高考数学复习点拨 评说回归直线方程的方方面面‘
- 格式:pdf
- 大小:303.64 KB
- 文档页数:12
例析线性回归直线方程的求法山东 杨道叶一、求回归直线方程的步骤: 第一步:列表ix ,iy ,i ix y ;第二步:计算x ,y ,21n ii x =∑,21n ii y =∑,1ni ii x y =∑;第三步:代入公式计算b ,a 的值; 第四步:写出直线方程。
二、范例剖析例1 测地某地10对父子身高(单位:英寸)如下:如果x 与y 之间具有线性相关关系,求回归直线方程;如果父亲的身高为78英寸,试估计儿子的身高。
分析:对于两个变量,在确定具有线性相关关系后,可以利用“最小二乘法”来求回归直线方程。
为了使计算更加有条理,我们通过制作表格来先计算出1ni i x =∑,1ni i y =∑,21nii x =∑,21nii y =∑和1ni i i x y =∑;再计算出11ni i x x n ==∑,211n i i y y n ==∑,再利用公式1221ni ii nii x y nx yb xnx==-=-∑∑和a y bx =-来计算回归系数,最后写出回归直线方程y bx a =+。
解析:先将两个变量的数字在表中计算出来,如下表所示:由上表可得66866.810x ==,670.167.0110y ==,102144794ii x==∑,102144941.93ii y==∑,10144842.4i i i x y ==∑。
代入公式得244842.41066.867.010.4646447941066.8b -⨯⨯=≈-⨯,67.010.464666.835.975a =-⨯≈,故所求回归直线方程为0.464635.945y x =+。
当78x =时,0.46467835.97572.2138y =⨯+=,所以当父亲的身高为78英寸时,估计儿子的身高约为72.2138英寸。
评注:注意回归直线方程中一次项系数为b ,常数项为a ,这与一次函数的习惯表示不同。
例2 有一台机床可以按各种不同的速度运转,其加工的零件有一些是二级品,每小时生产的二级品零件的数量随机床运转的速度而变化。
高三数学回归方程知识点回归方程是高三数学中的一个重要概念,它在数据分析和预测中起到了至关重要的作用。
了解回归方程的知识点对于高考数学复习和应用都非常重要。
本文将为你介绍高三数学回归方程的知识点,帮助你更好地掌握这一概念。
一、回归方程的定义回归方程是用于描述两个或更多个变量之间关系的数学模型。
它可以通过已知数据点的坐标来找到最佳拟合曲线或直线,进而进行预测和分析。
二、一元线性回归方程1. 简介一元线性回归方程是最简单的回归方程形式,它描述了两个变量之间的线性关系。
方程的一般形式为:y = ax + b,其中y是因变量,x是自变量,a和b是常数。
2. 最小二乘法求解一元线性回归方程的常用方法是最小二乘法。
最小二乘法通过最小化实际观测值与回归方程预测值之间的误差平方和,来确定最佳拟合直线的斜率和截距。
三、多元线性回归方程1. 简介多元线性回归方程是一种描述多个自变量与因变量之间线性关系的模型。
方程的一般形式为:y = a1x1 + a2x2 + ... + anx + b,其中y是因变量,x1、x2、...、xn是自变量,a1、a2、...、an和b是常数。
2. 多元线性回归方程的求解多元线性回归方程的求解可以使用矩阵运算的方法,通过求解正规方程组来得到最佳拟合曲面或超平面的系数。
四、非线性回归方程1. 简介非线性回归方程是描述自变量和因变量之间非线性关系的模型。
在实际问题中,很多现象和数据并不符合线性关系,因此非线性回归方程具有广泛的应用。
2. 非线性回归方程的求解求解非线性回归方程的方法有很多种,常用的包括最小二乘法、曲线拟合法和参数估计法等。
具体选择哪种方法取决于具体问题和数据的特点。
五、回归方程的应用回归方程在实际问题中有广泛的应用。
它可以用于数据分析、预测和模型建立等方面,帮助我们了解变量之间的关系并进行科学的决策和预测。
六、总结回归方程是高三数学中的一个重要概念,掌握回归方程的知识点对于数学复习和问题解决至关重要。
高考回归方程的知识点高考是每个学生都经历的重要考试,它对于一个学生的未来起着决定性的作用。
而高考数学中的回归方程是一个比较重要的知识点,它不仅在数学中有着广泛的应用,而且在实际生活中也有着很多的应用价值。
下面我们就来详细了解一下高考回归方程的知识点。
1. 回归方程的概念回归方程是一种用于揭示自变量与因变量之间关系的数学模型。
在数学中,通常用直线或曲线来表示回归方程。
回归分析主要用于统计数据的分析和预测。
通过回归方程,我们可以根据已有的数据来预测未知的数据。
2. 简单线性回归方程简单线性回归方程是回归方程中最简单的一种形式。
它表示两个变量之间的线性关系。
简单线性回归方程的一般形式为:y = ax + b,其中y是因变量,x是自变量,a和b是常数。
a代表的是变量y随着变量x的变化而变化的速率,b代表的是y在x=0时的值。
3. 多元线性回归方程多元线性回归方程是回归方程中常用的一种形式。
它表示多个自变量与因变量之间的线性关系。
多元线性回归方程的一般形式为:y =a₁x₁ + a₂x₂ + ... + anxn + b,其中y是因变量,x₁、x₂、...、xn是自变量,a₁、a₂、...、an和b是常数。
多元线性回归方程可以用来分析多个自变量对于因变量的影响程度。
4. 回归方程的确定系数确定系数是用来衡量回归方程对于实际数据拟合程度的指标。
它的取值范围在0到1之间,越接近1表示回归方程对数据的拟合程度越好。
确定系数的计算公式为:R² = 1 - (SSE/SST),其中SSE表示残差平方和,SST表示总平方和。
通过计算确定系数,我们可以评估回归方程的质量,并对预测结果进行准确性评估。
5. 回归方程在实际生活中的应用回归方程在实际生活中有着广泛的应用。
例如,在经济学中,可以使用回归方程来分析商品价格与供需关系,从而预测价格变动趋势;在医学研究中,可以使用回归方程分析药物剂量与疗效之间的关系,从而确定最佳剂量;在市场营销中,可以使用回归方程来分析消费者行为与销售量之间的关系,从而制定合理的市场营销策略。
高三回归方程知识点汇总回归方程是数学中重要的数学模型,用于描述变量之间的关系和进行预测。
在高三阶段,学生需要掌握回归分析的基本知识和技巧。
本文将对高三数学中回归方程的知识点进行全面汇总,并提供一些实例和应用场景供参考。
一、线性回归方程1.1 线性关系与线性回归方程线性关系指的是两个变量之间存在直线关系,可用一条直线来近似表示。
线性回归方程是线性关系的数学表达式,常用形式为 y = kx + b,其中 k 表示直线的斜率,b 表示直线在 y 轴上的截距。
1.2 最小二乘法最小二乘法是确定线性回归方程中斜率 k 和截距 b 的常用方法。
它通过最小化观测值与回归直线的拟合误差平方和,找到最佳的拟合直线。
1.3 直线拟合与误差分析直线拟合是利用线性回归方程将观测数据点拟合到一条直线上。
误差分析可以评估回归方程的拟合优度,常用指标有决定系数R²、平均绝对误差 MAE 等。
二、非线性回归方程2.1 非线性关系与非线性回归方程非线性关系指的是两个变量之间的关系不能用一条直线来近似表示,而是需要使用曲线或其他非线性形式进行描述。
非线性回归方程可以是多项式方程、指数方程、对数方程等形式。
2.2 最小二乘法拟合非线性回归方程与线性回归相似,最小二乘法也可以用于拟合非线性回归方程。
但由于非线性方程的复杂性,通常需要借助计算工具进行求解,例如利用数学软件进行非线性拟合。
2.3 模型选择和拟合优度检验在选择非线性回归模型时,需要综合考虑模型的拟合优度和实际应用的需求。
常见的方法包括比较不同模型的决定系数 R²、检验残差分布等。
三、应用实例3.1 人口增长模型以某地区的人口数据为例,通过拟合合适的回归方程,可以预测未来的人口增长趋势,为城市规划和社会发展提供决策依据。
3.2 经济增长模型回归方程可以用于分析经济数据,例如拟合国民生产总值与时间的关系,预测未来的经济增长态势,为政府制定经济政策提供参考。
3.3 科学实验数据分析在科学研究中,常常需要利用回归方程对实验数据进行拟合和分析。
高三数学回归分析知识点回归分析是数学中一种重要的数据分析方法,主要用于研究变量之间的关系以及预测未来的趋势。
它在高三数学中也是一个重要的知识点。
本文将介绍高三数学回归分析的基本概念、方法和应用。
一、回归分析的基本概念回归分析是通过对一组相关变量的观测数据进行统计分析,建立一个数学模型,从而揭示变量之间的关系和规律。
在回归分析中,通常将一个或多个自变量与一个因变量进行关联,通过构建回归方程来描述这种关系。
回归分析可以帮助我们理解和预测变量之间的相互作用。
二、回归分析的方法1. 简单线性回归分析简单线性回归分析是回归分析的最基本形式,它研究两个变量之间的关系。
在简单线性回归中,假设自变量和因变量之间存在一个线性关系。
通过最小化残差平方和来确定最佳拟合直线,从而建立回归方程。
2. 多元线性回归分析多元线性回归分析是简单线性回归的扩展,它研究多个自变量与一个因变量之间的关系。
在多元线性回归中,需要选择合适的自变量,并进行变量筛选和模型检验,以建立具有良好拟合度和预测能力的回归方程。
3. 非线性回归分析非线性回归分析是在回归分析的基础上,考虑变量之间的非线性关系。
它通常通过将自变量进行变换或引入非线性项来拟合数据。
非线性回归可以更好地适应非线性数据的变化,提高模型的拟合度。
三、回归分析的应用1. 预测分析回归分析在预测分析中有着广泛的应用。
通过建立回归模型,我们可以根据已有的数据来预测未来的趋势和结果。
这在金融、经济学、市场营销等领域都有重要的应用价值。
2. 产品开发和优化回归分析可以用于产品开发和优化过程中。
通过分析自变量与因变量之间的关系,可以确定对于产品性能的重要影响因素,从而改进产品的设计和质量。
3. 策略制定在管理和决策层面,回归分析可以帮助制定策略和决策。
通过分析不同变量之间的关系,可以找到最佳决策方案,并预测其效果。
四、总结高三数学回归分析是一门重要的知识点,它可以帮助我们理解和分析变量之间的关系,并应用于实际问题的解决。
概率与统计 专题五:回归直线方程一、知识储备 1.两个变量线性相关(1)散点图:将样本中n 个数据点(,)i i x y (i =1,2,…,n )描在平面直角坐标系中得到的图形. (2)正相关与负相关①正相关:散点图中的点散布在从左下角到右上角的区域. ②负相关:散点图中的点散布在从左上角到右下角的区域. 2.回归直线的方程(1)回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.(2)回归方程:回归直线对应的方程叫回归直线的方程,简称回归方程. (3)回归方程的推导过程:①假设已经得到两个具有线性相关关系的变量的一组数据11(,)x y ,22(,)x y ,33(,)xy (,)n n x y .②设所求回归方程为y bx a =+,其中,a b 是待定参数. ③由最小二乘法得1122211()(),()nnii i ii i nniii i xx y y x ynx yb a y bx xx xnx ====---===---∑∑∑∑其中,b 是回归方程的斜率,a 是截距. 二、例题讲解1.(2022·哈尔滨市呼兰区第一中学校高三模拟预测(文))十三届全国人大三次会议表决通过了《中华人民共和国民法典》这部法律自2021年1月1日起施行,某市相关部门进行法律宣传,某宣传小分队记录了前5周每周普及宣传的人数与时间的数据,得到下表:(1)若可用线性回归模型拟合y 与x 的关系,求y 关于x 的线性回归方程; (2)利用(1)的回归方程,预测该宣传小分队第7周普及宣传(民法典)的人数.参考公式及数据:回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为()()()121ˆniii nii x x y y b x x ==--=-∑∑,ˆa y bx=-,()()51430i ii x x y y =--=∑.【答案】(1)4341y x =+;(2)预测该宣传小分队第7周普及宣传《民法典》的人数为342. 【分析】(1)求出x 、y 的值,将表格中的数据代入最小二乘法公式,求出b 、a 的值,可得出y 关于x 的线性回归方程;(2)将7x =代入回归直线方程,可得出结果. 【详解】(1)由题意得()11234535x =++++=,()1901201702102601705y =++++=, ()()()()()()52222221132333435310i i x x=-=-+-+-+-+-=∑,所以()()()51521430ˆ4310iii i i x x y y bx x==--===-∑∑,所以ˆ17043341a y bx=-=-⨯=, 所以线性回归方程为4341y x =+;(2)由(1)知4341y x =+,令7x =,解得43741342y =⨯+=, 故预测该宣传小分队第7周普及宣传《民法典》的人数为342.2.(2022·合肥市第六中学高三模拟预测(文))树木根部半径与树木的高度呈正相关,即树木根部越粗,树木的高度也就越高.某块山地上种植了A 树木,某农科所为了研究A 树木的根部半径与树木的高度之间的关系,从这些地块中用简单随机抽样的方法抽取6棵A 树木,调查得到A 树木根部半径x (单位:米)与A 树木高度y (单位:米)的相关数据如表所示:(1)求y 关于x 的线性回归方程;(2)对(1)中得到的回归方程进行残差分析,若某A 树木的残差为零则认为该树木“长势标准”,在此片树木中随机抽取1棵A 树木,估计这棵树木“长势标准”的概率.参考公式:回归直线方程为y bx a =+,其中()()()1122211n ni iiii i b nnixii i x y nxy x x y y xnx x ==-==---==--∑∑∑∑,a y bx =-.【答案】(1)ˆ 20.9y x =+;(2)12【分析】(1)由最小二乘法先求样本点中心(),x y ,再代入公式求ˆ2b=,即可得到答案; (2)先计算6棵A 树木中残差为零的有3棵,占比为3162=,即可得到答案;【详解】(1)由1(0.10.20.30.40.50.6)0.356x =⨯+++++=,1(1.1 1.3 1.6 1.5 2.0 2.1) 1.66y =⨯+++++=,610.1 1.10.2 1.30.3 1.60.4 1.50.5 2.00.6 2.1 3.71i ii x y==⨯+⨯+⨯+⨯+⨯+⨯=∑,6222222210.10.20.30.40.50.60.91ii x==+++++=∑,有62261216 3.7160.35 1.6ˆ20.9160.356i ii ii x yxybxx ==--⨯⨯===-⨯-∑∑,ˆˆ 1.6020.350.9ay bx =-=-⨯=, 故y 关于x 的回归方程为:ˆ 20.9yx =+. (2)当0.1x =时,ˆ20.10.9 1.1y=⨯+=,残差为1.1 1.10-=, 当0.2x =时,ˆ20.20.9 1.3y=⨯+=,残差为1.3 1.30-=, 当0.3x =时,ˆ20.30.9 1.5y=⨯+=,残差为1.6 1.50.1-=, 当0.4x =时,ˆ20.40.9 1.7y=⨯+=,残差为1.5 1.70.2-=-, 当0.5x =时,ˆ20.50.9 1.9y=⨯+=,残差为2.0 1.90.1-=, 当0.6x =时,ˆ20.60.9 2.1y=⨯+=,残差为2.1 2.10-=, 由这6棵A 树木中残差为零的有3棵,占比为3162=,∴这棵树木“长势标准”的概率为12.1.(2022·湖南师大附中高三月考)今年五月,某医院健康管理中心为了调查成年人体内某种自身免疫力指标,从在本院体检的人群中随机抽取了100人,按其免疫力指标分成如下五组:(10,20],(20,30],(30,40],(40,50],(50,60],其频率分布直方图如图1所示.今年六月,某医药研究所研发了一种疫苗,对提高该免疫力有显著效果.经临床检测,将自身免疫力指标比较低的成年人分为五组,各组分别按不同剂量注射疫苗后,其免疫力指标y与疫苗注射量x个单位具有相关关系,样本数据的散点图如图2所示.(1)健管中心从自身免疫力指标在(40,60]内的样本中随机抽取3人调查其饮食习惯,记X表示这3人中免疫力指标在(40,50]内的人数,求X的分布列和数学期望;(2)由于大剂量注射疫苗会对身体产生一定的副作用,医学部门设定:自身免疫力指标较低的成年人注射疫苗后,其免疫力指标不应超过普通成年人群自身免疫力指标平均值的3倍.以健管中心抽取的100人作为普通人群的样本,据此估计疫苗注射量不应超过多少个单位.附:对于一组样本数据()()()1122,,,,,,n nx y x y x y⋅⋅⋅,其回归直线ˆy bx a=+的斜率和截距的最小二乘估计值分别为()()()1122211,nniii ii i nniii i x x yy x ynxyb a y bx x x xnx====---===---∑∑∑∑. 【答案】(1)分布列见解析,125;(2)疫苗注射量不应超过80个单位. 【分析】(1)根据频率分布直方图分别求出自身免疫力指标在(40,50]内和在(50,60]内的人数,写出X 的可能取值,求出对应概率,即可写出分布列,再根据期望公式即可求得数学期望;(2)根据最小二乘法求得回归方程,然后求出免疫力指标的平均值,根据题意列出不等式,从而可得答案. 【详解】解:(1)由直方图知,自身免疫力指标在(40,50]内的人数为0.008101008⨯⨯=,在(50,60]内的人数为0.002101002⨯⨯=,则X 的可能取值为1,2,3.其中122130828282233101010177(1),(2),(3)151515C C C C C C P X P X P X C C C =========.所以X 的分布列为()177121231515155E X =⨯+⨯+⨯=. (2)由散点图知,5组样本数据(,)x y 分别为(10,30),(30,50),(50,60),(70,70),(90,90),且x 与y 具有线性相关关系. 因为50,60x y ==,则22222210303050506070709090550607103050709055010b ⨯+⨯+⨯+⨯+⨯-⨯⨯==++++-⨯,760502510a =-⨯=,所以回归直线方程为ˆ0.725yx =+. 由直方图知,免疫力指标的平均值为26402482152535455527100100100100100⨯+⨯+⨯+⨯+⨯=. 由27381ˆy≤⨯=,得0.72581x +≤,解得80x ≤. 据此估计,疫苗注射量不应超过80个单位.2.(2022·安徽师范大学附属中学(理))根据国际疫情形势以及传染病防控的经验,加快新冠病毒疫苗接种是当前有力的防控手段,我国正在安全、有序加快推进疫苗接种工作,某乡村采取通知公告、微信推送、广播播放、条幅宣传等形式,积极开展疫苗接种社会宣传工作,消除群众疑虑,提高新冠疫苗接种率,让群众充分地认识到了疫苗接种的重要作用,自宣传开始后村干部统计了本村200名居民(未接种)的一个样本,5天内每天新接种疫苗的情况,如下统计表:(1)建立y 关于x 的线性回归方程;(2)假设全村共计2000名居民(均未接种过疫苗),用样本估计总体来预测该村80%居民接种新冠疫苗需要几天?参考公式:回归方程y bx a =+中斜率和截距的最小二乘估计公式分别为:1221ˆi ii nii x ynxybxnx π==-=-∑∑,ˆˆay bx =-. 【答案】(1)222955y x =+;(2)7. 【分析】(1)根据公式求线性回归方程即可; (2)根据线性回归方程可设222955n a n ,求出67,S S ,与200080%1600⨯=比较即可求解. 【详解】 (1)1234535x ++++==,1015192328195y ++++==,则51522222222110305792140531922ˆ12345535i ii ii x y nxybxnx ==-++++-⨯⨯===++++-⨯-∑∑,222919355ˆa =-⨯=,故y 关于x 的线性回归方程222955y x =+. (2)设222955na n ,数列{}n a 的前n 项和为n S ,易知数列{}n a 是等差数列, 则()12222922291155558225n n n a a S n n n n⎛⎫+++ ⎪+⎝⎭=⋅=⋅=+, 因为6127.2S ,7163.8S , 所以6101272S =,7101638S =200080%1600⨯=(人),所以预测该村80%居民接种新冠疫苗需要7天.3.(2022·九龙坡·重庆市育才中学高三月考)随着城市规模的扩大和人们生活水平的日益提高,某市近年机动车保有量逐年递增.根据机动车管理部门的统计数据,以5年为一个研究周期,得到机动车每5年纯增数据情况为:其中1,2,3,i =,时间变量i x 对应的机动车纯增数据为i y ,且通过数据分析得到时间变量x 与对应的机动车纯增数量y (单位:万辆)具有线性相关关系.(1)求机动车纯增数量y (单位:万辆)关于时间变量x 的回归方程,并预测2025~2030年间该市机动车纯增数量的值;附:回归直线方程y bx a =+中斜率和截距的最小二乘估计公式分别为:()()()1122211n ni iiii i nniii i x y nx y x x y y b xnxx x ====-⋅--==--∑∑∑∑;a y bx =-.(2)该市交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了200名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的22⨯列联表: 根据上面的列联表判断,能否有95%的把握认为“对限行的意见与是否拥有私家车”有关. 附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.【答案】(1) 5.7 5.1y x =-,2025~2030年间,机动车纯增数量的值约为34.8万辆;(2)没有95%的把握认为“对限行的意见与是否拥有私家车有关”. 【分析】(1)根据最小二乘法求得线性回归方程,再求估计值即可; (2)根据列联表求得卡方观测值,再对照表即可得解. 【详解】 (1)由所以3x =,12y =,51132639415527237i ii x y=⨯+⨯+⨯+=⨯+⨯=∑.()12222222212375312575.755451234553ni ii ni i x y nx yb x nx==-⋅-⨯⨯====-++++-⨯-∑∑. 因为y bx a =+过点(),x y ,所以 5.7y x a =+,5.1a =-,所以 5.7 5.1y x =-.2025~2030年时,7x =,所以 5.77 5.134.8y =⨯-=, 所以2025~2030年间,机动车纯增数量的值约为34.8万辆. (2)根据列联表,由()()()()()22n ad bc K a b c d a c b d -=++++得观测值为()2220025 3.12510085251575100160084K ⨯⨯-⨯⨯=⨯⨯==,3.125 3.841<,所以没有95%的把握认为“对限行的意见与是否拥有私家车有关”.4.(2022·贵州贵阳·高三月考(理))据贵州省气候中心报,2022年6月上旬,我省降水量在15.2-170.3mm之间,毕节市局地、遵义市北部、铜仁市局地和黔东南州东南部不足50mm ,其余均在50mmm 以上,局地超过100mm.若我省某地区2022年端午节前后3天,每一天下雨的概率均为50%.通过模拟实验的方法来估计该地区这3天中恰好有2天下雨的概率,利用计算机或计算器可以产生0到9之间取整数值的随机数x (x ∈N ,且09x ≤≤)表示是否下雨:当[]()0,x k k Z ∈∈时表示该地区下雨,当[]1,9x k ∈+时,表示该地区不下雨.因为是3天,所以每三个随机数作为一组,从随机数表中随机取得20组数如下: 332 714 740 945 593 468 491 272 073 445 992 772 951 431 169 332 435 027 898 719(1)求出k 的值,使得该地区每一天下雨的概率均为50%;并根据上述20组随机数估计该地区这3天中恰好有2天下雨的概率;(2)2016年到2021年该地区端午节当天降雨量(单位:mm )如表:经研究表明:从2016年到2021年,该地区端午节有降雨的年份的降雨量y 与年份t 具有线性相关关系,求回归直线方程y bt a =+.并预测该地区2022年端午节有降雨的话,降雨量约为多少?参考公式:()()()1122211nniii ii i nniii i tty y t y nt yb tttnt====---==--∑∑∑∑,a y bt =-.【答案】(1)4, 25;(2)814955y t =-+,935mm .【分析】(1)由于该地区每一天下雨的概率均为50%,所以150%10k +=,从而可求出k 的值,在所给的20组数据中找出有两天小于等于k 的数,从而利用古典概型的概率公式可求出概率,(2)直接利用所给的数据和公式求出回归直线方程。
1.3 线性回归分析1.客观事物是相互联系的但实际上更多存在的是一种非因果关系 某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说 “果”,而真正的“因”是学生的理科学习能力和努力程度 函数关系存在着一种确定性关系 2.线性相关关系:像能用直线方程ˆybx a =+近似表示的相关关系叫做线性相关关系. 3.线性回归方程:一般地,设有n 个观察数据如下:当,a b 使2221122()()...()n n Q y bx a y bx a y bx a =--+--++--取得最小值时,就称ˆybx a =+为拟合这n 对数据的线性回归方程,该方程所表示的直线称为回归直线. 上述式子展开后,是一个关于,a b 的二次多项式,应用配方法,可求出使Q 为最小值时的,a b 的值.即1112211()()()n n n i i i i i i i i i i i n x y x y b n x x a y bx=====⎧-⎪⎪=⎨-⎪⎪=-⎪⎩∑∑∑∑∑,(*) ∑==ni i x n x 11, ∑==n i i y n y 111. 下表为某地近几年机动车辆数与交通事故数的统计资料,请判断机动车辆数与交通事故数之间是否有线性相关关系,如果具有线性相关关系,求出线性回归方程;如果不具有线性相关关系,说明理由.【解析】在直角坐标系中画出数据的散点图,直观判断散点在一条直线附近,故具有线性相关关系.计算相应的数据之和:8888211111031,71.6,137835,9611.7ii i i i i i i i xy x x y ========∑∑∑∑,将它们代入(*)式计算得0.0774, 1.0241b a ≈=-,所以,所求线性回归方程为0.0774 1.0241y x =-.2.有10名同学高一(x )和高二(y )的数学成绩如下:⑴画出散点图;⑵求y 对x 的回归方程 【解析】 ⑴如图:⑵ 由已知表格的数据可得,,所以,又可查表中相应与显著性水平0.05和n -2的相关系数的临界值 因为可知,y 与x 具有相关关系. 因为y 与x 具有相关关系,设y=bx+a ,∴71,72.3x y ==101011710,723ii i i xy ====∑∑1010102211151467,50520,52541i ii i i i i x yx y ======∑∑∑10100.7802972i ix y x yr -⋅===∑0.050.632,r =0.05r r >1012110 1.22,14.3210i ii nii x y x yb a y bx xx==-⋅=≈=-≈--∑∑∴所求的回归方程为y=1.22x -14.32.3.下列两个变量之间的关系哪个不是函数关系( D ) A .角度和它的余弦值B.正方形边长和面积C .正n边形的边数和它的内角和 D.4.给出施化肥量对水稻产量影响的试验数据:(1)画出上表的散点图;(2)求出回归直线并且画出图形 【解析】(1)散点图(略).(2)表中的数据进行具体计算,列成以下表格 故可得到 2573075.43.399,75.430770002≈⨯-=≈⨯-=a b从而得回归直线方程是^4.75257y x =+.(图形略)5.一个工厂在某年里每月产品的总成本y (万元)与该月产量x (万件)之间由如下一组数据: 1)画出散点图;2)检验相关系数r 的显著性水平;3)求月总成本y 与月产量x 之间的回归直线方程.解析:=,==2.8475,=29.808,=99.2081,=54.243 1)画出散点图:2)r==在“相关系数检验的临界值表”查出与显著性水平0.05及自由度12-2=10相应的相关数临界值r0.05=0.576<0.997891, 这说明每月产品的总成本y(万元)与该月产量x(万件)之间存在线性相关关系。
回归分析的基本思想及其初步应用知识梳理一.线性回归方程的确定如果一组具有相关关系的数据1122(,),(,),,(,),n n x y x y x y gg g 作出散点图大致分布在一条直线附近,那么我们称这样的变量之间的关系为线性相关关系(也称一元线性相关),这条直线就是回归直线,记为ˆybx a =+. 那么如何求得参数a b 和使得各点与此直线的距离的平方和为最小,即如何求得线性回归方程呢?在所求回归直线方程ˆy bx a =+中,当x 取i x 时,$i i y bx a =+与实际收集到的数据i y 之间的偏差为$()i i i i y y y bx a -=-+,偏差的平方为$22()[()]i i i i y y y bx a -=-+(如图1). 即21()niii Q y bx a ==--∑ 来刻画出n 个点与回归直线在整体上的偏差的平方和,显然Q 取最小值时的,a b 的值就是我们所求的:121()()()n iii nii x x y y bx x ==--=-∑∑$1221ni ii nii x y nx yxnx==-=-∑∑$ay bx =-$ 其中(,)i i x y 为样本数据,11,n ni i i ix x y y n n ==∑∑为样本平均数,(,)x y 称为样本点中心,且所求线性回归直线经过样本点中心(如图2所示).当回归直线斜率0b >时,为线性正相关, 0b <时为线性负相关.应注意,这个最小距离不是通常所指的各数据的点(,)i i x y 到直线的距离,而是各数据点(,)i i x y 沿平行y 轴方向到直线的距离(如图1所示).bx a +bx a +iy对于上面参数a b 和的求法原理及方法是简单的,但是运算量较大,需要将21()ni i i Q y bx a ==--∑展开,再合并,然后配方整理,从而求得,a b .例如,当,,,a b m n 取怎样实数时, 22()()a n b m k -+-+的值为最小,显然当,a m b n ==时最小值为k ,像这样配方求最值的方法是经常用到的, 线性回归方程ˆybx a =+中的参数,b a 就是这样求出的. 教材中用了添项法较为简捷的求出了截距$a 和斜率b $分别是使21(,)()ni i i Q y x αββα==--∑取最小值时,αβ的值.求得121()()()niii nii x x y y x x β==--=-∑∑,y x αβ=-的值,请同学们体会其解法.线性回归方程的确定是进行回归分析的基础.二.回归分析:是对具有相关关系的两个变量进行统计分析的一种常用方法. 1.线性相关关系的强弱两个变量之间线性相关关系的样本相关系数()()niix x y y r --=∑衡量线性相性关系的强弱,由于分子与斜率b 的分子一样,因此,当0r >时,两个变量正相关;当0r <时两个变量负相关.当r 的绝对值接近1,表明两个变量的线性相关性很强;当r 的绝对值接近0,表明两个变量之间几乎不存在线性相关关系.规定当0.75r >时,我们认为两个变量有很强的线性相关关系.2.解释变量与随机误差对预报精度的影响以及残差分析 (1)有关概念线性回归模型2()0,()y bx a eE e D e σ=++⎧⎨==⎩其中a 和b 为模型的未知参数;x 称为解释变量,y 称为预报变量;e 是y 与ˆy bx a =+之间的误差, e 叫随机误差。
高考回归分析知识点回归分析是统计学中一种重要的分析方法,用于研究变量之间的关系和预测。
在高考数学中,回归分析也是一个重要的知识点。
本文将介绍高考中常见的回归分析知识点,并结合具体例子进行解析。
一、简单线性回归1. 定义:简单线性回归是指在研究两个变量之间关系时,其中一个变量为自变量,另一个变量为因变量,且二者之间存在线性关系的情况。
2. 公式:简单线性回归模型的数学表示为:Y = α + βX + ε,其中Y为因变量,X为自变量,α和β为常数,ε为误差项。
3. 参数估计:通过最小二乘法可以估计出回归系数α和β的值,从而建立回归方程。
示例:假设我们想研究学生的学习时间与考试分数之间的关系。
我们收集了一组数据,学习时间(自变量X)和考试分数(因变量Y)的数值如下:学习时间(小时):[5, 10, 15, 20, 25, 30]考试分数(分数):[60, 70, 75, 80, 85, 90]通过简单线性回归分析,我们可以建立回归方程为:Y = 55 + 0.75X,说明学习时间对考试分数有正向影响。
二、多元线性回归1. 定义:多元线性回归是指在研究多个自变量与一个因变量之间关系时的回归分析方法。
它可以用来探究多个因素对因变量的影响程度,并进行预测和解释。
2. 公式:多元线性回归模型的数学表示为:Y = α + β₁X₁ + β₂X₂+ ... + βₚXₚ + ε,其中Y为因变量,X₁、X₂、...、Xₚ为自变量,α和β₁、β₂、...、βₚ为常数,ε为误差项。
3. 参数估计:同样通过最小二乘法可以估计出回归系数α和β₁、β₂、...、βₚ的值,从而建立回归方程。
示例:我们想研究学生的考试分数与学习时间、家庭收入、家庭教育水平等因素之间的关系。
我们收集了一组数据,学习时间(自变量X₁)、家庭收入(自变量X₂)、家庭教育水平(自变量X₃)和考试分数(因变量Y)的数值如下:学习时间(小时):[5, 10, 15, 20, 25, 30]家庭收入(万元):[8, 10, 12, 15, 18, 20]家庭教育水平(年):[10, 12, 14, 16, 18, 20]考试分数(分数):[60, 70, 75, 80, 85, 90]通过多元线性回归分析,我们可以建立回归方程为:Y = 50 +0.7X₁ + 1.2X₂ + 1.5X₃,说明学习时间、家庭收入和家庭教育水平都对考试分数有正向影响。
直线方程的考点分析两条直线的位置关系、点到平面的距离,在高考中经常考查,多以选择题、填空题的形式出现,有时也与其它知识进行综合考查,因此我们要掌握住这部分知识并且达到熟练应用,下面对直线方程的几个考点进行具体分析,以供同学们参考。
一、两条直线平行关系的考查例1:已知(()(()2,2,2,2,0,2,4,2A B C D +--四个点,顺次连接这四个点,试判断四边形ABCD 的形状。
分析:解答本题可先计算四边形ABCD 四条边所在直线的斜率,再根据斜率是否相等或斜率之积是否等于-1,来判断四边形ABCD 的形状。
解:四边形ABCD 是矩形。
由题意可知222(2)2AB k +==--,BC AD CD k k k ======。
所以,AB CD BC AD k k k k ==,所以//,//AB CD BC AD ,所以四边形ABCD 是平行四边形。
又因为1AB BC k k •=-。
所以四边形ABCD 为矩形。
点评:针对这个类型的题目,通常先计算四边形的对边的斜率是否相等来确定对边是否平行,然后验证邻边所在的直线斜率之积是否等于-1来确定是否有一内角为直角,这种方法体现了用代数法解决几何问题的基本思想,这不同于初中平面几何的方法和思想。
二、两条直线垂直问题的考查例2:已知ABC 的三个顶点的坐标分别为()()()1,0,2,0,2,3A B C -,试分别求此三角形三条边的高所在直线的斜率。
分析:解答本题可先结合图形,再根据ABC 三边所在直线斜率情况确定三条边的高所在直线的斜率。
为直角三角形,且AB 边在x 轴上,所以BC 边所在的直线斜率边上的高的斜率为k ,3012(1)AC k -==--。
由1AC k k •=-,得1k =-。
综上可知,BC 边上的高所在的直线的斜率为0;AB 边上的高所在的直线的斜率不存在;AC 边上的高所在的直线的斜率为-1.点评:本题可借助所在直线的斜率关系来解决,使几何问题代数化。
评说回归直线方程的方方面面
一、两个变量间的相关关系
相关关系我们可以从下三个方面加以认识:
(1)相关关系与函数关系不同.函数关系中的两个变量间是一种确定性关系.例如正方形面积S 与边长x 之间的关系2
x S =就是函数关系.即对于边长x 的每一个确定的值,都有面积S 的惟一确定的值与之对应.相关关系是一种非确定性关系,即相关关系是非随机变量与随机变量之间的关系.例如人的身高与年龄;商品的销售额与广告费等等都是相关关系. (2)函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.例如有人发现,对于在校儿童,身高与阅读技能有很强的相关关系.然而学会新词并不能使儿童马上长高,而是涉及到第三个因素——年龄,当儿童长大一些,他们的阅读能力会提高而且由于长大身高也会高些.
(3)函数关系与相关关系之间有着密切联系,在一定的条件下可以相互转化.例如正方形面积S 与其边长x 间虽然是一种确定性关系,但在每次测量边长时,由于测量误差等原因,其数值大小又表现出一种随机性.而对于具有线性关系的两个变量来说,当求得其回归直线后,我们又可以用一种确定性的关系对这两个变量间的关系进行估计.
相关关系在现实生活中大量存在,从某种意义上讲,函数关系是一种理想的关系模型,而相关关系是一种更为一般的情况.因此研究相关关系,不仅可使我们处理更为广泛的数学应用问题,还可使我们对函数关系的认识上升到一个新的高度.
二、回归分析
对于线性回归分析,我们要注意以下几个方面:
(1)回归分析是对具有相关关系的两个变量进行统计分析的方法.两个变量具有相关关系是回归分析的前提.
(2)散点图是定义在具有相关系的两个变量基础上的,对于性质不明确的两组数据,可先作散点图,在图上看它们有无关系,关系的密切程度,然后再进行相关回归分析. (3)通过散点图的观察,一般地,若图中数据大致分布在一条直线附近,那么这两个变量近似成线性相关关系.
(4)求回归直线方程,首先应注意到,只有在散点图大至呈线性时,求出的回归直线方程才有实际意义,否则,求出的回归直线方程毫无意义.
三、回归直线方程
一般地,设x 与y 具有相关关系的两个变量,且相应于n 组观测值的n 个点((i x ,
i y ),i=1,2,…,n )大致分布在一条直线的附近,求在整体上与这n 个点最接近的一条
直线.记此直线方程为)1(bx
a y +=
这里在y 的上方加记号“^”,是为了区分Y 的实际值y ,表示当x 取值i x (),,2,1n i ⋅⋅⋅= 时,Y 相应的观察值为i y ,而直线上对应于i x 的纵坐是i i bx a y +=.(1)式叫做Y 对x 的回归直线方程,b a ,叫做回归系数.
四、求回归直线方程的思想方法 在观察散点图特征时,发现各点大致分布在一条直线的附近,画出的直线不止一条类似的直线,而最能代表变量x 与y 之间关系的直线的特征,即为n 个偏差的平方和最小.设所
求直线方程为bx a y +=,其中b a ,是待定系数,则i i bx a y +=(i =1,2,…,n ) 于是得到各个偏差)(a bx y y y i i i i +-=-(i =1,2,…,n )
显见,偏差i i y y -的符号有正有负,若将它们相加会造成相互抵消,故采用n 个偏差的平方和∑=--=
n
i i i
a bx y
Q 1
2)(,采用最小二乘法可求出使 Q 为最小值时的a 和b .
∑∑∑∑====--=
---=
n
i i
n
i i
i n
i i
n
i i i
x n x
y x n y
x x x
y y x x
b 1
2
211
2
1
)()
)((, (﹡)
x b y a -=,
其中∑∑====n
i i n i i y n y x n x 1
111
五、求回归直线方程的一般步骤为:
(1)作出散点图,判断散点是否在一条直线附近;
(2)如果散点在一条直线附近,用公式(﹡)求出b a ,,并写出回归直线方程. 注:计算b a ,时由于计算量较大,所以在计算时应借助技术手段(如计算器),认真细致,谨防计算中产生错误.
例 在10年期间,~城市居民收入与某种商品的销售额之间的关系见表1.
表1
(1)画出散点图;
(2)如果散点图中各点大致分布在一条直线的附近,求y 与x 之间的回归直线方程;
(3)试预测居民年收入50亿元时这种商品的销售额.
解题指导:只有散点图大致表现为线性时,求回归直线方程才有实际意义. 解:(1)散点图如下图所示.
(2)通过观察散点图可知各点大致分布在一条直线的附近.列出表2,利用计算器进行计算.
表2
447.110
107.37967.146631.397.3799.1520210102
10
1
2
2
10
1≈⨯⎪⎭
⎫
⎝⎛-⨯-=
-⋅-=
∑∑==i i
i i
i x
x
y x y
x b
84.1597.37447.11.39-≈⨯-=-=x b y a
所以所求回归直线方程为:84.15447.1-=x y
(3)根据上面求得的回归直线方程,当居民年收入50亿元时
51.5684.1550447.1=-⨯=y (万元) 即这种商品销售额大约为56.l 万元. 评述与反思:计算b a ,时应仔细谨慎、分层进行,避免因计算错误产生误差.
微迅雷 微迅雷峵孞尛。