牛顿运动定律板块模型
- 格式:pptx
- 大小:286.13 KB
- 文档页数:18
板块模型小汇总一、地面光滑,上表面粗糙,无拉力,物块A 带动木板B (地面粗糙,有可能B 不动,有可能共速后一起减速)(1)物块滑离木板,物块滑到木板右端时二者速度不相等,x B +L =x A ,速度时间图像类似图1(2)物块恰好不从木板上掉下的临界条件是物块恰好滑到木板右端时二者速度相等,则位移关系为x B +L =x A ,速度时间图像类似图2二、地面光滑,上表面粗糙,无拉力,木板B 带动物块A (地面粗糙,有可能共速后一起减速,也可能共速后各自减速)(1)物块滑离木板,物块从木板左端滑离时二者速度不相等,x B =x A +L ,速度时间图像类似图3(2)物块恰好不从木板上掉下的临界条件是物块恰好滑到木板左端时二者速度相等,则位移关系为x B =x A +L ,速度时间图像类似图4三、地面光滑,上表面粗糙,有拉力F 较小时,木板和木块一起做加速运动,有F =(m A +m B )a ,对A 分析,f BA =m A a临界情况f BA =μm A g ,此时F 是AB 一起加速运动的临界最大值,F 临=(m A +m B )μg ,a 的变化和F 图像如图5 F 超过F 临,AB 各自加速,A 从B 左端滑落,速度时间图像如图6 四、地面光滑,上表面粗糙,有拉力F 较小时,木板和木块一起做加速运动,有F =(m A +m B )a ,对B 分析,f AB =m B a临界情况f AB =μm A g ,此时F 是AB 一起加速运动的临界最大值,F 临=(m A +m B )A Bm g m ,a 的变化和F 图像如图7 F 超过F 临,AB 各自加速,A 从B 右端滑落,速度时间图像如图8五、地面粗糙,动摩擦因数μ0,上表面粗糙,动摩擦因数μ,有拉力,F 0=μ0(m A +m B )g ,F 临=(μ0+μ)(m A +m B )g图1图2图3图4图5图6图7图8①F ≤F 0时,整体静止 ②F 0<F ≤F 临时,一起加速 ③F >F 临时,各自加速,且a B >a A六、地面粗糙,动摩擦因数μ0,上表面粗糙,动摩擦因数μ,有拉力,μm A g≤μ0(m A+m B)g,A带不动B,B相当于地面七、地面粗糙,动摩擦因数μ0,上表面粗糙,动摩擦因数μ,有拉力,μm A g≥μ0(m A+m B)g,F0=μ0(m A+m B)g板块模型板块类问题的解题思路与技巧:1.通过受力分析判断滑块和木板各自的运动状态(具体做什么运动);2.判断滑块与木板间是否存在相对运动。
专题05 牛顿运动定律中的斜面和板块模型一、牛顿第二定律:ma F =合;x ma F x =合;y ma F y =合。
二、牛顿第三定律:'F F -=,(F 与'F -等大、反向、共线)在解牛顿定律中的斜面模型时,首先要选取研究对象和研究过程,建构相应的物理模型,然后以加速度为纽带对研究对象进行受力分析和运动分析,最后根据运动学公式、牛顿运动定律、能量守恒定律、动能定理等知识,列出方程求解即可。
在解决牛顿定律中的板块模型时,首先构建滑块-木板模型,采用隔离法对滑块、木板进行受力分析,运用牛顿第二定律运动学公式进行计算,判断是否存在速度相等的临界点;若无临界速度,则滑块与木板分离,只要确定相同时间内的位移关系,列出方程求解即可;若有临界速度,则滑块与木板没有分离,此时假设速度相等后加速度相等,根据整体法求整体加速度,由隔离法求滑块与木板间的摩擦力f 以及最大静摩擦力m f 。
如果m f f ≤,假设成立,整体列式,求解即可;如果m f f >,假设不成立,需要分别列式求解。
一、在斜面上物块所受摩擦力方向的判断以及大小的计算1.物块(质量为m )静止在粗糙斜面上:(1)摩擦力方向的分析:对物块受力分析,因为物块重力有沿斜面向下的分力,故物块有沿斜面向下的运动趋势,则物块所受摩擦力沿斜面向上。
(2)摩擦力大小的计算:物块处于平衡状态,沿斜面方向受力平衡,即0=合F ,则有θsin mg F f =。
2.物块(质量为m )在粗糙的斜面上匀速下滑:(1)摩擦力方向的分析:物块沿斜面向下运动,可以根据摩擦力的方向与相对运动的方向相反来判断物块受到的摩擦力的方向沿斜面向上。
(2)摩擦力大小的计算:①物块处于平衡状态,沿斜面方向受力平衡,即0=合F ,则有θsin mg F f =,N F f μ=。
②物块沿斜面向下做匀加速运动,滑动摩擦力为N F f μ=,由牛顿第二定律有ma F mg f =-θsin 。
图2牛顿定律三种典型模型板块模型1、如图所示,薄板A 长L =5 m ,其质量M =5 kg ,放在水平桌面上,板右端与桌边相齐.在A 上距右端x =3 m 处放一物体B (可看成质点),其质量m =2 kg.已知A 、B 间动摩擦因数μ1=0.1,A 与桌面间和B 与桌面间的动摩擦因数均为μ2=0.2,原来系统静止.现在在板的右端施加一大小一定的水平力F 持续作用在A 上直到将A 从B 下抽出才撤去,且使B 最后停于桌的右边缘.求:(1)B 运动的时间.(2)力F 的大小2、如图所示,长为L =2 m 、质量为M =8 kg 的木板,放在水平地面上,木板向右运动的速度v 0=6 m/s 时,在木板前端轻放一个大小不计,质量为m =2 kg 的小物块.木板与地面、物块与木板间的动摩擦因数均为μ=0.2,g =10 m/s 2.求:(1)物块及木板的加速度大小.(2)物块滑离木板时的速度大小.传送带模型3、如图所示,一质量为m 的小物体以一定的速率v 0滑到水平传送带上左端的A 点,当传送带始终静止时,已知物体能滑过右端的B 点,经过的时间为t 0,则下列判断正确的是( )A .若传送带逆时针方向运行且保持速率不变,则物体也能滑过B 点,且用时为t 0B .若传送带逆时针方向运行且保持速率不变,则物体可能先向右做匀减速运动直到速度减为零,然后向左加速,因此不能滑过B点C .若传送带顺时针方向运行,当其运行速率(保持不变)v =v 0时,物体将一直做匀速运动滑过B 点,用时一定小于t 0D .若传送带顺时针方向运行,当其运行速率(保持不变)v >v 0时,物体一定向右一直做匀加速运动滑过B 点,用时一定小于t 04、如图所示,绷紧的传送带,始终以2 m/s 的速度匀速斜向上运行,传送带与水平方向间的夹角θ=30°.现把质量为10 kg 的工件轻轻地放在传送带底端P 处,由传送带传送至顶端Q 处. 已知P 、Q 之间的距离为4 m ,工件与传送带间的动摩擦因数为μ=32,取g =10 m/s. (1)通过计算说明工件在传送带上做什么运动.(2)求工件从P 点运动到Q 点所用的时间.5、如图所示,传送带与地面成夹角θ=37°,以10m/s 的速度逆时针转动,在传送带上端轻轻地放一个质量m =0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A →B 的长度L =16m ,则物体从A 到B 需要的时间为多少?“等时圆”模型(1)物体沿着位于同一竖直圆上的所有光滑弦由静止下滑,到达圆周最低点时间均相等,且为t =2R g (如图甲所示).(2)物体沿着位于同一竖直圆上的所有过顶点的光滑弦由静止下滑,到达圆周低端时间相等为t =2R g(如图乙所示). 6、如图所示,位于竖直平面内的固定光滑圆环轨道与水平面相切于M 点,与竖直墙相切于A点.竖直墙上另一点B 与M 的连线和水平面的夹角为60°,C 是圆环轨道的圆心.已知在同一时刻a、b 两球分别由A 、B 两点从静止开始沿光滑倾斜直轨道AM 、BM 运动到M 点; c 球由C 点自由下落到M 点. 则( )A .a 球最先到达M 点B .b 球最先到达M 点C .c 球最先到达M 点D .b 球和c 球都可能最先到达M 点7、如图所示,在倾角为θ的斜面上方的A 点处放置一光滑的木板AB ,B 端刚好在斜面上.木板与竖直方向AC 所成角度为α,一小物块自A 端沿木板由静止滑下,要使物块滑到斜面的时间最短,则α与θ角的大小关系应为( )A .α=θB .α=θ2C .α=θ3D .α=2θ练习1.如图所示,AB 和CD 为两条光滑斜槽,它们各自的两个端点均分别位于半径为R 和r 的两个相切的圆上,且斜槽都通过切点P .设有一重物先后沿两个斜槽,从静止出发,由A 滑到B 和由C 滑到D ,所用的时间分别为t1和t 2,则t1与t 2之比为( )A .2∶1B .1∶1 C.3∶1 D .1∶ 32.如图甲为应用于机场和火车站的安全检查仪,用于对旅客的行李进行安全检查.其传送装置可简化为如图乙的模型,紧绷的传送带始终保持v =1 m/s 的恒定速率运行.旅客把行李无初速度地放在A 处,设行李与传送带之间的动摩擦因数μ=0.1,A 、B 间的距离为2 m ,g 取10 m/s 2.若乘客把行李放到传送带的同时也以v =1 m/s 的恒定速率平行于传送带运动到B 处取行李,则( )A .乘客与行李同时到达B 处 B .乘客提前0.5 s 到达B 处C .行李提前0.5 s 到达B 处D .若传送带速度足够大,行李最快也要2 s 才能到达B 处3.(2012·济宁模拟)如图所示,水平传送带A 、B 两端点相距x =4 m ,以v 0=2 m/s 的速度(始终保持不变)顺时针运转,今将一小煤块(可视为质点)无初速度地轻放至A 点处,已知小煤块与传送带间的动摩擦因数为0.4,g 取10 m/s 2.由于小煤块与传送带之间有相对滑动,会在传送带上留下划痕.则小煤块从A 运动到B 的过程中( )A .小煤块从A 运动到B 的时间是 2 sB .小煤块从A 运动到B 的时间是2.25 sC .划痕长度是4 mD .划痕长度是0.5 m4.如图所示,质量M =8 kg 的长木板放在光滑的水平面上,在长木板左端加一水平恒推力F =8 N ,当长木板向右运动的速度达到1.5 m/s 时,在长木板前端轻轻地放上一个大小不计,质量为m =2 kg 的小物块,物块与长木板间的动摩擦因数μ=0.2,长木板足够长.(g =10 m/s 2)(1)小物块放后,小物块及长木板的加速度各为多大?(2)经多长时间两者达到相同的速度?(3)从小物块放上长木板开始,经过t =1.5 s 小物块的位移大小为多少?5.如图甲所示,质量为M 的长木板,静止放置在粗糙水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度v0从左端冲上木板.从物块冲上木板到物块和木板达到共同速度的过程中,物块和木板的v -t 图象分别如图乙中的折线acd 和bcd 所示,a 、b 、c 、d 点的坐标为a (0,10)、b (0,0)、c (4,4)、d (12,0).根据v -t 图象,求:(1)物块相对长木板滑行的距离Δx .(2)物块质量m 与长木板质量M 之比.。
第四章习题课动力学中的常见题型(二)一、滑块一木板模型1.模型特点:滑块(视为质点)置于木板上,滑块和木板均相对地面运动,且滑块和木板在摩擦力的相互作用下发生相对滑动。
2.位移关系:如图,滑块由木板一端运动到另一端的过程中,滑块和木板同向运动时,位移之差Δx=x1-x2=L(板长);滑块和木板反向运动时,位移之和Δx=x2+x1=L。
3.基本思路运动状态板、块速度不相等板、块速度相等瞬间板、块共速运动处理方法隔离法假设法整体法具体步骤对滑块和木板进行隔离分析,弄清每个物体的受力情况与运动过程。
假设两物体间无相对滑动,先用整体法算出一起运动的加速度,再用隔离法算出其中一个物体“所需要”的摩擦力F f;比较F f与最大静摩擦力F fm的关系,若F f>F fm,则发生相对滑动。
将滑块和木板看成一个整体,对整体进行受力分析和运动过程分析。
临界条件①.两者速度达到相等的瞬间,摩擦力可能发生突变。
②.当木板的长度一定时,滑块可能从木板滑下,恰好滑到木板的边缘达到共同速度(相对静止)是滑块滑离木板的临界条件。
原理运动学公式、牛顿运动定律【例1】如图所示,质量为M,长为L的滑板静止在光滑水平面上,一质量为m的小滑块以速度v从左端滑上滑板,最后刚好不从滑板右端掉下。
求:滑块与滑板间的动摩擦因数。
【例2】如图所示,质量M=8 kg的长木板放在光滑的水平面上,在长木板左端加一水平恒推力F=8 N,当长木板向右运动的速度达到1.5 m/s 时,在长木板前端轻轻地放上一个大小不计,质量为m=2 kg的小物块,物块与长木板间的动摩擦因数μ=0.2,长木板足够长。
(g 取10 m/s2)(1).小物块放在长木板上后,小物块及长木板的加速度各为多大?(2).经多长时间两者达到相同的速度?(3).从小物块放在长木板上开始,经过t=1.5 s小物块的位移大小为多少?【练1】如图所示,一质量M=3.0 kg的足够长的木板B放在光滑的水平面上,其上表面放置质量m=1.0 kg的小木块A,A、B均处于静止状态,A与B间的动摩擦因数μ=0.30,且最大静摩擦力与滑动摩擦力大小相等.现给木块A施加一随时间t变化的水平力F=kt(k=2 N/s),取g=10 m/s2.(1)若木板B固定,则经过多少时间木块A开始滑动?(2)若木板B固定,求t2=2.0 s时木块A的加速度大小。
板块模型-----牛顿运动定律与运动学的综合运用板块模型-----牛顿运动定律与运动学的综合运用一.涉及知识点:动力学,如受力分析,摩擦力(是静摩擦力还是滑动摩擦力,大小,方向)、牛顿第二定律,运动学规律公式。
二.与传送带模式的解题思路相似。
三.二者速度相等时,摩擦力的突变(大小,方向,f滑与fmax转变),从而受力情况变,加速度变,运动情况变。
四.板块模型中的功能关系,动量问题1.产生的内能:Q=f滑·X相对2.摩擦力做功:Q=f·X对地3.动能定理,能量守恒4.动量定理,动量守恒5.用隔离还是整体来分析问题例题1:如图所示,一质量为m=2kg、初速度为6m/s的小滑块(可视为质点),向右滑上一质量为M=4kg的静止在光滑水平面上足够长的滑板,m、M间动摩擦因数为μ=0.2。
(1)滑块滑上滑板时,滑块和滑板在水平方向上各受什么力,大小如何?方向向哪?(2)滑块和滑板各做什么运动?加速度各是多大?(3)1秒末滑块和滑板的速度分别是多少?(4)1秒末滑块和滑板的位移分别是多少?相对位移是多少?(5)2秒末滑块和滑板的速度分别是多少?(6)2秒末滑块和滑板的位移分别是多少?相对位移是多少?(7)2秒后滑块和滑板将怎样运动?例2:如图所示,一质量为m=3kg、初速度为5m/s的小滑块(可视为质点),向右滑上一质量为M=2kg的静止在水平面上足够长的滑板,m、M间动摩擦因数为μ1=0.2,滑板与水平面间的动摩擦因数为μ2=0.1,(设最大静摩擦力等于滑动摩擦力)。
(1)滑块滑上滑板时,滑块和滑板在水平方向上各受什么力,大小如何?方向向哪?(2)滑块和滑板各做什么运动?加速度各是多大?(3)滑块滑上滑板开始,经过多长时间后会与滑板保持相对静止?(4)滑块和滑板相对静止时,各自的位移是多少?(5)滑块和滑板相对静止时,滑块距离滑板的左端有多远?(6)5秒钟后,滑块和滑板的位移各是多少?1. 如图1所示,一足够长的木板静止在光滑水平面上,一物块静止在木板上,木板和物块间有摩擦.现用水平力向右拉木板,当物块相对木板滑动了一段距离但仍有相对运动时,撤掉拉力,此后木板和物块相对于水平面的运动情况为( ) A .物块先向左运动,再向右运动B .物块向右运动,速度逐渐减小,直到做匀速运动C .木板向右运动,速度逐渐减小,直到做匀速运动D .木板和物块的速度都逐渐减小,直到为零2、(多选)如图所示,长木板放置在水平面上,一小物块置于长木板的中央,长木板和物块的质量均为m ,物块与木板间的动摩擦因数为μ,木板与水平面间动摩擦因数为13μ,已知最大静摩擦力与滑动摩擦力大小相等,重力加速度为g 。
专题17牛顿运动定律与板块模型【知识梳理】1、模型特点:一个物体在另一个物体上发生相对滑动,两者之间有相对运动。
问题涉及两个物体、多个过程,两物体的运动时间、速度、位移间有一定的关系,要从此方面入手分析问题。
常见的子弹打木块模型也属于此类问题。
2、常见的两种位移关系滑块从木板的一端运动到另一端的过程中,(1)若滑块和木板向同一方向运动,则滑块的位移和木板的位移之等于木板的长度;(2)若滑块和木板向相反方向运动,则滑块的位移和木板的位移之等于木板的长度。
3、两种类型4、解题方法(1)分别隔离两物体,准确求出各物体在各个运动过程中的加速度(注意两过程的连接处加速度可能突变);(2)找出物体之间的位移(路程)关系或速度关系是解题的突破口;(3)求解中应注意联系两个过程的纽带,每一个过程的末速度是下一个过程的初速度;(4)注意临界条件:滑块不从木板的末端滑下的临界条件是滑块到达木板末端时速度与木板的速度。
(5)问题实质:“板—块”模型本质上是相对运动问题,要分别求出各物体的对地位移,再求相对位移。
5、.分析“板块”模型时要抓住一个转折和两个关联(1)一个转折:滑块与木板达到相同速度或滑块从木板上滑下是受力和运动状态变化的转折点;(2)两个关联:转折前、后受力情况之间的关联和滑块、木板位移与板长之间的关联。
一般情况下,由于摩擦力或其它力的转变,转折前、后滑块和木板的加速度都会发生变化,以此转折点为界,对转折前、后进行受力分析是建立模型的关键。
【专题训练】一、单项选择题1.如图所示,质量为m的物块在质量为M的木板上滑行,木板与地面间动摩擦因数为μ1,物块与木板间摩擦系数为μ2,已知木板处于静止状态,那么木板所受地面摩擦力的大小是()A.μ2mg B.μ1(m+M)gC.μ1Mg D.μ1Mg+μ2mg2.木板B静止在水平面上,其左端放有物体A。
现对A施加水平恒力F的作用,使两物体均从静止开始向右做匀加速直线运动,直至A、B分离,已知各接触面均粗糙,则()A.A和地面对B的摩擦力是一对相互作用力B.A和地面对B的摩擦力是一对平衡力C.A对B的摩擦力水平向右D.B对A的摩擦力水平向右3.如图所示,质量为1kg的木板静止在光滑水平面上,一个小木块(可视为质点)质量也为1kg,以初速v=从木板的左端开始向右滑,木块与木板之间的动摩擦因数为0.2,要使木块不会从木板右端滑度04m/s落,则木板的长度至少为()A.5m B.4m C.3m D.2mM=的足够长的木板B,木板上面放着质量为m=1kg的木块4.如图所示,光滑水平面上放置质量为2kgμ=,最大静摩擦力等于滑动摩擦力,A,两者都处于静止状态。