概率论与数理统计复习提纲
- 格式:doc
- 大小:33.00 KB
- 文档页数:2
提纲第一部分 基本概念和基本定理【内容提要】(红色字体部分为复习重点)【释疑解惑】问题1:AB 与AB 是否相等?答:不一定相等.由对偶律可知,AB A B A B ==;而AB A B =.问题2:事件的相容性与独立性在逻辑上是否存在因果关系? 答:如下表所示,事件的相容性与独立性在逻辑上不存在因果关系.问题3:设()()()P AB P A P B =,()()()P AC P A P C =,()()()P BC P B P C =同时成立,能否推出()()()()P ABC P A P B P C =成立?答:不能(例如第2章课件中的伯恩斯坦反例),由此可以看出“两两独立”和“相互独立”并不等价.问题4:下列式子中的等号何时成立?()()()()()()()(|)()()()()()()P A B P A P B P AB P A P B P A P B A P A P B P A P B P A P B =+-=+-=+-=+答:第一个等号总成立;当()0P A >时,第二个等号成立;当,A B 独立时,第三个等号成立;当,A B 不相容时,第四个等号成立.问题5:不可能事件与零概率事件是否相等?必然事件与概率为1的事件是否相等? 答:不可能事件是零概率事件,但反之不然; 必然事件是概率为1的事件,但反之亦不然.第二部分 随机变量及其分布【内容提要】(红色字体部分为复习重点)【释疑解惑】问题1:离散型随机变量与连续型随机变量的联系与区别? 答: 2,,1ii p∞=∑一定成立.连续型随机变量还具有一个特殊性质:0, ()0C P C ξ∀>==,即任一基本事件发生的概率为零.从而可以推出下列结论:①不可能事件是零概率的事件,但反之不然;必然事件是概率为1的事件,但反之亦不然.②()()()()()baP a b P a b P a b P a b f x dx ξξξξ≤≤=<≤=≤<=<<=⎰.问题2:连续型随机变量的密度函数是否一定是连续函数? 答:不一定,均匀分布的密度函数并不连续.问题3:分布曲线(曲面)是分布函数的图像吗? 答:不是,分布曲线(曲面)是密度函数的图像.问题4:密度函数是否由分布函数唯一确定?()()dF x f x dx=何时成立? 答:不是,因为修改密度函数在个别点处的函数值对其积分的值(概率)没有影响. 对()f x 的连续点,有()()dF x f x dx=.问题5:联合分布、边缘分布、条件分布之间的联系与区别? 答:从分布函数的定义来看,分布函数几何意义联合分布(,)(,)F x y P x y ξη=≤≤边缘分布()(,)(,)F x P x F x ξξη=≤<+∞=+∞条件分布对使得()0f y η>的点y (这个条件不能少),|(,)(|)(|)()P x y F x y P x y P y ξηξηξηη≤==≤===从分布律的定义来看,分布律几何意义联合分布(,)i j ijP x y pξη===•边缘分布律体现为同一行概率求和.•条件分布律体现为ijp在同一行概率中所占的比重.注意:条件分布中“.ip>”的条件不能少!边缘分布.1()i ij ijP x p p ξ∞====∑条件分布当.ip>时,. (|)ijj iip P y xp ηξ===从密度函数的定义来看,密度函数几何意义联合分布(,) f x y边缘分布()(,) f x f x y dy ξ+∞-∞=⎰条件分布对使得()0f yη>的点y,|(,)(|)()f xf xyyyfξηη=注意:条件分布中“()0f yη>”的条件不能少!三种概率分布之间的相互转化关系是ξη,何时可以由ξ和η的边缘分布完全确定联合分布?问题6:给定二维随机变量(,)答:当ξ和η相互独立时,可以由边缘分布完全确定联合分布.ξη的边缘分布是正态分布,能否由此确定联合分布是二维正问题7:已知二维随机变量(,)态分布?答:不能,反例请参考P.146例19.第三部分随机变量的数字特征【内容提要】复习重点:期望、方差、协方差、相关系数的性质.1.期望和方差的定义、性质1,2,Eξ(要求积分绝对收敛)Eg(2.协方差和相关系数的定义、性质【释疑解惑】问题1:是否所有随机变量都存在数学期望?答:不是,反例请参考P.74例22及P.98例7.因为方差本质上是随机变量的函数的期望,所以并非所有随机变量都存在方差.问题2:随机变量的不相关性与独立性是否等价?答:“不相关”是指两个随机变量之间不存在线性函数的关系,“独立”是指两个随机变量不存在任何关系。
概率论与数理统计 复习资料第一章随机事件与概率1.事件的关系 φφ=Ω-⋃⊂AB A B A AB B A B A(1) 包含:若事件A 发生,一定导致事件B 发生,那么,称事件B 包含事件A ,记作A B ⊂(或B A ⊃).(2) 相等:若两事件A 与B 相互包含,即A B ⊃且B A ⊃,那么,称事件A 与B 相等,记作A B =. (3) 和事件:“事件A 与事件B 中至少有一个发生”这一事件称为A 与B 的和事件,记作A B ⋃;“n 个事件1,2,,n A A A 中至少有一事件发生”这一事件称为1,2,,n A A A 的和,记作12n A A A ⋃⋃⋃(简记为1ni i A=).(4) 积事件:“事件A 与事件B 同时发生”这一事件称为A 与B 的积事件,记作A B ⋂(简记为AB );“n 个事件1,2,,n A A A 同时发生”这一事件称为1,2,,n A A A 的积事件,记作12n A A A ⋂⋂⋂(简记为12n A A A 或1nii A =).(5) 互不相容:若事件A 和B 不能同时发生,即AB φ=,那么称事件A 与B 互不相容(或互斥),若n 个事件1,2,,n A A A 中任意两个事件不能同时发生,即i j A A φ=(1≤i<j ≤几),那么,称事件 1,2,,n A A A 互不相容.(6) 对立事件:若事件A 和B 互不相容、且它们中必有一事件发生,即AB φ=且A B ⋃=Ω,那么,称A 与B 是对立的.事件A 的对立事件(或逆事件)记作A . (7) 差事件:若事件A 发生且事件B 不发生,那么,称这个事件为事件A 与B 的差事件,记作A B -(或AB ) .2.运算规则 (1)交换律:BA AB A B B A =⋃=⋃(2)结合律:)()( )()(BC A C AB C B A C B A =⋃⋃=⋃⋃ (3)分配律))(()( )()()(C B C A C AB BC AC C B A ⋃⋃=⋃⋃=⋃ (4)德摩根(De Morgan )法则:B A AB B A B A ⋃==⋃3.概率)(A P 满足的三条公理及性质: (1)1)(0≤≤A P (2)1)(=ΩP(3)对互不相容的事件n A A A ,,,21 ,有∑===nk kn k kA P A P 11)()((n 可以取∞)(4) 0)(=φP (5))(1)(A P A P -=(6))()()(AB P A P B A P -=-,若B A ⊂,则)()()(A P B P A B P -=-,)()(B P A P ≤ (7))()()()(AB P B P A P B A P -+=⋃(8))()()()()()()()(ABC P BC P AC P AB P C P B P A P C B A P +---++=⋃⋃ 4.古典概型:基本事件有限且等可能5.几何概率: 如果随机试验的样本空间是一个区域(可以是直线上的区间、平面或空间中的区域),且样本空间中每个试验结果的出现具有等可能性,那么规定事件A的概率为()A P A =的长度(或面积、体积)样本空间的的长度(或面积、体积)·6.条件概率(1) 定义:若0)(>B P ,则)()()|(B P AB P B A P =(2) 乘法公式:)|()()(B A P B P AB P = 若n B B B ,,21为完备事件组,0)(>i B P ,则有 (3) 全概率公式: ∑==ni iiB A P B P A P 1)|()()((4) Bayes 公式: ∑==ni iik k k B A P B P B A P B P A B P 1)|()()|()()|((5)贝努里概型与二项概率设在每次试验中,随机事件A发生的概率()(01)P A p p =<<,则在n 次重复独立试验中.,事件A恰发生k 次的概率为()(1),0,1,,k n k n n P k p p k nk -⎛⎫=-= ⎪⎝⎭,7.事件的独立性: B A ,独立)()()(B P A P AB P =⇔ (注意独立性的应用)下列四个命题是等价的:(i) 事件A 与B 相互独立; (ii) 事件A 与B 相互独立; (iii) 事件A 与B 相互独立;(iv) 事件A 与B 相互独立.8、思考题1.一个人在口袋里放2盒火柴,每盒n 支,每次抽烟时从口袋中随机拿出一盒(即每次每盒有同等机会被拿到)并用掉一支,到某次他迟早会发现:取出的那一盒已空了.问:“这时另一盒中恰好有m 支火柴”的概率是多少?2.设一个居民区有n 个人,设有一个邮局,开c 个窗口,设每个窗口都办理所有业务.c 太小,经常排长队;c 太大又不经济.现设在每一指定时刻,这n 个人中每一个是否在邮局是独立的,每个人在邮局的概率是p .设计要求:“在每一时刻每窗口排队人数(包括正在被服务的那个人)不超过m ”这个事件的概率要不小于a (例如,0.8,0.9.95a o =或),问至少须设多少窗口? 3.设机器正常时,生产合格品的概率为95%,当机器有故障时,生产合格品的概率为50%,而机器无故障的概率为95%.某天上班时,工人生产的第一件产品是合格品,问能以多大的把握判断该机器是正常的?第二章 随机变量与概率分布1. 离散随机变量:取有限或可列个值,i i p x X P ==)(满足(1)0≥i p ,(2)∑iip=1(3)对任意R D ⊂,∑∈=∈Dx i ii pD X P :)(2. 连续随机变量:具有概率密度函数)(x f ,满足(1)1)(,0)(-=≥⎰+∞∞dx x f x f ;(2)⎰=≤≤badx x f b X a P )()(;(3)对任意R a ∈,0)(==a X P 3. 几个常用随机变量名称与记号分布列或密度数学期望 方差0—1分布 两点分布 ),1(p B p X P ==)1(,p q X P -===1)0(p pq二项式分布),(p n Bn k q p C k X P kn k k n ,2,1,0,)(===-,np npq泊松分布)(λP,2,1,0,!)(===-k k ek X P kλλλλ 几何分布)(p G,2,1 ,)(1===-k p qk X P kp12p q均匀分布),(b a Ub x a a b x f ≤≤-= ,1)(,2ba + 12)(2a b - 指数分布)(λE 0 ,)(≥=-x e x f x λλλ121λ 正态分布),(2σμN222)(21)(σμσπ--=x ex fμ2σ标准正态分布的分布函数记作()x Φ,即()x Φ221()2t xx e dtπ--∞Φ=⎰,当出0x ≥时,()x Φ可查表得到;当0x <时,()x Φ可由下面性质得到()1()x x Φ-=-Φ.设2~(,)X N μσ,则有()()x F x μσ-=Φ; ()()()b a P a X b μμσσ--<≤=Φ-Φ.4. 分布函数 )()(x X P x F ≤=,具有以下性质(1)1)( ,0)(=+∞=-∞F F ;(2)单调非降;(3)右连续; (4))()()(a F b F b X a P -=≤<,特别)(1)(a F a X P -=>; 特别的 ()()(0)P X a F a F a ==-- (5)对离散随机变量,∑≤=xx i ii px F :)(;(6)对连续随机变量,⎰∞-=xdt t f x F )()(为连续函数,且在)(x f 连续点上,)()('x f x F = 5. 正态分布的概率计算 以)(x Φ记标准正态分布)1,0(N 的分布函数,则有 (1)5.0)0(=Φ;(2))(1)(x x Φ-=-Φ;(3)若),(~2σμN X ,则)()(σμ-Φ=x x F ;(4)以αu 记标准正态分布)1,0(N 的上侧α分位数,则)(1)(αααu u X P Φ-==> 6. 随机变量的函数 )(X g Y =(1)离散时,求Y 的值,将相同的概率相加;(2)X 连续,)(x g 在X 的取值范围内严格单调,且有一阶连续导数,则|))((|))(()('11y g y g f y f X Y --=,若不单调,先求分布函数,再求导。
概率论与数理统计复习提纲一、 随机事件基本概念 1. 样本空间 2. 随机事件3. 样本空间S 是必然事件;Φ是不可能事件。
4. 随机事件的运算性质 二、 概率的定义及其运算 1. 概率的定义 2. 概率的性质3. 古典概率:1()({})lki l k A P A P e n S ====∑所包含的基本事件数中基本事件的总数4. 条件概率:()(),()0()P AB P A P A P A =>其中。
5. 事件的独立性:(1) 称A,B 两个事件相互独立,如果满足:()()()P AB P A P B = (2)称A,B,C 三个事件相互独立,如果满足()()()P A BP A P B = ()()()P AC P A P C = ()()()P BC P B P C = ()()()()P ABC P A P B P C =若满足前三个条件,则称A 、B 、C 两两独立。
6. 三个重要公式: (1) 乘法公式:(a) 设()0P A >,则有 ()(|)()P AB P B A P A =(b) 设()0P AB >,则有()(|)(|)()P ABC P C AB P B A P A = (c) 设121()0n P A A A ->,则有12121()(|)(nn nnP A AAP AA ---=(2)全概率公式 :设12,,,n B B B 为S 的一个划分,1122()(|)()(|)()(|)()n n P A P A B P B P A B P B P A B P B =+++,其中()0(1,2,,)i P B i n >= 。
(3)设随机试验E 的样本空间为S ,A 为E 的事件,12,,,n B B B 为S 的一个划分,()0P A >,()0(1,2,,)i P B i n >=,则有1(|)()(|)(|)()i i i nkkk P A B P B P B A P A B P B ==∑第二章 随机变量及其分布 一、基本概念1.随机变量 ():,()X X e e S X e R =∀∈∃∈实数 。
概率论与数理统计复习提纲概率论与数理统计总复习第⼀讲随机事件及其概率⼀随机事件,事件间的关系及运算 1.样本空间和随机事件 2.事件关系,运算和运算律⑴事件的关系和运算⑶运算律:交换律,结合律,分配律;对偶律: B A B A ?=?,B A B A ?=?;⼆概率的定义和性质 1.公理化定义(P7)2.概率的性质(P8.五个) ⑴)(1)(A P A P -=;⑵)()()()(AB P B P A P B A P -+=?;3.古典概型和⼏何概型4.条件概率 )()()|(A P AB P A B P =三常⽤的计算概率的公式1.乘法公式 )()()()()(B A P B P A B P A P AB P ==2.全概率公式和贝叶斯公式(P17-20.) 四事件的独⽴性1.定义:A 和B 相互独⽴ )()(B P A B P =或)()()(B P A P AB P ?=,2.贝努利试验在n 重贝努利试验中,事件=k A {A 恰好发⽣k 次})0(n k ≤≤的概率为:k n nk n k p p C A P --=)1()(第⼆讲随机变量及其概率分布⼀随机变量及其分布函数1.随机变量及其分布函数 )()(x X P x F ≤=)(+∞<<-∞x2.分布函数的性质(P35.四个)⑴0)(lim =-∞→x F x ;1)(lim =+∞→x F x ;(常⽤来确定分布函数中的未知参数)⑵)()()(a F b F b X a P -=≤<(常⽤来求概率) ⼆离散型随机变量及其分布律1.分布律2.常⽤的离散型分布三连续型随机变量 1.密度函数 ?∞-=xdt t f x F )()(2.密度函数的性质(P39.七个) ⑴1)(=?+∞∞-dx x f ;(常⽤来确定密度函数中的参数)⑵?=≤adx x f b X a P )()(;(计算概率的重要公式)⑶对R x ∈?,有0)(==c X P (换⾔之,概率为0的事件不⼀定是不可能事件). 3.常⽤连续型分布重点:正态分布:)0,(21)(22)(>=--σσµσπσµ都是常数,x ex f标准正态分布)1,0(N :2221)(x ex -=π四随机变量函数的分布1.离散情形设X 的分布律为则)(X g Y =的分布律为2.连续情形设X 的密度函数为)(x f X ,若求)(X g Y =的密度函数,先求Y 的分布函数,再通过对其求导,得到Y 的密度函数。
概率论与数理统计期末复习大纲第一章:掌握事件间的关系与运算、概率的公理化定义;掌握概率的性质及其计算;掌握条件概率的公式、乘法定理、全概率公式与贝叶斯公式、事件的独立性的概念、会用事件的独立性计算概率练习1-2:4,5练习1-3:6,14练习1-4:4,9,10练习1-5:8,9第二章:2.1节:掌握本节的定理例题结论;练习2-1:5,6,8,122.2节:掌握本节的定理例题结论;练习2-2:12.3节:掌握常用的离散型分布的密度函数,数学期望、方差及相关性质(重点:两点分布二项分布与泊松分布练习2-3:62.4节:掌握常用的连续型分布的密度函数,数学期望、方差及相关性质(尤其是正态分布);练习2-4:1,练习2-5:2,3,4,5第三章:3.1节:掌握本节的定理例题结论;练习3-15,6,73.2节:条件概率密度的计算不考,但要掌握公式,此外本节的定理例题结论要掌握;练习3-2:1,5,6,13,153.3节:掌握离散型随机向量函数的分布,随机向量函数的数学期望,及数学期望的性质;练习3-3:8,3.4节:掌握协方差相关系数的概念及性质;练习3-4:1,4,5第四章:练习4-1:4,5,64.3节:掌握2χ分布F分布t分布的构成及性质;练习4-3:5,84.4节:掌握定理4.1和4.2的结论第五章:5.1节:掌握关于无偏性、有效性的定义和例题;练习5-1:15.2节:会求最大似然估计、矩估计;练习5-2:25.3节:掌握置信区间公式;练习5-3:2,3,μ的假设检验;练习5-5:65.5节:单正态分布的关于)),σ(=2≤,(=≥,。
《概率论与数理统计》复习提纲
Chap1:
1.样本空间、随机事件的定义;事件的关系与运算;
2.概率P(.)的常用九大公式;
3.等可能概型的判断及计算;
4.条件概率的定义及常用九大公式;乘法定理;全概率公式
和贝叶斯公式;
5.独立性。
Chap2:
1.分布函数、分布律和概率密度的定义,以及如何利用这三
个工具计算概率;
2.掌握常用七大分布的分布律或者概率密度,并会计算相关
概率,正态随机变量的标准化;
3.随机变量函数的分布。
Chap3:
1.二维随机变量的联合分布(联合分布函数,联合分布律,
联合概率密度),并根据此计算概率;
2.由联合分布会导出边缘分布;
3.会计算条件分布律或者条件概率密度;
4.随机变量相互独立的定义及等价定义;
5.和的分布,最大最小随机变量
Chap4:
1.会算随机变量的数学期望,以及随机变量函数的数学期
望,掌握期望的常用性质;
2.会算随机变量的方差,并掌握方差的常用性质和切比雪夫
不等式;
3.记住常用八大分布(包括卡方分布)的期望和方差;
4.会计算两个随机变量的相关系数和协方差,掌握不相关的
含义及相关系数绝对值等于1的含义。
5.掌握随机变量各种矩的定义
Chap5:
1.会利用中心极限定理作概率的近似计算
Chap6:
1.简单随机样本的特性以及常用统计量
2.统计学三大分布的构造原理和密度图像。
3.单个正态总体样本均值和样本方差的分布规律;
Chap7:
1.矩估计和最大似然估计
2.估计量的评选标准(无偏性和有效性);
3.单个正态总体参数的区间估计;
Chap8:
1.单个正态总体参数的假设检验(双边和单边)。