),则 \( \int_{0}^{1} x f(x) \, dx \) 等于()A. 3B. 4C. 5D. 6答案:C5. 函数 \( g(x) = \ln(x) \) 在 \( x > 0 \) 时的反导数是()A. \( e^x \)B. \( x^e \)C. \( e^{\ln(x)} \)D. \( x \ln(x) - x \)答案:D6. 若 \( \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \),则\( \lim_{x \to 0} \frac{\sin(2x)}{x} \) 等于()A. 2B. 1C. 4D. 0答案:A7. 函数 \( h(x) = e^x \) 的泰勒展开式在 \( x = 0 \) 处的前三项是()A. \( 1 + x + \frac{x^2}{2} \)B. \( 1 + x + \frac{x^2}{2!} \)C. \( 1 + x + \frac{x^3}{3!} \)D. \( 1 + x + \frac{x^2}{3!} \)答案:B8. 若 \( \frac{dy}{dx} = 2y \),且 \( y(0) = 1 \),则 \( y(x) \) 是()A. \( e^{2x} \)B. \( e^{-2x} \)C. \( 2^x \)D. \( 2^{-x} \)答案:A9. 函数 \( F(x) = \int_{0}^{x} e^t \, dt \) 的导数是()A. \( e^x \)B. \( e^0 \)C. \( x \cdot e^x \)D. \( e^0 \cdot x \)答案:A10. 曲线 \( y = x^2 + 3x \) 与直线 \( y = 6x \) 交点的横坐标是()A. 0B. 3C. -1D. 2答案:C二、填空题(每空3分,共15分)11. 若 \( f(x) = 2x - 1 \),则 \( f''(x) \) 等于 _________。
微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。
《微积分》期末考试试卷附答案一、填空题(共5小题,每小题4分,共20分)1、已知2)(x e x f =,x x f -=1)]([ϕ,且0)(≥x ϕ,则=)(x ϕ2、已知a 为常数,1)12(lim 2=+-+∞→ax x x x ,则=a .3、已知2)1(='f ,则=+-+→xx f x f x )1()31(lim 0 . 4、函数)4)(3)(2)(1()(----=x x x x x f 的拐点数为 . 5、=⎰xx dx 22cos sin .二、选择题(共5小题,每小题4分,共20分)1、设)(x f 为偶函数,)(x ϕ为奇函数,且)]([x f ϕ有意义,则)]([x f ϕ是(A) 偶函数; (B) 奇函数;(C) 非奇非偶函数; (D) 可能奇函数也可能偶函数.2、0=x 是函数⎪⎩⎪⎨⎧=≠-=.0 ,0,0 ,cos 1)(2x x x x x f 的(A) 跳跃间断点; (B) 连续点; (C) 振荡间断点; (D) 可去间断点.3、若函数)(x f 在0x 处不可导,则下列说法正确的是(A) )(x f 在0x 处一定不连续; (B) )(x f 在0x 处一定不可微;(C) )(x f 在0x 处的左极限与右极限必有一个不存在;(D) )(x f 在0x 处的左导数与右导数必有一个不存在.4、仅考虑收益与成本的情况下,获得最大利润的必要条件是:(A) )()(Q C Q R ''>''; (B) )()(Q C Q R ''<''; (C) )()(Q C Q R ''='';(D) )()(Q C Q R '='.5、若函数)(x f '存在原函数,下列错误的等式是: (A) )()(x f dx x f dx d ⎰=; (B) )()(x f dx x f ⎰=';(C) dx x f dx x f d )()(⎰=; (D) C x f x df +=⎰)()(.三、计算题(共4小题,每小题15分,共60分)1、设x x f x x-=--422)2(,求)2(+x f .2、计算)1cos(lim n n n -+∞→.3、求极限)21(lim 222n n n n n n n n ++++++∞→ .4、求极限xx x x cos sec )1ln(lim 20-+→.微积分参考答案:一、填空1. 答案:)1ln(x -2. 答案:13. 答案:44. 答案:25. 答案:C x x +-cot tan二、选择1. A2. D3. B4. D5. B三、计算题1、设x x f x x -=--422)2(,求)2(+x f .答案:42)2(42--=++x x f xx解:令2-=x t ,则 2222)2(2)(48444)2(4)2(222--=+-=+-=---+++-+t t t t f t t t t t t ,于是 42422)2(2)2(44444)2(222--=--=-+-=++-++-+x x x x f x x x x x .2. 计算)1cos(lim n n n -+∞→. 答案:1 解:nn n n n n ++=-+∞→∞→11cos lim )1cos(lim 11010cos 1111cos lim =++=++=∞→nn n .3、求极限)21(lim 222n n n n n n n n ++++++∞→ . 答案:1解:由于1)21(2222222+≤++++++≤+n n n n n n n n n n n n , 而1111lim lim 22=+=+∞→∞→n n n n n n , 1111lim 1lim 222=+=+∞→∞→n n n n n , 所以1)21(lim 222=++++++∞→n n n n n n n n .4、求极限xx x x cos sec )1ln(lim 20-+→. 答案:1 解:x x x xx x x x x x x x x x cos sin 212lim sin )1ln(lim cos lim cos sec )1ln(lim 20220020+=+=-+→→→→ 1sin lim cos )1(1lim020=+=→→x x x x x x .。
微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1.已知则对于,总存在δ>0,使得当,)(lim 1A x f x =+→0>∀ε时,恒有│ƒ(x )─A│< ε。
2.已知,则a = ,b =2235lim 2=-++∞→n bn an n 。
3.若当时,α与β 是等价无穷小量,则 。
0x x →=-→ββα0limx x 4.若f (x )在点x = a 处连续,则 。
=→)(lim x f ax 5.的连续区间是 。
)ln(arcsin )(x x f =6.设函数y =ƒ(x )在x 0点可导,则______________。
=-+→hx f h x f h )()3(lim0007.曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. 。
='⎰))((dx x f x d 9.设总收益函数和总成本函数分别为,,则当利润最大时产2224Q Q R -=52+=Q C 量是。
Q 二. 单项选择题 (每小题2分,共18分)1.若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则()。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2.设则为函数的( )。
11)(-=x arctg x f 1=x )(x f(A) 可去间断点(B) 跳跃间断点 (C) 无穷型间断点(D) 连续点3.( )。
=+-∞→13)11(lim x x x(A) 1 (B) ∞(C)(D) 2e 3e4.对需求函数,需求价格弹性。
当价格( )时,5p eQ -=5pE d -==p 需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6(D) 105.假设在点的某邻域内(可以除外)存)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→得0x 0x 在,又a 是常数,则下列结论正确的是( )。
2021⭌᮶㢔⫕➶᮷ᱤAᱥᱤ㔋ᱥ⒴㋜ㄯⶌ㗎㗎㝘(2022年1⽉3⽇,⽤时120分钟)专业班级学号姓名题号⼀⼆三四总分分数㮥ᮢ㫍㵗㝘(ょ㝘4➶ᱨ⤎16➶)阅卷⼈得分1.下列说法正确的是(D)A.有界数列⼀定收敛;B.有限区间上的连续函数⼀定⼀致连续;C.函数f在R上处处可导,它的导函数f1⼀定是连续的;D.有界数集⼀定存在上确界。
2.下列哪个极限不存在(B)A.limxÑ0x sin1xB.limxÑ0D(x),其中D(x)是Dirichlet函数C.limxÑ0|sgn(x)|D.limnÑ+8(1+122+¨¨¨+1n2)3.当xÑ0时,下⾯哪个函数不是与y=x等阶的⽆穷⼩(D)A.sin xB.arcsin xC.ln(1+x)D.1´cos x4.函数f(x)定义在R上,在x0处可导⽽且f(x0)ą0。
下列说法错误的是(A)A.函数f(x)在x0处的微分是f1(x0);B.函数f(x)在x0处连续;C.存在x0的⼀个邻域U(x0),使得在该邻域内f(x)ą0;D.当xÑx0时,f(x)=f(x0)+o(1)。
✠ᮢ㝤ⶥ㝘(ょ㝘4➶ᱨ⤎20➶)阅卷⼈得分5.集合A=t(1+1n)n|n P N,ną0u,那么inf A=2,sup A=e。
6.函数φ(t),ψ(t)在R上⼆阶可导,⽽且φ1(t)‰0。
由参数⽅程x=φ(t),y=ψ(t)确定了函数关系y=y(x)。
那么d yd x =ψ1(t)/φ1(t),d2yd x2=ψ2(t)φ1(t)´ψ1(t)φ2(t)φ13(t)。
7.函数y=2x3+3x2´12x+18在区间[´3,3]上的最⼤值是63,最⼩值是11。
8.函数y=x4+8x3+1图像的垂直渐近线是x=´1,斜渐近线是y=x。
9.函数f(x)在R上的连续,F(x)=şxf(x+t)dt,那么F1(x)=2f(2x)´f(x)。
微积分试题 (A 卷)一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A │< ε。
2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。
3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是 。
6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. ='⎰))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。
二. 单项选择题 (每小题2分,共18分) 1. 若数列{x n }在a 的邻域(a -,a +)内有无穷多个点,则( )。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。
(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点 (D) 连续点 3. =+-∞→13)11(lim x x x( )。
(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。
D 区大一《微积分》(二)期末复习题 A一、填空题1、复合函数x y 5sin 4=可分解为______________________;2、若y=f (x )的定义域是[0,1],则)(2x f 的定义域是__________;3、=-→)13(lim 1x x ___4、=++→21lim 1x x x ____5、=+∞→22342lim x x x ____6、=-+-→265lim 22x x x x _______; 7、=++-∞→3223lim 232x x x x ___8、=→x x x 5sin lim 0_ 9.=→x x x ωsin lim 0_____10、=-→xx x x sin tan lim 0______; 11、=→xx x tan lim 0_____12.x x x x 21lim )(+∞→=____ 13.x x x 10)1lim -→( = ___ 14、x x x )81lim -∞→( = __; 15、43)31lim +∞→+x x x ( = ______; 16x x x 2)21lim +∞→( = ______; 17、函数2)2(1+=x y 的间断点是______;是第______类间断点; 18、函数2212)(2>≤⎩⎨⎧-=x x x x x f ,当2→x 时的左极限是______; 右极限是______;在2=x 处______;(填是否连续) 19、函数3313)(≥<⎩⎨⎧-=x x x x x f ,当3→x 时的左极限是______; 右极限是______;极限是______;在3=x 处______;(填是否连续)20、函数2)1(1-=x y 当______时,是无穷大量;当______时,是无穷小量; 21、函数11)2(1++-=x x y 的间断点是______和______; 22、函数)(x f y =在点x 处的导数)(x f '表示曲线)(x f y =在点(x ,y )处的______和______;23、曲线x y ln =在点M (e ,1)处的切线方程是____________ ;24、若函数)(x f y =在点0x 处可导,则)(x f y =在点0x 处必______,且=→)(lim 0x f x x ______;25、函数112)(3++=x x x f 在定义域内是单调______的;26、函数6)1()(-=x x f 的凹区间为________ ;27、已知函数)(x f y =在点0x 处可导,且)(0x f 是极小值,则=')(0x f ___ ;28、若点(1,4)是曲线23bx ax y +=的拐点,则a =_____,=b ___ ;29、已知函数F (x )和G (x )都是函数f (x )的原函数,且G (x )=2x e ,F (0)=0,则F(x )=________ ;30、已知不定积分⎰+=,)()(C x F dx x f 则⎰=dx x F x f )()(________ ;31、根据定积分的几何意义可知:⎰=-1021dx x ____;32、已知0)2(10⎰=+dx b x ,则b=________ ; 33、已知连续函数)(x f 是奇函数,且1)(10-=⎰dx x f ,则⎰-=01)(dx x f ________ ; 34、曲线y=x 3在点A(2,8)处的切线斜率为_________;二、选择题1、=→xx e 10lim ( )A 0; B -∞; C +∞; D 不存在。
2、=--→1)1sin(lim21x x x ( )A 1; B -1; C 21; D 21- 3、下列等式中,成立的是( )A e n n n =+∞→2)11lim (B e n n n =+∞→)21lim (C e n n n =++∞→2)11lim (D e n n n =+∞→)211lim ( 4、函数)(x f y =在点0x 处连续是在该点处可导的( )A 必要但不充分条件B 充分但不必要条件C 充要条件D 无关条件5、已知函数)(x f y =在任意点x 处的微分,12x dx dy +=且0)0(=f ,则=)(x f ( ) A )1ln(2x +; B 21x x +; C arctanx ; D arcsinx ; 6、函数)(x f y =在点0x 可导是在该点可微的( )A 必要但不充分条件B 充分但不必要条件C 充要条件D 无关条件7、函数)(x f y =在点0x 处的导数0)(0='x f 的几何意义是曲线)(x f y =在点),(00y x 处的切线与x 轴( )A 垂直; B 平行; C 夹角是锐角; D 夹角是钝角。
8、下列函数中,在区间[-1,1]上满足罗尔定理条件的是( )A 21)(xx f =; B ||)(x x f =; C 3)(x x f =; D 2)(2-=x x f ; 9、函数3443)(x x x f +=的单调增区间为( )A )1,(--∞B )0,(-∞C ),1(+∞-D ),0(+∞10、函数x x x f 12)(3-=在闭区间[-3,3]上的最大值在点( )处取得。
A x=-3;B x=3 ;C x=-2;D x=211、设M 和m 分别是函数)(x f y =在区间[a ,b] 上的最大值和最小值,若M=m ,则)(x f '=( )A 0; B 1; C 小于0; D 以上都不对。
12、在区间),0(+∞内,曲线112)(3++=x x x f 是( )A 上升且是凸的B 上升且是凹的C 下降且是凹的D 下降且是凸的13、若3x 是)(x f 的一个原函数,则)(x f '=( )A 441x ;B 23x ;C x 6;D C x +441; 14、若⎰+=,)()(C x F dx x f 则⎰=dx e f e x x )(( )A F (x )+C ;BC x F e x +)(; C C e F x +)(;D C e F e x x +)(15、若)(x f 是区间[a ,b] 上( )的函数,则)(x f 在区间[a ,b] 上一定可积。
A 有有限个间断点;B 有界;C 分段;D 连续。
16、下列式子中,( )是错误的。
A )(])([x f dx x f ='⎰ B⎰=')()(x f dx x f C ⎰='b a dx x f 0])([ D ⎰-='b a a f b f dx x f )()()(17、=→x x x 5sin 3sin lim 0( )A 35 B. 0 C. 53 D. ∞ 18. =+→x x x 10)41lim (( ) A. e 4- B. e 4 C. e 41- D. e 41 19、=+∞→x x x2)21(lim ( ) A. e B. e 2 C. 1 D. e 420、设f(x)= x 3- x 2+x+1,则y ''(0)=( ) A 0 B 1 C 2 D -221.函数y=x 2+1在区间(-1,1)内的量大值是( )A. 0 B. 1 C. 2 D. 不存在22.设y=f(-2x),则='y ( )A )2(x f ' B )2(x f -'- C )2(x f -' D )2(2x f -'-23.设y=lnx,则y ''=( )A x 1 B -21x C 21xD -x 2 24、设在区间(a,b )内x f (')>0, )(x f ''<0,则在区间(a,b )内,曲线y=f(x)的图形( );A .下降且为凸的 B.上升且为凸的 C.下降且为凹的 D.上升且为凹的三、解答题1、求下列函数的导数和微分(1)5)12(+=x y (2)522)(a x y += (3)x y ln ln =(4)22sin sin x x y +=(5)x arc e y cot = (6)x y tan ln =(7)522)(x a y -=2、求下列函数的不定积分和定积分(1)⎰-dx x x )3(3 (2)⎰+-dx x x )536(2 (3)⎰+dx x )32((4)⎰+dx x 121 (5) ⎰-dx x 141 (6)⎰dx e x 3 (7)⎰xdx 5sin (8)⎰+dx ee x x21 (10)⎰dx xe x (11)⎰xdx ln (12)⎰xdx x cos (13) (13)⎰-102)2(dx x x (14)⎰--2121211dx x (15)⎰+1011dx x3、求函数163)(24-+-=x x x f 在区间[-2,2]上的最大值和最小值4、求函数41862)(23+--=x x x x f 在区间[-4,4]上的最大值和最小值5、某厂每批生产某种x 个单位的费用C (x )=5X+200(元),所得收入R (x )=201.010x x -(元),问每批应生产多少单位时,才能使利润最大?6、欲用围墙围成面积为216平方米的矩形,且在正中间砌一堵墙,问长、宽如何取,才使材料最省?7、作下列函数(1)23123+-=x x y (2)33x x y -=的图形 8、求下面各题中平面图形的面积(1)由曲线21x y +=,直线1,0,0===x x y 所围成的图形(2)由曲线2x y =,x y =2所围成的图形(3)由直线x y =,1-=x y ,0=y ,2=y 所围成的图形。