突破12 牛顿运动定律的应用之滑块-板块模型(解析版)
- 格式:pdf
- 大小:1019.17 KB
- 文档页数:8
牛顿定律——滑块和木板模型专题一.“滑块—木板模型”问题的分析思路1.模型特点:上、下叠放两个物体,并且两物体在摩擦力的相互作用下发生相对滑动.2.建模指导解此类题的基本思路:(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度(2)对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.例1、m A=1 kg,m B=2 kg,A、B间动摩擦因数是0.5,水平面光滑.用10 N水平力F拉B时,A、B间的摩擦力是用20N水平力F拉B时,A、B间的摩擦力是例2、如图所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A =6 kg,m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,若使AB不发生相对运动,则F的最大值为针对练习1、如图5所示,物体A叠放在物体B上,B置于光滑水平面上,A、B质量分别为m A=6 kg,m B=2 kg,A、B之间的动摩擦因数μ=0.2,开始时F=10 N,此后逐渐增加,在增大到45 N的过程中,则()A.当拉力F<12 N时,物体均保持静止状态B.两物体开始没有相对运动,当拉力超过12 N时,开始相对运动C.两物体从受力开始就有相对运动D.两物体始终没有相对运动例3、如图所示,质量M=8 kg的小车放在光滑的水平面上,在小车左端加一水平推力F =8 N,当小车向右运动的速度达到1.5 m/s时,在小车前端轻轻地放上一个大小不计,质量为m=2 kg的小物块,小物块与小车间的动摩擦因数μ=0.2,当二者达到相同速度时,物块恰好滑到小车的最左端.取g=10 m/s2.则:(1)小物块放上后,小物块及小车的加速度各为多大?(2)小车的长度L是多少?针对练习2、如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块.已知木块的质量m=1kg ,木板的质量M=4kg ,长L=2.5m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力F=20N 拉木板,g 取10m/s 2,求:(1)木板的加速度;(2)要使木块能滑离木板,水平恒力F 作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因素为3.01=μ,欲使木板能从木块的下方抽出,需对木板施加的最小水平拉力.(4)若木板的长度、木块的质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间?牛顿定律——滑块和木板模型专题答案例1、3.3 N 5 N例2、48 N针对练习1、答案 D解析 当A 、B 间的静摩擦力达到最大静摩擦力,即滑动摩擦力时,A 、B 才会发生相对运动.此时对B 有:F fmax =μm A g =12 N ,而F fmax =m B a ,a =6 m/s 2,即二者开始相对运动时的加速度为6 m/s 2,此时对A 、B 整体:F =(m A +m B )a =48 N ,即F >48 N 时,A 、B 才会开始相对运动,故选项A 、B 、C 错误,D 正确.例3、答案 (1)2 m/s 2 0.5 m/s 2 (2)0.75 m解析 (1)以小物块为研究对象,由牛顿第二定律,得μmg =ma 1解得a 1=μg =2 m/s 2以小车为研究对象,由牛顿第二定律,得F -μmg =Ma 2解得a 2=F -μmg M=0.5 m/s 2 (2)由题意及运动学公式:a 1t =v 0+a 2t解得:t =v 0a 1-a 2=1 s 则物块运动的位移x 1=12a 1t 2=1 m 小车运动的位移x 2=v 0t +12a 2t 2=1.75 m L =x 2-x 1=0.75 m针对练习2、解析 (1)木板受到的摩擦力F f =μ(M +m )g =10 N木板的加速度a =F -F f M =2.5 m/s 2.(2分) (2)设拉力F 作用时间t 后撤去F 撤去后,木板的加速度为a ′=-F f M=-2.5 m/s 2 (2分) 木板先做匀加速运动,后做匀减速运动,且a =-a ′,故at 2=L解得t =1 s ,即F 作用的最短时间为1 s .(2分) (3)设木块的最大加速度为a 木块,木板的最大加速度为a 木板,则μ1mg =ma 木块 (2分) 得a 木块=μ1g =3 m/s 2对木板:F 1-μ1mg -μ(M +m )g =Ma 木板(2分)木板能从木块的下方抽出的条件为a 木板>a 木块解得F 1>25 N .(2分) (4)木块的加速度a 木块′=μ1g =3 m/s 2(1分) 木板的加速度a 木板′=F 2-μ1mg -μ(M +m )g M=4.25 m/s 2 (1分) 木块滑离木板时,两者的位移关系为x 木板-x 木块=L ,即12a 木板′t 2-12a 木块′t 2=L(2分)代入数据解得t=2 s.(2分) 答案(1)2.5 m/s2(2)1 s(3)大于25 N(4)2 s分析滑块—木板模型问题时应掌握的技巧1.分析题中滑块、木板的受力情况,求出各自的加速度.2.画好运动草图,找出位移、速度、时间等物理量间的关系.3.知道每一过程的末速度是下一过程的初速度.4.两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力.(2)二者加速度不相等.。
专题十一模型专题(4)板块模型【重点模型解读】一、模型认识类型图示规律分析木板B带动物块A,物块恰好不从木板上掉下的临界条件是物块恰好滑到木板左端时二者速度相等,则位移关系为x B=x A+L物块A带动木板B,物块恰好不从木板上掉下的临界条件是物块恰好滑到木板右端时二者速度相等,则位移关系为x B+L=x A力F作用在物块A上讨论相关的临界情况力F作用在木板B上讨论相关的临界情况二、板块类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
三、注意点:分析“板块”模型时要抓住一个转折和两个关联【典例讲练突破】【例1】如图所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。
【点拨】为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B 间的静摩擦力加速),A、B一起加速的最大加速度由A决定。
在高中物理动力学部分,我们经常遇到小滑块与长木板之间通过摩擦力拖动相对滑动的问题。
我们通常把小滑块和长木板组成的相互作用的系统称为板块模型,它渗透力与运动,动量与能量,摩擦生热等高中重要的物理知识,培养学生,透过不同的问题,掌握问题的本质,能培养学生的发散思维能力,培养学生情景变换能力;它是高中物理的重要题型,是学生难以解决的问题之一,也是高考考察的重点和难点问题解决此类问题可以用力和运动的关系、功能关系和动能定理、动量守恒定律与能量守恒定律等知识来处理。
下面就从动力学角度,也就是运用牛顿运动定律和运动学公式解决板块类问题。
不论是哪种情况,受力分析和运动过程分析是解决问题的关键;而分析过程,必须搞清加速度、速度、位移的关系。
(1)加速度关系:加速度关系是找出滑块是否发生相对滑动的隐含条件。
如果滑块间没有发生相对运动,就用整体法;如果滑块间发生相对运动,就用隔离法(2)速度关系:第一,滑块间发生相对运动时,搞清滑块的速度关系,从而确定滑块受到的摩擦力;第二,应当注意滑块速度相同时,摩擦力会发生突变的情况。
(3)位移关系:滑块叠放在一起运动时,应仔细分析各个滑块的运动过程,认清滑块对地的位移和滑块之间的相对位移之间的关系这些关系都是解题过程中列方程所必需的,各种关系找到了,自然也就容易列出所需的方程了。
板块问题模型中会涉及地面是否光滑、木块是否具有初速度、板块系统是否受外力作用等各种情况一.小木块以一定初速度,滑上光滑水平面上一个静止的长木板类问题。
由于木块与木板间有摩擦力,小木块一定做减速运动,木板一定做加速运动。
最终结果有两种可能:一是二者保持相对静止一起匀速运动;二是小木块从木板另一端滑下,滑下后都做匀速直线运动例1.如图所示质量为M的木板静止在光滑水平面上,一质量m为长度可忽略的小木块以速度v0水平地沿木板的表面向右滑行,已知二者间动摩擦因数为μ,求(1).木板至少多长小木块才不会掉下来(2).木块在木板上运动了多长时间?例2.如图,在光滑的水平台子上静止着一块长L=50cm质量为1kg的木板,另有一块质量为1kg的铜块,铜块的底面边长较小,相对于50cm的板长可略去不计。
滑块—木板模型一、模型概述滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。
二、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f > f m,则发生相对滑动;否则不会发生相对滑动。
3. 分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4. 对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.5. 计算滑块和木板的相对位移(即两者的位移差或位移和);6. 如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7. 滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。
下列反映a1和a2变化的图线中正确的是(如下图所示)()【答案】 A【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。
专题05 牛顿运动定律中的斜面和板块模型一、牛顿第二定律:ma F =合;x ma F x =合;y ma F y =合。
二、牛顿第三定律:'F F -=,(F 与'F -等大、反向、共线)在解牛顿定律中的斜面模型时,首先要选取研究对象和研究过程,建构相应的物理模型,然后以加速度为纽带对研究对象进行受力分析和运动分析,最后根据运动学公式、牛顿运动定律、能量守恒定律、动能定理等知识,列出方程求解即可。
在解决牛顿定律中的板块模型时,首先构建滑块-木板模型,采用隔离法对滑块、木板进行受力分析,运用牛顿第二定律运动学公式进行计算,判断是否存在速度相等的临界点;若无临界速度,则滑块与木板分离,只要确定相同时间内的位移关系,列出方程求解即可;若有临界速度,则滑块与木板没有分离,此时假设速度相等后加速度相等,根据整体法求整体加速度,由隔离法求滑块与木板间的摩擦力f 以及最大静摩擦力m f 。
如果m f f ≤,假设成立,整体列式,求解即可;如果m f f >,假设不成立,需要分别列式求解。
一、在斜面上物块所受摩擦力方向的判断以及大小的计算1.物块(质量为m )静止在粗糙斜面上:(1)摩擦力方向的分析:对物块受力分析,因为物块重力有沿斜面向下的分力,故物块有沿斜面向下的运动趋势,则物块所受摩擦力沿斜面向上。
(2)摩擦力大小的计算:物块处于平衡状态,沿斜面方向受力平衡,即0=合F ,则有θsin mg F f =。
2.物块(质量为m )在粗糙的斜面上匀速下滑:(1)摩擦力方向的分析:物块沿斜面向下运动,可以根据摩擦力的方向与相对运动的方向相反来判断物块受到的摩擦力的方向沿斜面向上。
(2)摩擦力大小的计算:①物块处于平衡状态,沿斜面方向受力平衡,即0=合F ,则有θsin mg F f =,N F f μ=。
②物块沿斜面向下做匀加速运动,滑动摩擦力为N F f μ=,由牛顿第二定律有ma F mg f =-θsin 。
动力学中的“板块”和“传送带”模型一.“滑块—滑板”模型1. 模型特点:上下叠放两个物体,在摩擦力的相互作用下发生相对滑动。
2. 两种位移关系①物体的位移:各个物体对地的位移,即物体的实际位移。
②相对位移:一物体相对另一的物体的位移。
两种情况。
(1)滑块和滑板同向运动时,相对位移等两物体位移之差,即.21x x x -=∆相 (2)滑块和滑板反向运动时,相对位移等两物体位移之和,即.21x x x +=∆相 这是计算摩擦热的主要依据,.相滑x f Q ∆=3. 解题思路:(1)初始阶段必对各物体受力分析,目的判断以后两物体的运动情况。
(2)二者共速时必对各物体受力分析,目的判断以后两物体的运动情况。
二者等速是滑块和滑板间摩擦力发生突变的临界条件,是二者相对位移最大的临界点。
(3)物体速度减小到0时,受力分析,判断两物体以后是相对滑动还是相对静止。
相对静止二者的加速度a 相同;相对滑动二者的加速度a 不同。
(4)明确速度关系:弄清各物体的速度大小和方向,判断两物体的相对运动方向,从而弄清摩擦力的方向,正确对物体受力分析。
例.如图,两个滑块A 和B 的质量分别为m A =1 kg 和m B =5 kg ,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m =4 kg ,与地面间的动摩擦因数为μ2=0.1.某时刻A 、B 两滑块开始相向滑动,初速度大小均为v 0=3 m/s.A 、B 相遇时,A 与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g =10 m/s 2.求:(1)B 与木板相对静止时,木板的速度; (2)A 、B 开始运动时,两者之间的距离.〖思路指导〗(1)AB 开始运动时,相向均做减速运动,二者初速等大,加速度等大,则经历相等时间,v ∆相等.即相同时刻速度等大.对A 、B 、木板分析B 和木板同向向右运动,A 和木板反向运动,故B 和木板先相对静止,A 减速到0后,反向加速再与木板共速. (2)B 和木板共速后是相对滑动还是相对静止,假设法讨论.相对静止的条件:f<f max . 解析:(1)B 和木板共速前,AB 加速度分别为a A 、a B ,木板加速度为a 1.经t 1木板和B 共速. 对A 向左减速,加速度大小:../5,211向右解得s m a a m g m A A A ==μ 对B 向右减速,加速度大小:.m /s 5,21==B B B B a a m g m 解得μ对木板,由于g m m m g m g B A A B )(m 211++>-μμμ,则合外力向右,向右加速运动../5.2,)(-m 211211s m a ma g m m m g m g B A A B ==++-解得μμμB 和木板共速有:,1110t a t a v B =-解得t 1=0.4s../110s m t a v v B B =-=0.8m.t 2v v x 1Bo B =+= A 的速度大小v A =v B =1m/s.(2)设B 和木板共速后相对静止,对B 和木板:./m 35,)m 22212s a a m m g m g m m B A B A =+=+++解得)((μμ向右减速运动. 对B 有,木板和A相对静止.假设正确,设再经t g,m μN 320a m f 2B 12B B <== A 全程加速度不变.对B 和木板:,222t a v v B -=对A 有:,222t a v v A +-=解得t 2=0.3s.v 2=0.5m/s.0.225m,m 409t 2v v x 22B /B ==+=0.875m.)t (t a 21)t (t v x 221A 210A =+-+= 故 1.9m.x x x L /B B A =++= 练习1. (水平面光滑的“滑块—滑板”模)如图所示,质量M =8 kg 的小车静止在光滑水平面上,在小车右端施加一水平拉力F =8 N .当小车速度达到1.5 m/s 时,在小车的右端由静止轻放一大小不计、质量m =2 kg 的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长.从物体放上小车开始经t =1.5 s 的时间,物体相对地面的位移为(g 取10 m/s 2)( )A .1 mB .2.1 mC .2.25 mD .3.1 m解析:(1)刚放上物体时,对物体:.2m/s解得a ,ma μmg 211== 对小车:,/5.0,222s m a Ma mg F ==-解得μv 0=1.5m/s.设经t 1二者等速v 1.则2m/s.1s,v 解得t ,t a v t a v 11120111==+==此时物体运动:1m.t v 21x 111==故A 错.(2)共速后,设二者相对静止,整体:.0.8m/s,解得a m)a (M F 233=+= 对物体:μmg,<1.6N =ma =f 3假设正确.再经0.5s 物体运动:.1.2,1.12121223212m x x x m t a t v x =+==+=故故B 对CD 错.2. (水平面粗糙的“滑块—滑板”模型)如图所示,一长木板在水平地面上运动,在某时刻(t =0)将一相对于地面静止的物块轻放到木板上.已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上.在物块放到木板上之后,木板运动的速度—时间图象可能是图中的( )解析:(1)物体刚放上木板,对木板:.a ,mg g )1121向左,减速运动(Ma M m =++μμ (2)共速后若二者相对静止:错,,则(BC a a Ma g M 2121,)m >=+μ 由于地面有摩擦,共速后木板做减速运动,故D 错。
板块模型-----牛顿运动定律与运动学的综合运用板块模型-----牛顿运动定律与运动学的综合运用一.涉及知识点:动力学,如受力分析,摩擦力(是静摩擦力还是滑动摩擦力,大小,方向)、牛顿第二定律,运动学规律公式。
二.与传送带模式的解题思路相似。
三.二者速度相等时,摩擦力的突变(大小,方向,f滑与fmax转变),从而受力情况变,加速度变,运动情况变。
四.板块模型中的功能关系,动量问题1.产生的内能:Q=f滑·X相对2.摩擦力做功:Q=f·X对地3.动能定理,能量守恒4.动量定理,动量守恒5.用隔离还是整体来分析问题例题1:如图所示,一质量为m=2kg、初速度为6m/s的小滑块(可视为质点),向右滑上一质量为M=4kg的静止在光滑水平面上足够长的滑板,m、M间动摩擦因数为μ=0.2。
(1)滑块滑上滑板时,滑块和滑板在水平方向上各受什么力,大小如何?方向向哪?(2)滑块和滑板各做什么运动?加速度各是多大?(3)1秒末滑块和滑板的速度分别是多少?(4)1秒末滑块和滑板的位移分别是多少?相对位移是多少?(5)2秒末滑块和滑板的速度分别是多少?(6)2秒末滑块和滑板的位移分别是多少?相对位移是多少?(7)2秒后滑块和滑板将怎样运动?例2:如图所示,一质量为m=3kg、初速度为5m/s的小滑块(可视为质点),向右滑上一质量为M=2kg的静止在水平面上足够长的滑板,m、M间动摩擦因数为μ1=0.2,滑板与水平面间的动摩擦因数为μ2=0.1,(设最大静摩擦力等于滑动摩擦力)。
(1)滑块滑上滑板时,滑块和滑板在水平方向上各受什么力,大小如何?方向向哪?(2)滑块和滑板各做什么运动?加速度各是多大?(3)滑块滑上滑板开始,经过多长时间后会与滑板保持相对静止?(4)滑块和滑板相对静止时,各自的位移是多少?(5)滑块和滑板相对静止时,滑块距离滑板的左端有多远?(6)5秒钟后,滑块和滑板的位移各是多少?1. 如图1所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为( ) A .物块先向左运动,再向右运动B .物块向右运动,速度逐渐减小,直到做匀速运动C .木板向右运动,速度逐渐减小,直到做匀速运动D .木板和物块的速度都逐渐减小,直到为零2、(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间动摩擦因数为13μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g 。
2024版新课标高中物理模型与方法--滑块木板模型目录【模型归纳】1模型一光滑面上外力拉板模型二光滑面上外力拉块模型三粗糙面上外力拉板模型四粗糙面上外力拉块模型五粗糙面上刹车减速【常见问题分析】问题1.板块模型中的运动学单过程问题问题2.板块模型中的运动学多过程问题1--至少作用时间问题问题3.板块模型中的运动学多过程问题2--抽桌布问题问题4.板块模型中的运动学粗糙水平面减速问题【模型例析】5【模型演练】13【模型归纳】模型一光滑面上外力拉板加速度分离不分离m1最大加速度a1max=μgm2加速度a2=(F-μm1g) /m2条件:a2>a1max即F>μg(m1+m2)条件:a2≤a1max即F≤μg(m1+m2)整体加速度a=F/(m1+m2)内力f=m1F/(m1+m2)模型二光滑面上外力拉块加速度分离不分离m2最大加速度a2max=μm1g/m2 m1加速度a1=(F-μm1g)/m1条件:a1>a2max即F>μm1g(1+m1/m2)条件:a2≤a1max即F≤μm1g(1+m1/m2)整体加速度a=F/(m1+m2)内力f=m2F/(m1+m2)模型三粗糙面上外力拉板不分离(都静止)不分离(一起加速)分离条件:F≤μ2(m1+m2)g 条件:a2≤a1max即μ2(m1+m2)g<F≤(μ1+μ2)g(m1+m2)整体加速度a=[F-μ2(m1+m2)g)]/(m1条件:a2>a1max=μ1g即F>(μ1+μ2)g(m1+m2)+m2)内力f=m1a外力区间范围模型四粗糙面上外力拉块μ1m1g>μ2(m1+m2)g一起静止一起加速分离条件:F≤μ2(m1+m2)g 条件:μ2(m1+m2)g<F≤(μ1-μ2)m1g(1+m1/m2)整体加速度a=[F-μ2(m1+m2)g)]/(m1+m2)内力f1=μ2(m1+m2)g+m2a条件:a1>a2max=[μ1m1g-μ2(m1+m2)g]/m2即F>(μ1-μ2)m1g(1+m1/m2)外力区间范围模型五粗糙面上刹车减速一起减速减速分离m1最大刹车加速度:a1max=μ1g 整体刹车加速度a=μ2g条件:a≤a1max即μ2≤μ1条件:a>a1max即μ2>μ1m1刹车加速度:a1=μ1gm2刹车加速度:a2=μ2(m1+m2)g-μ1m1g)]/m2加速度关系:a1<a2【常见问题分析】问题1.板块模型中的运动学单过程问题恒力拉板恒力拉块分离,位移关系:x 相对=½a 2t 20-½a 1t 20=L 分离,位移关系:x 相对=½a 1t 20-½a 2t 20=L问题2.板块模型中的运动学多过程问题1--至少作用时间问题问题:板块分离,F 至少作用时间?过程①:板块均加速过程:②板加速、块减速位移关系:x 1相对+x 2相对=L 即Δv ·(t 1+t 2)/2=L ;利用相对运动Δv =(a 2-a 1)t 1、Δv =(a 2+a 1')t 2问题3.板块模型中的运动学多过程问题2--抽桌布问题抽桌布问题简化模型过程①:分离过程:②匀减速分离,位移关系:x2-x1=L10v0多过程问题,位移关系:x1+x1'=L2问题4.板块模型中的运动学粗糙水平面减速问题块带板板带块μ1≥μ2μ1<μ2【模型例析】1一长木板置于粗糙水平地面上,木板左端放置一小物块;在木板右方有一墙壁,木板右端与墙壁的距离为4.5m,如图(a)所示。
难点打破 2牛顿运动定律在滑块—滑板类问题中的应用1.滑块—滑板类问题的特色波及两个物体,而且物体间存在相对滑动.2.滑块和滑板常有的两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,位移之差等于板长;反向运动时,位移之和等于板长.3.滑块—滑板类问题的解题方法此类问题波及两个物体、多个运动过程,而且物体间还存在相对运动,因此应正确求出各物体在各运动过程的加快度 (注意两过程的连结处加快度可能突变 ),找出物体之间的位移 (行程 )关系或速度关系是解题的打破口.求解中更应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度.【典例】如下图,木板静止于水平川面上,在其最右端放一可视为质点的木块.已知木块的质量m=1 kg,木板的质量M =4 kg,长 L =2.5 m,上表面圆滑,下表面与地面之间的动摩擦因数μ=0.2.现用水平恒力 F= 20 N 拉木板, g 取 10 m/s2.(1)求木板加快度的大小.(2)要使木块能滑离木板,求水平恒力 F 作用的最短时间;(3)假如其余条件不变,假定木板的上表面也粗拙,其上表面与木块之间的动摩擦因数为μ1=0.3,欲使木板能从木块的下方抽出,对木板施加的拉力应知足什么条件?(4)若木板的长度、木块质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增添为 30 N,则木块滑离木板需要多长时间?【分析】(1)木板遇到的摩擦力f=μ(M +m)g=10 NF -f木板的加快度 a=M=2.5 m/s2.(2)设拉力 F 作用 t 时间后撤去F 撤去后,木板的加快度为a′=-M f=- 2.5 m/s2=a木板先做匀加快运动,后做匀减速运动,且时间相等,故at2=L解得: t=1 s,即 F 作用的最短时间为 1 s.(3)设木块的最大加快度为 a 木块,木板的最大加快度为 a 木板,则μ1mg =ma 木块解得: a 木块=μ1g=3 m/s2对木板: F 1-μ1mg-μ(M+m)g=Ma 木板木板能从木块的下方抽出的条件: a 木板 >a 木块解得: F 1>25 N.(4)木块的加快度a′木块=μ1g=3 m/s2木板的加快度 a′木板=F 2-μ1mg-μM+m gM=4.25 m/s211木块滑离木板时,二者的位移关系为s 木板-s 木块=L,即2a′木板 t2-22代入数据解得: t=2 s.如下图,质量 M =8 kg 的小车放在圆滑水平面上,在小车左端加一水平推力 F=8 N.当小车向右运动的速度达到 3 m/s 时,在小车右端轻轻地放一个大小不计、质量 m= 2 kg 的小物块.小物块与小车间的动摩擦因数μ=0.2,小车足够长. g 取 10 m/s2,则:(1)放上小物块后,小物块及小车的加快度各为多大;(2)经多长时间二者达到同样的速度;(3)从小物块放上小车开始,经过t=3 s 小物块经过的位移大小为多少?分析: (1)小物块的加快度a m=μg=2 m/s2小车的加快度 a M=F -μmgM=0.5 m/s2(2)由 a m t=v0+a M t,得 t=2 s,v 同=2×2 m/s=4 m/s(3)在开始 2 s 内,小物块经过的位移x1=12a m t2=4 m在接下来的 1 s 内小物块与小车相对静止,一同做匀加快运动,加快度 a=F=0.8 m/s2 M +m小物块的位移 x2=v 同 t′+1at′2=4.4 m 2经过的总位移 x=x1+x2=8.4 m.答案: (1)2 m/s20.5 m/s2(2)2 s (3)8.4 m如下图,将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板快速抽出,砝码的挪动很小,几乎察看不到,这就是大家熟习的惯性演示实验.若砝码和纸板的质量分别为m1和m2,各接触面间的动摩擦因数均为μ.重力加快度为 g.(1)当纸板相对砝码运动时,求纸板所受摩擦力的大小;(2)要使纸板相对砝码运动,求所需拉力的大小;(3)本实验中, m1=0.5 kg,m2=0.1 kg,μ=0.2,砝码与纸板左端的距离 d=0.1 m,取 g=10 m/s2若砝码挪动的距离超出l =,人眼就能.0.002 m 感知.为保证实验成功,纸板所需的拉力起码多大?分析: (1)砝码对纸板的摩擦力 f 1=μm1g桌面对纸板的滑动摩擦力 f2=μ(m1+m2)gf=f1+f 2解得 f=μ(2m1+m2)g(2)设砝码的加快度为a1,纸板的加快度为a2,则f1=m1a1F -f 1-f2=m2a2发生相对运动则 a2>a1解得 F>2μ(m1+m2)g(3)纸板抽出前,砝码运动的距离12 x1=2a1t112纸板运动的距离 d+x =2a t11212纸板抽出后,砝码在桌面上运动的距离x2=2a3t2 l=x1+x2由题意知 a1=a3,a1t1=a3t2d解得 F =2μ[m1+(1+l )m2]g代入数据得 F=22.4 N.答案: (1)μ(2m1+m2)g(2)F>2μ(m1+m2)g(3)22.4 N。
大题板块模型板块模型涉及相互作用的两个物体间的相对运动、涉及摩擦力突变以及功能、动量的转移转化。
情境素材丰富多变考察角度广泛,备受高考命题人的青睐,在历年高考中都有体现多以压轴题的形式出现,所以在备考中要引起高度重视,并要加大训练提升分析此类问题的解答水平。
动力学方法解决板块问题1如图甲所示,质量m =1kg 的小物块A (可视为质点)放在长L =4.5m 的木板B 的右端,开始时A 、B 两叠加体静止于水平地面上。
现用一水平向右的力F 作用在木板B 上,通过传感器测出A 、B 两物体的加速度与外力F 的变化关系如图乙所示。
已知A 、B 两物体与地面之间的动摩擦因数相等,且最大静摩擦力等于滑动摩擦力,重力加速度g 取10m/s 2。
求:(1)A 、B 间的动摩擦因数μ1;(2)乙图中F 0的值;(3)若开始时对B 施加水平向右的恒力F =29N ,同时给A 水平向左的初速度v 0=4m/s ,则在t =3s 时A 与B 的左端相距多远。
【三步审题】第一步:审条件挖隐含(1)当F >F 0时B 相对地面滑动,F 0的值为B 与地面间的最大静摩擦力大小(2)当F 0<F ≤25N 时,A 与B 一起加速运动,A 与B 间的摩擦力为静摩擦力(3)当F >25N 时,A 与B 有相对运动,A 在B 的动摩擦力作用下加速度不变第二步:审情景建模型(1)A 与B 间相互作用:板块模型(2)A 与B 的运动:匀变速直线运动第三步:审过程选规律(1)运用牛顿运动定律找加速度与摩擦力(动摩擦因数)的关系,并分析a -F 图像的物理意义(2)用匀变速运动的规律分析A 与B 运动的位移【答案】 (1)0.4 (2)5N (3)22.5m【解析】 (1)由题图乙知,当A 、B 间相对滑动时A 的加速度a 1=4m/s 2对A 由牛顿第二定律有μ1mg =ma 1得μ1=0.4。
(2)设A、B与水平地面间的动摩擦因数为μ2,B的质量为M。
2020年高考物理专题精准突破专题动力学中的板块问题【专题诠释】1.模型特征滑块——滑板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次相互作用,属于多物体、多过程问题,知识综合性较强,对能力要求较高,故频现于高考试卷中.另外,常见的子弹射击滑板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块——滑板模型类似.2.两种类型【高考领航】【2019·江苏高考】如图所示,质量相等的物块A和B叠放在水平地面上,左边缘对齐。
A与B、B与地面间的动摩擦因数均为μ。
先敲击A,A立即获得水平向右的初速度,在B上滑动距离L后停下。
接着敲击B,B立即获得水平向右的初速度,A、B都向右运动,左边缘再次对齐时恰好相对静止,此后两者一起运动至停下。
最大静摩擦力等于滑动摩擦力,重力加速度为g。
求:(1)A被敲击后获得的初速度大小v A;(2)在左边缘再次对齐的前、后,B运动加速度的大小a B、a B′;(3)B被敲击后获得的初速度大小v B。
【答案】(1)2μgL(2)3μgμg(3)22μgL【解析】A、B的运动过程如图所示:(1)A被敲击后,B静止,A向右运动,由牛顿第二定律知,A的加速度大小a A=μgA在B上滑动时有2a A L=v2A解得:v A=2μgL。
(2)设A、B的质量均为m对齐前,A相对B滑动,B所受合外力大小F=μmg+2μmg=3μmg由牛顿第二定律得F=ma B,得a B=3μg对齐后,A、B相对静止,整体所受合外力大小F′=2μmg由牛顿第二定律得F′=2ma B′,得a B′=μg。
(3)设B被敲击后,经过时间t,A、B达到共同速度v,位移分别为x A、x B,A的加速度大小等于a A 则v=a A t,v=v B-a B tx A=12a A t2,x B=v B t-12a B t2且x B-x A=L解得:v B=22μgL。
【2017·高考全国卷Ⅲ】如图,两个滑块A和B的质量分别为m A=1 kg和m B=5 kg,放在静止于水平地面上的木板的两端,两者与木板间的动摩擦因数均为μ1=0.5;木板的质量为m=4 kg,与地面间的动摩擦因数为μ2=0.1.某时刻A、B两滑块开始相向滑动,初速度大小均为v0=3 m/s.A、B相遇时,A与木板恰好相对静止.设最大静摩擦力等于滑动摩擦力,取重力加速度大小g=10 m/s2.求(1)B 与木板相对静止时,木板的速度; (2)A 、B 开始运动时,两者之间的距离. 【答案】 见解析【解析】 (1)滑块A 和B 在木板上滑动时,木板也在地面上滑动.设A 、B 和木板所受的摩擦力大小分别为f 1、f 2和f 3,A 和B 相对于地面的加速度大小分别为a A 和a B ,木板相对于地面的加速度大小为a 1.在物块B 与木板达到共同速度前有f 1=μ1m A g ① f 2=μ1m B g ② f 3=μ2(m +m A +m B )g ③ 由牛顿第二定律得f 1=m A a A ④ f 2=m B a B ⑤ f 2-f 1-f 3=ma 1 ⑥设在t 1时刻,B 与木板达到共同速度,其大小为v 1.由运动学公式有v 1=v 0-a B t 1 ⑦ v 1=a 1t 1 ⑧ 联立①②③④⑤⑥⑦⑧式,代入已知数据得v 1=1 m/s. ⑨(2)在t 1时间间隔内,B 相对于地面移动的距离为s B =v 0t 1-12a B t 21⑩设在B 与木板达到共同速度v 1后,木板的加速度大小为a 2.对于B 与木板组成的体系,由牛顿第二定律有f 1+f 3=(m B +m )a 2 ⑪由①②④⑤式知,a A =a B ;再由⑦⑧式知,B 与木板达到共同速度时,A 的速度大小也为v 1,但运动方向与木板相反.由题意知,A 和B 相遇时,A 与木板的速度相同,设其大小为v 2.设A 的速度大小从v 1变到v 2所用的时间为t 2,则由运动学公式,对木板有v 2=v 1-a 2t 2 ⑫对A 有v 2=-v 1+a A t 2 ⑬在t 2时间间隔内,B (以及木板)相对地面移动的距离为s 1=v 1t 2-12a 2t 22 ⑭在(t 1+t 2)时间间隔内,A 相对地面移动的距离为s A =v 0(t 1+t 2)-12a A (t 1+t 2)2 ⑮A 和B 相遇时,A 与木板的速度也恰好相同.因此A 和B 开始运动时,两者之间的距离为s 0=s A +s 1+s B ⑯ 联立以上各式,并代入数据得s 0=1.9 m. (也可用如图的速度-时间图线求解)【技巧方法】1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
牛顿运动定律的应用---板块叠加模型一:知识回顾1.模型特征滑块——滑板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次相互作用,属于多物体、多过程问题,知识综合性较强,对能力要求较高,故频现于高考试卷中.另外,常见的子弹射击滑板(如图b)也属于滑块类问题,处理方法与滑块——滑板模型类似.类型图示木板好滑到木板左端时二者速度相等,则位移关系为物块好滑到木板右端时二者速度相等,则位移关系为3.分析“板块”模型时要抓住一个转折和两个关联4.思维模板一:光滑水平面(1)有初速度类1.(多选)(2019·广东六校联考)如图甲所示,光滑平台上的物体A以初速度v0滑到上表面粗糙的水平小车B上,车与水平面间的动摩擦因数不计,图乙为物体A与小车B的v-t图象,由此可知() A.小车上表面长度B.物体A与小车B的质量之比C.物体A与小车B上表面的动摩擦因数D.小车B获得的动能2.如图甲所示,光滑水平面上有一质量为M=1kg的足够长木板。
板左端有一质量为m=0.5kg的物块(视为质点),物块与木板间的动摩擦因数为μ=0.2。
初始时物块与木板均处于静止状态,已知g=10m/s2,物块与=3m/s,求木板间的最大静摩擦力与滑动摩擦力相等。
现仅给物块一水平向右的初速度v(1)物块与木板最后的速度v.1(2)求物块相对木板滑动的距离L;(3)整个过程中因摩擦而产生的热量Q.3.如图所示,木板长L=1.6m,质量M=4.0kg,下表面光滑,上表面与滑块间的动摩擦因数为μ=0.4.质量m=1.0kg的小滑块(视为质点)放在木板的右端,开始时木板与物块均处于静止状态,现给木板以向右的初速度,取g=10m/s2,求:(1)木板所受摩擦力的大小;(2)使小滑块不从木板上掉下来,木板初速度的最大值.(2)F作用于下方木块类4.(2020浙江丽水质检)如图所示,在光滑水平地面上,水平外力F拉动小车和木块一起做无相对滑动的加速运动。
(完整)⾼中物理⽜顿第⼆定律——板块模型解题基本思路⾼中物理基本模型解题思路——板块模型(⼀)本模型难点:(1)长板下表⾯是否存在摩擦⼒,摩擦⼒的种类;静摩擦⼒还是滑动摩擦⼒,如滑动摩擦⼒,N F 的计算(2)物块和长板间是否存在摩擦⼒,摩擦⼒的种类:静摩擦⼒还是滑动摩擦⼒。
(3)长板上下表⾯摩擦⼒的⼤⼩。
(⼆)在题⼲中寻找注意已知条件:(1)板的上下两表⾯是否粗糙或光滑(2)初始时刻板块间是否发⽣相对运动(3)板块是否受到外⼒F ,如受外⼒F 观察作⽤在哪个物体上(4)初始时刻物块放于长板的位置(5)长板的长度是否存在限定⼀、光滑的⽔平⾯上,静⽌放置⼀质量为M ,长度为L 的长板,⼀质量为m 的物块,以速度0v 从长板的⼀段滑向另⼀段,已知板块间动摩擦因数为µ。
⾸先受⼒分析:对于m :由于板块间发⽣相对运动,所以物块所受长板向左的滑动摩擦⼒,即:===m N N ma f F f mg F 动动µg a m µ= (⽅向⽔平向左)由于物块的初速度向右,加速度⽔平向左,所以物块将⽔平向右做匀减速运动。
对于M :由于板块间发⽣相对运动,所以长板上表⾯所受物块向右的滑动摩擦⼒,但下表⾯由于光滑不受地⾯作⽤的摩擦⼒。
即:动f N F N F '==+='M N N N Ma f F f F Mg F 动动µ M mg a M µ= (⽅向⽔平向右)由于长板初速度为零,加速度⽔平向右,所以物块将⽔平向右做匀加速运动。
假设当M m v v=时,由于板块间⽆相对运动或相对运动趋势,所以板块间的滑动摩擦⼒会突然消失。
则物块和长板将保持该速度⼀起匀速运动。
关于运动图像可以⽤t v -图像表⽰运动状态:公式计算:设经过时间 t 板块共速,共同速度为共v 。
由共v v v M m == 可得: m 做匀减速直线运动: t a v v m -=0共M 做初速度为零的匀加速直线运动:t a v M M =可计算解得时间: t a t a v M m =-0物块和长板位移关系:m : 2021t a t v x m m -= M : 221t a x M M = 相对位移:M m x x x -=?v v⼆、粗糙的⽔平⾯上,静⽌放置⼀质量为M ,⼀质量为m 的物块,以速度0v 从长板的⼀段滑向另⼀段,已知板块间动摩擦因数为1µ,长板和地⾯间的动摩擦因数为2µ,长板⾜够长。
第10讲滑板-滑块模型11.模型特点上、下叠放的两个物体,并且两物体在摩擦力的相互作用下发生相对滑动。
2.解题指导(1)分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;(2)对滑块和木板进行运动情况分析,找出滑块和木板之间位移关系或速度关系,建立方程。
(3)通常所说物体运动的位移、速度、加速度都是对地而言的。
在相对运动的过程中相互作用的物体之间位移、速度、加速度、时间一定存在关联。
它就是解决问题的突破口。
(4)求时间通常会用到牛顿第二定律加运动学公式或动量定理:应用动量定理时特别要注意条件和方向,最好是对单个物体应用动量定理求解。
(5)求位移通常会用到牛顿第二定律加运动学公式或动能定理,应用动能定理时研究对象为单个物体或可以看成单个物体的整体。
另外求相对位移时,通常会用到系统能量守恒定律。
(6)求速度通常会用到牛顿第二定律加运动学公式或动能定理或动量守恒定律:应用动量守恒定律时要特别注意系统的条件和方向。
3.两种位移关系滑块由滑板的一端运动到另一端的过程中,若滑块和滑板同向运动,二者位移之差等于滑板长度;反向运动时,二者位移之和等于滑板长。
4.易错点(1)不清楚滑块、滑板的受力情况,求不出各自的加速度;(2)不清楚物体间发生相对滑动的条件。
说明:两者发生相对滑动的条件:(1)摩擦力为滑动摩擦力(动力学条件);(2)二者速度或加速度不相等(运动学条件)。
(其中动力学条件是判断的主要依据)5.分析“滑块—滑板模型”问题时应掌握的技巧(1)分析题中滑块、滑板的受力情况,求出各自的加速度;(2)画好运动草图,找出位移、速度、时间等物理量间的关系;(3)明确每一过程的末速度是下一过程的初速度。
2一、单选题1.(2020·四川省高三三模)如图所示,质量均为M 的物块A 、B 叠放在光滑水平桌面上,质量为m 的物块C 用跨过轻质光滑定滑轮的轻绳与B 连接,且轻绳与桌面平行,A 、B 之间的动摩擦因数为μ,设最大静摩擦力等于滑动摩擦力,重力加速度大小为g ,下列说法正确的是( )A.若物块A 、B 未发生相对滑动,物块A 受到的摩擦力为2f MmgF M m=+B.要使物块A 、B 发生相对滑动,应满足关系1Mm μμ>- C.若物块A 、B 未发生相对滑动,轻绳拉力的大小为mgD.若物块A 、B 未发生相对滑动时,轻绳对定滑轮的作用力为22MmgF M m=+【答案】A【解析】A .若物块A 、B 未发生相对滑动,A 、B 、C 三者加速的大小相等,由牛顿第二定律得()2mg M m a =+对A ,由牛顿第二定律得f F Ma =解得2f MmgF M m=+,故A 正确;B .当A 、B 发生相对滑动时,A 所受的静摩擦力达到最大,根据牛顿第二定律有Mg Ma μ=解得a g μ=以A 、B 、C 系统为研究对象,由牛顿第二定律得()2mg M m a =+解得21Mm μμ=- 故要使物块A 、B 之间发生相对滑动,则21Mm μμ>-,故B 错误; C .若物块A 、B 未发生相对滑动,设轻绳拉力的大小为F ,对C 受力分析,根据牛顿第二定律有mg F ma -=解得F mg ma mg =-<,故C 错误;D .若物块A 、B 未发生相对滑动时,由A 可知,此时的加速度为2f mgMmF a M ==+对C 受力分析,根据牛顿第二定律有mg F ma -=解得22MmgF M m=+根据力的合成法则,可得轻绳对定滑轮的作用力2222+=2MmgN F F M m=+故D 错误。
突破12牛顿运动定律的应用之滑块—木板模型一、模型概述滑块-木板模型(如图a),涉及摩擦力分析、相对运动、摩擦生热,多次互相作用,属于多物体多过程问题,知识综合性较强,对能力要求较高,另外,常见的子弹射击木板(如图b)、圆环在直杆中滑动(如图c)都属于滑块类问题,处理方法与滑块-木板模型类似。
二、滑块—木板类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
滑块与木板存在相对运动的临界条件是什么?⑴运动学条件:若两物体速度或加速度不等,则会相对滑动。
⑵动力学条件:假设两物体间无相对滑动,先用整体法算出共同加速度,再用隔离法算出其中一个物体“所需要”的摩擦力f;比较f与最大静摩擦力f m的关系,若f>f m,则发生相对滑动;否则不会发生相对滑动。
3.分析滑块和木板的受力情况,根据牛顿第二定律分别求出滑块和木板的加速度;4.对滑块和木板进行运动情况分析,找出滑块和木板之间的位移关系或速度关系,建立方程.特别注意滑块和木板的位移都是相对地面的位移.学.科网5.计算滑块和木板的相对位移(即两者的位移差或位移和);6.如果滑块和木板能达到共同速度,计算共同速度和达到共同速度所需要的时间;7.滑块滑离木板的临界条件是什么?当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
【典例1】如图所示,在光滑水平面上有一质量为m1的足够长的木板,其上叠放一质量为m2的木块。
假定木块和木板之间的最大静摩擦力和滑动摩擦力相等。
现给木块施加一随时间t增大的水平力F=kt(k是常数),木板和木块加速度的大小分别为a1和a2。
下列反映a1和a2变化的图线中正确的是(如下图所示)()【答案】A【典例2】如图所示,A 、B 两物块的质量分别为2m 和m ,静止叠放在水平地面上。
A 、B 间的动摩擦因数为μ,B 与地面间的动摩擦因数为12μ。
最大静摩擦力等于滑动摩擦力,重力加速度为g 。
现对A 施加一水平拉力F ,则()A .当F <2μmg 时,A 、B 都相对地面静止B .当F =52μmg 时,A 的加速度为13μg C .当F >3μmg 时,A 相对B 滑动D .无论F 为何值,B 的加速度不会超过12μg 【答案】BCD【解析】A 、B 间的最大静摩擦力为2μmg ,B 和地面之间的最大静摩擦力为32μmg ,对A 、B 整体,只要F >32μmg ,整体就会运动,选项A 错误;当A 对B 的摩擦力为最大静摩擦力时,A 、B 将要发生相对滑动,故A 、B 一起运动的加速度的最大值满足2μmg -32μmg =m a m a x ,B 运动的最大加速度a m a x =12μg ,选项D 正确;对A 、B 整体,有F -32μmg =3m a m a x ,则F >3μmg 时两者会发生相对运动,选项C 正确;当F =52μmg 时,两者相对静止,一起滑动,加速度满足F -32μmg =3m a ,解得a =13μg ,选项B 正确。
【典例3】如图所示,木板静止于水平地面上,在其最右端放一可视为质点的木块。
已知木块的质量m =1kg ,木板的质量M =4kg ,长L =2.5m ,上表面光滑,下表面与地面之间的动摩擦因数μ=0.2。
现用水平恒力F =20N 拉木板,g 取10m/s 2。
(1)求木板加速度的大小;(2)要使木块能滑离木板,求水平恒力F 作用的最短时间;(3)如果其他条件不变,假设木板的上表面也粗糙,其上表面与木块之间的动摩擦因数为μ1=0.3,欲使木板能从木块的下方抽出,对木板施加的拉力应满足什么条件?(4)若木板的长度、木块质量、木板的上表面与木块之间的动摩擦因数、木板与地面间的动摩擦因数都不变,只将水平恒力增加为30N ,则木块滑离木板需要多长时间?【答案】(1)2.5m/s 2(2)1s (3)F >25N (4)2s 【解析】(1)木板受到的摩擦力F f =μ(M +m )g =10N木板的加速度a =F -F f M=2.5m/s 2。
(2)设拉力F 作用时间t 后撤去,F 撤去后,木板的加速度为a ′=-F f M=-2.5m/s 2,可见|a ′|=a木块滑离木板时,两者的位移关系为x 木板-x 木块=L ,即12a ′木板t 2-12a ′木块t 2=L 代入数据解得:t =2s 。
【短训跟踪】1.如图甲所示,静止在光滑水平面上的长木板B (长木板足够长)的右端放着小物块A ,某时刻B 受到水平向右的外力F 作用,F 随时间t 的变化规律如图乙所示,即F =kt ,其中k 为已知常数.若物体之间的滑动摩擦力F f 的大小等于最大静摩擦力,且A 、B 的质量相等,则下列图中可以定性地描述物块A 的v t 图象的是().【答案】B2.如图所示,质量为m1的足够长的木板静止在光滑水平面上,其上放一质量为m2的木块.t=0时刻起,给木块施加一水平恒力F.分别用a1、a2和v1、v2表示木板、木块的加速度和速度大小,图中可能符合运动情况的是().【答案】AC【解析】t=0时刻起,给木块施加一水平恒力F,两者可能一起加速运动,选项A正确;可能木块的加速度大于木板的加速度,选项C正确.3.质量为m0=20kg、长为L=5m的木板放在水平面上,木板与水平面的动摩擦因数为μ1=0.15。
将质量m=10kg的小木块(可视为质点),以v0=4m/s的速度从木板的左端被水平抛射到木板上(如图所示),小木块与木板面的动摩擦因数为μ2=0.4(最大静摩擦力等于滑动摩擦力,g=10m/s2)。
则下列判断中正确的是()A.木板一定静止不动,小木块不能滑出木板B.木板一定静止不动,小木块能滑出木板C.木板一定向右滑动,小木块不能滑出木板D.木板一定向右滑动,小木块能滑出木板【答案】A【解析】木板与地面间的摩擦力为F f1=μ1(m0+m)g=0.15×(20+10)×10N=45N,小木块与木板之间的摩擦力为F f2=μ2mg=0.4×10×10N=40N,F f1>F f2,所以木板一定静止不动;设小木块在木板上滑行的距离为x,v20=2μ2gx,解得x=2m<L=5m,所以小木块不能滑出木板,A正确。
4.如图所示,一长木板在水平地面上运动,在某时刻(t=0)将一相对于地面静止的物块轻放到木板上,已知物块与木板的质量相等,物块与木板间及木板与地面间均有摩擦,物块与木板间的最大静摩擦力等于滑动摩擦力,且物块始终在木板上。
在物块放到木板上之后,木板运动的速度-时间图象可能是下列选项中的()【答案】A5.如图甲,水平地面上有一静止平板车,车上放一质量为m的物块,物块与平板车间的动摩擦因数为0.2,t=0时,车开始沿水平面做直线运动,其v-t图象如图乙所示。
g取10m/s2,平板车足够长,则物块运动的v-t图象为()【答案】C 【解析】小车先做匀加速直线运动,然后做匀减速直线运动,匀加速直线运动和匀减速直线运动的加速度大小相等,a 车=4m/s 2,根据物块与车发生相对滑动时滑动摩擦力产生的加速度大小为a 物=μg =2m/s 2。
设小车和物块在t 时刻速度相同,有24-a 车(t -6)=a 物t ,解得t =8s ,物块以2m/s 2的加速度减速至零也需要8s ,故只有选项C 正确。
6.如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间的动摩擦因数为μ3,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g .现对物块施加一水平向右的拉力F ,则木板加速度大小a 可能是().学/科网A .a =μgB .a =2μg 3C .a =μg 3D .a =F 2m -μg 3【答案】CD7.如图所示,物块A 、木板B 的质量均为m =10kg ,不计A 的大小,B 板长L =3m 。
开始时A 、B 均静止。
现使A 以某一水平初速度从B 的最左端开始运动。
已知A 与B 、B 与水平面之间的动摩擦因数分别为μ1=0.3和μ2=0.1,g 取10m/s 2。
(1)若物块A 刚好没有从B 上滑下来,则A 的初速度多大?(2)若把木板B 放在光滑水平面上,让A 仍以(1)问中的初速度从B 的最左端开始运动,则A 能否与B 脱离?最终A 和B 的速度各是多大?【答案】(1)26m/s (2)没有脱离6m/s 6m/s 【解析】(1)A 在B 上向右匀减速运动,加速度大小a 1=μ1g =3m/s 2木板B 向右匀加速运动,加速度大小a 2=μ1mg -μ2·2mg m=1m/s 2由题意知,A 刚好没有从B 上滑下来,则A 滑到B 最右端时和B 速度相同,设为v ,得时间关系:t =v 0-v a 1=v a 2A 的位移x A =v 20-v ′22a 1=3m B 的位移x B =v ′22a 2′=1m 由x A -x B =2m 可知A 没有与B 脱离,最终A 和B 的速度相等,大小为6m/s 。
8.如图所示,质量为M 的长木板,静止放置在粗糙水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度从左端冲上木板。
从物块冲上木板到物块和木板达到共同速度的过程中,物块和木板的v -t 图象分别如图中的折线acd 和bcd 所示,a 、b 、c 、d 点的坐标为a (0,10)、b (0,0)、c (4,4)、d (12,0)。
根据v -t 图象,(g 取10m/s 2),求:(1)物块冲上木板做匀减速直线运动的加速度大小a 1,木板开始做匀加速直线运动的加速度大小a 2,达到相同速度后一起匀减速直线运动的加速度大小a ;学//科/网(2)物块质量m 与长木板质量M 之比;(3)物块相对长木板滑行的距离Δx 。
【答案】(1)1.5m/s 21m/s 20.5m/s 2(2)3∶2(3)20m 【解析】(1)物块冲上木板做匀减速直线运动的加速度大小为a 1=10-44m/s 2=1.5m/s 2(3)由v-t图象知,物块在木板上相对滑行的距离Δx=12×10×4m=20m。