突破12 牛顿运动定律的应用之滑块-板块模型-2019高三物理一轮微专题系列之热点专题突破(原卷版)
- 格式:doc
- 大小:243.00 KB
- 文档页数:5
板块模型-----牛顿运动定律与运动学的综合运用板块模型-----牛顿运动定律与运动学的综合运用一.涉及知识点:动力学,如受力分析,摩擦力(是静摩擦力还是滑动摩擦力,大小,方向)、牛顿第二定律,运动学规律公式。
二.与传送带模式的解题思路相似。
三.二者速度相等时,摩擦力的突变(大小,方向,f滑与fmax转变),从而受力情况变,加速度变,运动情况变。
四.板块模型中的功能关系,动量问题1.产生的内能:Q=f滑·X相对2.摩擦力做功:Q=f·X对地3.动能定理,能量守恒4.动量定理,动量守恒5.用隔离还是整体来分析问题例题1:如图所示,一质量为m=2kg、初速度为6m/s的小滑块(可视为质点),向右滑上一质量为M=4kg的静止在光滑水平面上足够长的滑板,m、M间动摩擦因数为μ=0.2。
(1)滑块滑上滑板时,滑块和滑板在水平方向上各受什么力,大小如何?方向向哪?(2)滑块和滑板各做什么运动?加速度各是多大?(3)1秒末滑块和滑板的速度分别是多少?(4)1秒末滑块和滑板的位移分别是多少?相对位移是多少?(5)2秒末滑块和滑板的速度分别是多少?(6)2秒末滑块和滑板的位移分别是多少?相对位移是多少?(7)2秒后滑块和滑板将怎样运动?例2:如图所示,一质量为m=3kg、初速度为5m/s的小滑块(可视为质点),向右滑上一质量为M=2kg的静止在水平面上足够长的滑板,m、M间动摩擦因数为μ1=0.2,滑板与水平面间的动摩擦因数为μ2=0.1,(设最大静摩擦力等于滑动摩擦力)。
(1)滑块滑上滑板时,滑块和滑板在水平方向上各受什么力,大小如何?方向向哪?(2)滑块和滑板各做什么运动?加速度各是多大?(3)滑块滑上滑板开始,经过多长时间后会与滑板保持相对静止?(4)滑块和滑板相对静止时,各自的位移是多少?(5)滑块和滑板相对静止时,滑块距离滑板的左端有多远?(6)5秒钟后,滑块和滑板的位移各是多少?1. 如图1所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为( ) A .物块先向左运动,再向右运动B .物块向右运动,速度逐渐减小,直到做匀速运动C .木板向右运动,速度逐渐减小,直到做匀速运动D .木板和物块的速度都逐渐减小,直到为零2、(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间动摩擦因数为13μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g 。
板块(滑块木板)模型(牛顿第二定律)建议用时:50分钟考点序号考点题型分布考点1没有外力的板块模型6单选+1多选考点2受恒定外力的板块模型3单选+4多选考点3受变化外力的板块模型3单选+3多选考点01:不受外力的板块模型(6单选+1多选)一、单选题1(2023·湖北·模拟预测)如图所示,一足够长的质量为m的木板静止在水平面上,t=0时刻质量也为m的滑块从板的左端以速度v0水平向右滑行,滑块与木板,木板与地面的摩擦因数分别为μ1、μ2且最大静摩擦力等于滑动摩擦力。
滑块的v-t图像如图所示,则有()A.μ1=μ2B.μ1<μ2C.μ1>2μ2D.μ1=2μ2【答案】C【详解】由v-t图像分析可知,木板相对地面滑动,滑块与木板共速后一起减速到停止,对木板μ1mg>μ22mg则有μ1>2μ2故选C。
2(2023·湖南·统考模拟预测)如图所示,一质量为0.3kg的“L”型平板B静置在地面上,平板B的上表面O点左侧粗糙、右侧光滑,质量为0.1kg的小物块A从平板B上的O点以某一初速度沿平板B向右滑动,与平板B右侧挡板碰撞后瞬间,二者速度大小均为2m/s,速度方向相反,当小物块A速度减为零时,恰好返回到相对地面的出发位置,已知小物块A与平板B间的动摩擦因数为0.4,平板B与地面间的动摩擦因数为0.225,重力加速度g=10m/s2,整个过程中小物块A始终未滑离平板B,下列说法正确的是()A.碰撞后平板B在运动过程中加速度大小不变B.碰撞后小物块A 减速时的加速度大小为2.25m/s 2C.碰撞后小物块A 刚减速时平板B 的速度大小为1m/sD.平板B 上O 点右侧光滑部分的长度为67m【答案】C【详解】AB .碰撞后小物块A 先在平板B 的光滑部分做匀速直线运动,后在平板B 的粗糙部分做匀减速直线运动,平板B 在这两个过程中做加速度不同的匀减速直线运动;对小物块A 、平板B 分别应用牛顿第二定律得a A =μ1m A gm A=4m/s 2a B 1=μ2m A +m B g m B =3m/s 2,a B 2=μ2m A +m B g +μ1m A g m B =133m/s 2故AB 错误;C .设碰撞后小物块A 刚滑到平板B 的粗糙部分开始做减速运动时,平板B 的速度大小为v B 0,则有v B 0<v B =v A又a B 2>a A所以平板B 的速度先减为0,后小物块A 的速度再减为0。
高三物理专题复习板块模型研究必备:物理模型之“滑块-木板”模型滑块-木板”模型是力学的基本模型之一,经常出现在直线运动和牛顿运动定律的复中。
分析这类问题有利于培养学生的想象和思维能力。
此外,这个模型也经常作为高考或模拟考试的压轴题出现,因此同学们需要重视。
这个模型在多个角度下都可以进行命题,例如多过程定性分析、多过程相对运动、相对运动与力与运动图像应用临界问题的分析等。
在解题时,需要注意判断是否相对运动、滑离时的速度、相对运动的时间、相对运动的位移和损失的机械能等问题。
以下是三个“滑块-木板”模型的例题:1.如图所示,一只猫在桌边猛地将桌布从鱼缸下拉出,鱼缸最终没有滑出桌面。
若鱼缸、桌布、桌面两两之间的动摩擦因数均相等,则在上述过程中,桌布对鱼缸摩擦力的方向向左,鱼缸在桌布上的滑动时间和在桌面上的相等,若猫增大拉力,鱼缸受到的摩擦力将不变,若猫减小拉力,鱼缸有可能滑出桌面。
2.如图所示,A、B两物块的质量分别为2m和m,静止叠放在水平地面上。
A、B间的动摩擦因数为μ,B与地面间的动摩擦因数为μ。
最大静摩擦力等于滑动摩擦力,重力加速度为g。
现对A施加一水平拉力F,则当F2μmg时,A相对B 滑动;无论F为何值,B的加速度不会超过μg。
3.如图所示,一足够长的木板静止在粗糙的水平面上,t=时刻滑块从板的左端以速度v水平向右滑行,木板与滑块间存在摩擦,且最大静摩擦力等于滑动摩擦力。
滑块的v-t图像可能是图中的一种。
总之,这类问题的解答有一个基本技巧和方法:在物体运动的每一个过程中,若两个物体的初速度不同,则两物体必然相对滑动。
和物块施加一个水平方向的拉力F,使得它们一起沿斜面向上运动,求:1)当F=10N时,木板和物块的加速度分别是多少?2)当F逐渐增大时,木板和物块的加速度如何变化?3)当F达到一定值时,物块将会脱离木板而单独向上运动,求这个临界值F4)当F继续增大时,木板的运动情况如何?给出合理的解释。
高中物理三种模型带你解决“滑块滑板”问题
滑块滑板问题是高考的热点,也是高一上的一个重难点,在高一上的滑块滑板中它主要涉及到受力分析,运动状况分析,以及牛顿运动定律,综合性较强,所以也成为学生学习感到困难的一部分,滑块滑板看似复杂,掌握好受力分析与运动的分析结合牛顿运动定律,再进行分析就比较轻松了。
类型一.“板—块”模型
1.模型特点
上、下叠放两个物体,在摩擦力的相互作用下两物体发生相对滑动.
2.两种位移关系
滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.解题方法
整体法、隔离法.
4.解题思路
(1)分析滑块和滑板的受力情况,根据牛顿第二定律分别求出滑块和滑板的加速度.
(2)对滑块和滑板进行运动情况分析,找出滑块和滑板之间的位移关系或速度关系,建立方程.特别注意滑块和滑板的位移都是相对地的位移.
类型二.水平传送带问题
滑块在水平传送带上运动常见的三个情景
类型三.倾斜传送带问题
滑块在倾斜传送带上运动常见的四个情景
总结:处理滑块与滑板类问题的基本思路
判断滑块与滑板间是否存在相对滑动是思考问题的着眼点.方法有整体法隔离法、假设法等.即先假设滑块与滑板相对静止,然后根据牛顿第二定律求出滑块与滑板之间的摩擦力,再讨论滑块与滑板之间的
摩擦力是不是大于最大静摩擦力.。
突破12牛顿运动定律的应用之滑块—木板模型
一、模型概述
滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。
二、滑块—木板类问题的解题思路与技巧:
1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);
2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?
⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;
4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.
5. 计算滑块和木板的相对位移(即两者的位移差或位移和);
6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;
7. 滑块滑离木板的临界条件是什么?
当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。
下列反映a1和a2变化的图线中正确的是(如下图所示)()
【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦
因数为μ,B 与地面间的动摩擦因数为12
μ。
最大静摩擦力等于滑动摩擦力,重力加速度为g 。
现对A 施加一水平拉力F ,则( )
A .当F <2μmg 时,A 、
B 都相对地面静止
B .当F =52μmg 时,A 的加速度为13
μg C .当F >3μmg 时,A 相对B 滑动
D .无论F 为何值,B 的加速度不会超过12
μg 【典例3】 如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块。
已知木块的质量m =1 kg ,木板的质量M =4 kg ,长L =2.5 m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2。
现用水平恒力F =20 N 拉木板,g 取10 m/s 2。
(1)求木板加速度的大小;
(2)要使木块能滑离木板,求水平恒力F 作用的最短时间;
(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因数为μ1=0.3,欲使木板能从木块的下方抽出,对木板施加的拉力应满足什么条件?
(4)若木板的长度、木块质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30 N ,则木块滑离木板需要多长时间?
【短训跟踪】
1. 如图甲所示,静止在光滑水平面上的长木板B (长木板足够长)的右端放着小物块A ,某时刻B 受到水平向右的外力F 作用,F 随时间t 的变化规律如图乙所示,即F =kt ,其中k 为已知常数.若物体之间的滑动摩擦力F f 的大小等于最大静摩擦力,且A 、B 的质量相等,则下列图中可以定性地描述物块A 的v -t 图象的是( ).
2. 如图所示,质量为m1的足够长的木板静止在光滑水平面上,其上放一质量为m2的木块.t=0时刻起,给木块施加一水平恒力F.分别用a1、a2和v1、v2表示木板、木块的加速度和速度大小,图中可能符合运动情况的是().
3. 质量为m0 =20 kg、长为L =5 m的木板放在水平面上,木板与水平面的动摩擦因数为μ1 =0.15。
将质量m =10 kg 的小木块(可视为质点),以v0 = 4 m/s的速度从木板的左端被水平抛射到木板上(如图所示),小木块与木板面的动摩擦因数为μ2=0.4(最大静摩擦力等于滑动摩擦力,g=10 m/s2)。
则下列判断中正确的是()
A.木板一定静止不动,小木块不能滑出木板
B.木板一定静止不动,小木块能滑出木板
C.木板一定向右滑动,小木块不能滑出木板
D.木板一定向右滑动,小木块能滑出木板
4. 如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上,已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。
在物块放到木板上之后,木板运动的速度-时间图象可能是下列选项中的()
5. 如图甲,水平地面上有一静止平板车,车上放一质量为m 的物块,物块与平板车间的动摩擦因数为0.2,t =0时,车开始沿水平面做直线运动,其v -t 图象如图乙所示。
g 取10 m/s 2,平板车足够长,则物块运动的v -t 图象为( )
6. 如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物
块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为μ3
,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力F ,则木板加速度大小a 可能是( ).
A .a =μg
B .a =2μg 3
C .a =μg 3
D .a =F 2m -μg 3
7. 如图所示,物块A 、木板B 的质量均为m =10 kg ,不计A 的大小,B 板长L =3 m 。
开始时A 、B 均静止。
现使A 以某一水平初速度从B 的最左端开始运动。
已知A 与B 、B 与水平面之间的动摩擦因数分别为μ1=0.3和μ2=0.1,g 取10 m/s 2。
(1)若物块A 刚好没有从B 上滑下来,则A 的初速度多大?
(2)若把木板B 放在光滑水平面上,让A 仍以(1)问中的初速度从B 的最左端开始运动,则A 能否与B 脱离?最终A 和B 的速度各是多大?
8. 如图所示,质量为M的长木板,静止放置在粗糙水平地面上,有一个质量为m、可视为质点的物块,以某一水平初速度从左端冲上木板。
从物块冲上木板到物块和木板达到共同速度的过程中,物块和木板的v -t图象分别如图中的折线acd和bcd所示,a、b、c、d点的坐标为a(0,10)、b(0,0)、c(4,4)、d(12,0)。
根据v-t图象,(g取10 m/s2),求:
(1)物块冲上木板做匀减速直线运动的加速度大小a1,木板开始做匀加速直线运动的加速度大小a2,达到相同速度后一起匀减速直线运动的加速度大小a;
(2)物块质量m与长木板质量M之比;
(3)物块相对长木板滑行的距离Δx。