高中数学--不等式知识点归纳和分类习题测试
- 格式:pdf
- 大小:207.68 KB
- 文档页数:11
(每日一练)高中数学一元二次函数方程和不等式知识点归纳超级精简版单选题1、对∀x ∈R ,不等式(a −2)x 2+2(a −2)x −4<0恒成立,则a 的取值范围是( ) A .−2<a ≤2B .−2≤a ≤2C .a <−2或a ≥2D .a ≤−2或a ≥2 答案:A分析:对a 讨论,结合二次函数的图象与性质,解不等式即可得到a 的取值范围. 不等式(a −2)x 2+2(a −2)x −4<0对一切x ∈R 恒成立, 当a −2=0,即a =2时,−4<0恒成立,满足题意; 当a −2≠0时,要使不等式恒成立,需{a −2<0Δ<0 ,即有{a <24(a −2)2+16(a −2)<0 , 解得−2<a <2.综上可得,a 的取值范围为(−2,2]. 故选:A.2、若正数a,b 满足a +b =ab ,则a +2b 的最小值为( ) A .6B .4√2C .3+2√2D .2+2√2 答案:C分析:由a +b =ab ,可得1a +1b =1,则a +2b =(a +2b)(1a +1b ),化简后利用基本不等式可求得其最小值 因为正数a,b 满足a +b =ab ,所以1a+1b=1,所以a +2b =(a +2b)(1a +1b )=3+a b +2b a≥3+2√a b ⋅2b a=3+2√2,当且仅当a b=2b a,即a =√2+1,b =2+√22时取等号,故选:C3、关于x 的不等式ax 2−(a 2+1)x +a <0的解集为{x|x 1<x <x 2},且x 2−x 1=1,则a 2+a −2=( ) A .3B .32C .2D .23 答案:A分析:根据一元二次不等式与解集之间的关系可得x 1+x 2=a +1a 、x 1x 2=1,结合(x 2−x 1)2=(x 1+x 2)2−4x 1x 2计算即可.由不等式ax 2−(a 2+1)x +a <0的解集为{x |x 1<x <x 2}, 得a >0,不等式对应的一元二次方程为ax 2−(a 2+1)x +a =0, 方程的解为x 1、x 2,由韦达定理,得x 1+x 2=a 2+1a=a +1a,x 1x 2=1,因为x 2−x 1=1,所以(x 2−x 1)2=(x 1+x 2)2−4x 1x 2=1, 即(a +1a )2−4=1,整理,得a 2+a −2=3.故选:A4、权方和不等式作为基本不等式的一个变化,在求二元变量最值时有很广泛的应用,其表述如下:设a ,b ,x ,y >0,则a 2x +b 2y≥(a+b )2x+y,当且仅当a x =b y 时等号成立.根据权方和不等式,函数f(x)=2x +91−2x (0<x <12)的最小值为( )A .16B .25C .36D .49 答案:B分析:将给定函数式表示成已知不等式的左边形式,再利用该不等式求解作答.因a ,b ,x ,y >0,则a 2x +b 2y≥(a+b )2x+y,当且仅当ax =by 时等号成立,又0<x <12,即1−2x >0,于是得f(x)=222x +321−2x ≥(2+3)22x+(1−2x)=25,当且仅当22x =31−2x ,即x =15时取“=”, 所以函数f(x)=2x +91−2x(0<x <12)的最小值为25.故选:B5、关于x 的不等式x 2−(a +1)x +a <0 的解集中恰有1个整数,则实数a 的取值范围是( ) A .(−1,0]∪[2,3) B .[−2,−1)∪(3,4] C .[−1,0)∪(2,3] D .(−2,−1)∪(3,4) 答案:C分析:分类讨论一元二次不等式的解,根据解集中只有一个整数,即可求解. 由x 2−(a +1)x +a <0得(x −1)(x −a)<0 , 若a =1,则不等式无解.若a >1,则不等式的解为1<x <a ,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为x =2,则2<a ≤3.若a <1,则不等式的解为a <x <1,此时要使不等式的解集中恰有1个整数解,则此时1个整数解为x =0,则−1≤a <0.综上,满足条件的a 的取值范围是[−1,0)∪(2,3] 故选:C .6、不等式x−1x+2<0的解集为( )A .{x|x >1}B .{x|x <−2}C .{x|−2<x <1}D .{x|x >1或x <−2} 答案:C 解析:由x−1x+2<0等价于(x −1)(x +2)<0,进而可求出不等式的解集.由题意,x−1x+2<0等价于(x −1)(x +2)<0,解得−2<x <1,所以不等式x−1x+2<0的解集为{x|−2<x <1}.故选:C.小提示:本题考查分式不等式的解集,考查学生的计算能力,属于基础题.7、已知关于x 的不等式mx 2−6x +3m <0在(0,2]上有解,则实数m 的取值范围是( ) A .(−∞,√3)B .(−∞,127)C .(√3,+∞)D .(127,+∞)答案:A分析:分离参数,将问题转换为m <6xx 2+3在(0,2]上有解,设函数g(x)=6xx 2+3,x ∈(0,2],求出函数g(x)=6xx 2+3的最大值,即可求得答案.由题意得,mx 2−6x +3m <0,x ∈(0,2],即m <6xx 2+3 , 故问题转化为m <6xx 2+3在(0,2]上有解, 设g(x)=6xx 2+3,则g(x)=6x x 2+3=6x+3x,x ∈(0,2],对于x +3x ≥2√3 ,当且仅当x =√3∈(0,2]时取等号, 则g(x)max =2√3=√3,故m <√3 ,故选:A8、已知2<a<3,−2<b<−1,则2a−b的范围是()A.(6,7)B.(5,8)C.(2,5)D.(6,8)答案:B分析:由不等式的性质求解即可.2<a<3,−2<b<−1,故4<2a<6,1<−b<2,得5<2a−b<8故选:B9、已知x>0,y>0,x+2y=1,则1x +1y的最小值为()A.3+2√2B.12C.8+4√3D.6答案:A分析:根据基本不等中“1”的用法,即可求出结果. 因为x>0,y>0,x+2y=1,所以(1x +1y)(x+2y)=3+2yx+xy≥3+2√2,当且仅当2yx =xy,即x=√2−1,y=2−√22时,等号成立.故选:A.10、已知x∈R,则“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的()条件.A.充分不必要B.必要不充分C.充分必要D.既不充分也不必要答案:C分析:先证充分性,由(x−2)(x−3)≤0求出x的取值范围,再根据x的取值范围化简|x−2|+|x−3|即可,再证必要性,若|x−2|+|x−3|=1,即|x−2|+|x−3|=|(x−2)−(x−3)|,再根据绝对值的性质可知(x−2)(x−3)≤0.充分性:若(x−2)(x−3)≤0,则2≤x≤3,∴|x−2|+|x−3|=x−2+3−x=1,必要性:若|x−2|+|x−3|=1,又∵|(x−2)−(x−3)|=1,∴|x−2|+|x−3|=|(x−2)−(x−3)|,由绝对值的性质:若ab≤0,则|a|+|b|=|a−b|,∴(x−2)(x−3)≤0,所以“(x−2)(x−3)≤0成立”是“|x−2|+|x−3|=1成立”的充要条件,故选:C.填空题11、设函数f(x)=ax2−2x+c,不等式f(x)>0的解集为(−∞,−1)∪(3,+∞),若对任意x∈[−1,2],f(x)≤m2−4恒成立,则实数m的取值范围为__________.答案:(−∞,−2]∪[2,+∞)分析:先根据不等式的解集求得a=1,c=−3,得到f(x)=x2−2x−3,再把对任意x∈[−1,2],f(x)≤m2−4恒成立,结合二次函数的性质,转化为m2−4≥0恒成立,即可求解.由函数f(x)=ax2−2x+c,且不等式f(x)>0的解集为(−∞,−1)∪(3,+∞),即−1,3是方程ax2−2x+c=0两个实数根,可得{−1+3=2a−1×3=ca,解得a=1,c=−3,所以f(x)=x2−2x−3,又由f(x)=x2−2x−3=(x−1)2−4,且x∈[−1,2],当x=−1时,函数f(x)取得最大值,最大值为f(x)max=0,因为对任意x∈[−1,2],f(x)≤m2−4恒成立,即m2−4≥0恒成立,解得m≤−2或m≥2,所以实数m的取值范围为(−∞,−2]∪[2,+∞).所以答案是:(−∞,−2]∪[2,+∞).12、设x∈R,使不等式3x2+x−2<0成立的x的取值范围为__________.答案:(−1,23)分析:通过因式分解,解不等式.3x2+x−2<0,即(x+1)(3x−2)<0,即−1<x<23,故x的取值范围是(−1,23).小提示:解一元二次不等式的步骤:(1)将二次项系数化为正数;(2)解相应的一元二次方程;(3)根据一元二次方程的根,结合不等号的方向画图;(4)写出不等式的解集.容易出现的错误有:①未将二次项系数化正,对应错标准形式;②解方程出错;③结果未按要求写成集合.13、设x>0,y>0,x+2y=4,则(x+1)(2y+1)xy的最小值为__________.答案:92.分析:把分子展开化为(x+1)(2y+1)xy =2xy+x+2y+1xy=2xy+5xy=2+5xy,再利用基本不等式求最值.由x+2y=4,得x+2y=4≥2√2xy,得xy≤2(x+1)(2y+1)xy =2xy+x+2y+1xy=2xy+5xy=2+5xy≥2+52=92,等号当且仅当x=2y,即x=2,y=1时成立.故所求的最小值为92.小提示:使用基本不等式求最值时一定要验证等号是否能够成立.14、已知5x2y2+y4=1(x,y∈R),则x2+y2的最小值是_______.答案:45分析:根据题设条件可得x2=1−y45y2,可得x2+y2=1−y45y2+y2=15y2+4y25,利用基本不等式即可求解.∵5x2y2+y4=1∴y≠0且x2=1−y45y2∴x2+y2=1−y45y2+y2=15y2+4y25≥2√15y2⋅4y25=45,当且仅当15y2=4y25,即x2=310,y2=12时取等号.∴x2+y2的最小值为45.所以答案是:45.小提示:本题考查了基本不等式在求最值中的应用.利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数否在定义域内,二是多次用≥或≤时等号能否同时成立).15、不等式x+3x−1>0的解集为______________.答案:{x|x<−3或x>1}分析:由题可得(x−1)(x+3)>0,进而即得.由x+3x−1>0,得(x−1)(x+3)>0,所以x<−3或x>1,故不等式得解集为{x|x<−3或x>1}.所以答案是:{x|x<−3或x>1}.16、若0<x<2,则y=√2x(2−x)的最大值为_______答案:√2分析:由基本不等式求最大值.∵0<x<2,∴2−x>0,∴y=√2⋅√x(2−x)≤√2⋅x+2−x2=√2,当且仅当x=2−x即x=1时取等号,∴当x=1时,有最大值√2.所以答案是:√2.17、不等式3x+4x−2≥4的解集是___________.答案:(2,12]分析:移项通分化简,等价转化为12−xx−2≥0,进一步等价转化为二次不等式(组),注意分母不能为零,然后求解即得.原不等式等价于3x+4x−2−4≥0,化简得12−xx−2≥0,又等价于{(12−x)(x−2)≥0x−2≠0,解得:2<x≤12,所以答案是:(2,12].18、命题p:∀x∈R,x2+ax+a≥0,若命题p为真命题,则实数a的取值范围为___________. 答案:[0,4]分析:根据二次函数的性质判别式解题即可.∀x∈R,要使得x2+ax+a≥0,则Δ=a2−4a≤0,解得0≤a≤4.若命题p为真命题,则实数a的取值范围为[0,4].所以答案是:[0,4].19、已知x,y为正实数,则yx +16x2x+y的最小值为__________.答案:6分析:将原式变形为yx +162+yx,结合基本不等式即可求得最值.由题得yx +16x2x+y=yx+162+yx,设yx =t(t>0),则f(t)=t+162+t=t+2+162+t−2≥2√(t+2)⋅162+t−2=8−2=6.当且仅当t=2时取等.所以yx +16x2x+y的最小值为6.所以答案是:620、已知x,y∈(0,+∞),a∈R,若(x−y+sin2α+1)(x+3y−2sin2α)=2,则3x+y的最小值为______. 答案:2分析:利用基本不等式即可求解.∵(x−y+sin2α+1)(x+3y−2sin2α)=2,∴4=(2x−2y+2sin2α+2)(x+3y−2sin2α)即4=(2x−2y+2sin2α+2)(x+3y−2sin2α)≤(2x−2y+2sin2α+2+x+3y−2sin2α2)2=(3x+y+2)24,所以(3x+y+2)2≥16,解得3x+y≥2,当且仅当2x−2y+2sin2α+2=x+3y−2sin2α时,取等号,所以3x+y的最小值为2.所以答案是:2小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.解答题21、销售甲种商品所得利润是P万元,它与投入资金t万元的关系有经验公式P=att+1;销售乙种商品所得利润是Q万元,它与投入资金t万元的关系有经验公式Q=bt.其中a,b为常数.现将3万元资金全部投入甲,乙两种商品的销售,若全部投入甲种商品,所得利润为94万元;若全部投入乙种商品.所得利润为1万元.若将3万元资金中的x万元投入甲种商品的销售,余下的投入乙种商品的销售.则所得利润总和为y万元(1)求利润总和y关于x的表达式:(2)怎样将3万元资金分配给甲、乙两种商品,才能使所得利润总和最大,并求最大值.答案:(1)y=3xx+1+13(3−x),0≤x≤3;(2)对甲种商品投资2万元,对乙种商品投资1万元,才能使所得利润总和最大,最大值为73万元.分析:(1)由题意得y=axx+1+b(3−x),代入数值计算即可求出结果;(2)转化成可以利用基本不等式的形式,最后利用基本不等式即可求出结果. (1)因为对甲种商品投资x万元,所以对乙种商品投资为3−x万元,由题意知:y=P+Q=axx+1+b(3−x),当x=3时,f(x)=94,当x=0时,f(x)=1,则{3a4=94,3b=1,解得a=3,b=13,则y=3xx+1+13(3−x),0≤x≤3.(2)由(1)可得f(x)=3xx+1+13(3−x)=3(x+1)−3x+1+1−13x=133−[3x+1+13(x+1)]≤133−2√3x+1⋅x+13=73,当且仅当x=2时取等号,故对甲种商品投资2万元,对乙种商品投资1万元,才能使所得利润总和最大,最大值为73万元.22、已知关于x一元二次不等式x2+2mx+m+2≥0的解集为R.(1)求函数f(m)=m+3m+2的最小值;(2)求关于x的一元二次不等式x2+(m−3)x−3m>0的解集.答案:(1)2√3−2(2)(−∞,−m)∪(3,+∞)分析:(1)由题意可得Δ≤0,解不等式求出m的取值范围,再利用基本不等式求f(m)的最小值;(2)不等式化为(x+m)(x−3)>0,比较−m和3的大小,即可得出不等式的解集.(1)因为关于x一元二次不等式x2+2mx+m+2≥0的解集为R,所以Δ=4m2−4(m+2)≤0,化简可得:m2−m−2≤0,解得:−1≤m≤2,所以1≤m+2≤4,所以f(m)=m+3m+2=m+2+3m+2−2≥2√(m+2)⋅3m+2−2=2√3−2,当且仅当m+2=3m+2即m=√3−2,f(m)的最小值为2√3−2.(2)不等式x2+(m−3)x−3m>0,可化为(x+m)(x−3)>0,因为−1≤m≤2,所以−2≤−m≤1<3,所以该不等式的解集为(−∞,−m)∪(3,+∞).。
高中数学总复习知识点专题讲解与练习专题2不等式一、单项选择题1.(2021·江西六校联考)已知集合A ={x ∈N |2x -7<0},B ={x |x 2-3x -4≤0},则A ∩B =( )A .{1,2,3}B .{0,1,2,3}C.⎩⎨⎧⎭⎬⎫x |x ≤72D.⎩⎨⎧⎭⎬⎫x |0<x ≤72 答案 B解析 由已知得A ={0,1,2,3},B ={x |-1≤x ≤4}, 则A ∩B ={0,1,2,3}.故选B. 2.(2019·课标全国Ⅱ)若a >b ,则( )A .ln(a -b )>0B .3a <3bC .a 3-b 3>0D .|a |>|b | 答案 C解析 取a =2,b =1,满足a >b ,但ln(a -b )=0,则A 错误;由9=32>31=3,则B 错误;取a =1,b =-2,满足a >b ,但|1|<|-2|,则D 错误;因为幂函数y =x 3是增函数,a >b ,所以a 3>b 3,即a 3-b 3>0,C 正确.故选C.3.(2021·东北三省四市一模)设a >0,b >0,若2a +b =2,则1a +2b 的最小值为( ) A .2 B .4 C .6 D .8 答案 B解析 方法一:1a +2b =12⎝ ⎛⎭⎪⎫1a +2b (2a +b )=12⎝ ⎛⎭⎪⎫2+b a +4a b +2≥12⎝ ⎛⎭⎪⎫4+2b a ×4a b =4,当且仅当b a =4a b ,即a =12,b =1时,等号成立.故选B. 方法二:1a +2b =2a +b 2a +2a +b b =1+b 2a +2ab +1≥2+2b 2a ×2a b =4,当且仅当b 2a =2a b ,即a =12,b =1时,等号成立.故选B.4.已知a ,b 都是实数,则“ln 1a <ln 1b ”是“a 2>b 2”的( ) A .充要条件 B .必要不充分条件 C .充分不必要条件 D .既不充分也不必要条件 答案 C解析 ∵ln 1a <ln 1b ,∴0<1a <1b ,∴a >b >0,∴a 2>b 2.而由a 2>b 2得到|a |>|b |,∴“ln 1a <ln 1b ”是“a 2>b 2”的充分不必要条件.故选C.5.下列各函数中,最小值为2的是( )A .y =x +1xB .y =sin x +4sin x ,x ∈⎝ ⎛⎭⎪⎫0,π2C .y =x 2+3x 2+2D .y =x +1x答案 D解析 当x >0时,y =x +1x ≥2,当x <0时,y =-⎣⎢⎡⎦⎥⎤(-x )+1(-x )≤-2,故A 不正确; 当x ∈⎝⎛⎭⎪⎫0,π2时,sin x ∈(0,1),令t =sin x ∈(0,1),则y =t +4t ≥4,当且仅当t =4t ,即t =2时等号成立,t =sin x ∈(0,1),t =2取不到,所以y >4,故B 不正确;y =x 2+3x 2+2=x 2+2+1x 2+2≥2,由于x 2+2=1x 2+2无解,所以等号不能取得,故C不正确; y =x +1x≥2x ×1x =2,当且仅当x =1x,即x =1时等号成立,故D 正确.故选D.6.(2021·山西晋中月考)已知a >-1,b >-2,(a +1)(b +2)=16,则a +b 的最小值是( ) A .4 B .5 C .6 D .7 答案 B解析 由a >-1,b >-2,得a +1>0,b +2>0,a +b =(a +1)+(b +2)-3≥2(a +1)(b +2)-3=2×4-3=5,当且仅当a +1=b +2=4,即a =3,b =2时等号成立,所以a +b 的最小值是5.故选B.7.(2021·湖北十一校联考)设a >0,b >0,则“1a +1b ≤4”是“ab ≥14”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案 A解析 因为a >0,b >0,所以4≥1a +1b ≥21a ·1b ,当且仅当a =b 时取等号,则2≥1ab,所以ab ≥14;若ab ≥14,取a =14,b =1,则1a +1b =4+1=5>4,即1a +1b ≤4不成立.所以“1a +1b ≤4”是“ab ≥14”的充分不必要条件.故选A.8.(2021·四川省宜宾二模)若不等式x 2+ax +1≥0对于一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是( )A .0B .-2C .-52 D .-3 答案 C解析 不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12成立,等价于a ≥-x -1x 对于一切x ∈⎝ ⎛⎦⎥⎤0,12成立,∵y =-x -1x 在区间⎝ ⎛⎦⎥⎤0,12上是增函数,∴-x -1x ≤-12-2=-52,∴a ≥-52,∴a 的最小值为-52.故选C. 9.若log 3(2a +b )=1+log3ab ,则a +2b 的最小值为( )A .6 B.83 C .3 D.163 答案 C解析 本题考查基本不等式.由题意得log 3(2a +b )=1+log 3(ab ),所以2a +b =3ab ,a >0,b >0,即2b +1a =3,所以a +2b =13(a +2b )⎝ ⎛⎭⎪⎫2b +1a =13⎝ ⎛⎭⎪⎫5+2a b +2b a ≥13⎝ ⎛⎭⎪⎫5+2×2a b ×2b a =3,当且仅当a =b =1时等号成立.故选C.10.已知a ∈[-1,1],不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( ) A .(-∞,2)∪(3,+∞) B .(-∞,1)∪(2,+∞) C .(-∞,1)∪(3,+∞) D .(1,3) 答案 C解析 把不等式的左端看成关于a 的一次函数,记f (a )=(x -2)a +x 2-4x +4,则f (a )>0对任意a ∈[-1,1]恒成立,易知只需f (-1)=x 2-5x +6>0,① 且f (1)=x 2-3x +2>0,② 联立①②,解得x <1或x >3.故选C. 二、多项选择题11.(2021·河北衡水中学二调)已知0<log 12a <log 12b <1,则下列说法正确的是( )A .1>a 2>b 2>14B .2>1a >1b >1C.a b -1>b a -1D.1e >e -b >e -a >1e 答案 ACD解析 已知0<log 12a <log 12b <1,因为y =log 12x 在区间(0,+∞)上单调递减,所以12<b <a <1,所以14<b 2<a 2<1,故A 正确;因为函数y =1x 在区间(0,+∞)上单调递减,且12<b <a <1,所以2>1b >1a >1,故B 错误;因为a b -1-ba -1=a (a -1)-b (b -1)(b -1)(a -1)=(a 2-b 2)-(a -b )(b -1)(a -1)=(a -b )(a +b -1)(b -1)(a -1).又12<b <a <1,所以(a -b )(a +b -1)(b -1)(a -1)>0,故C 正确;因为-12>-b >-a >-1,函数y =e x 为单调递增函数,所以1e <e -a <e -b <1e,故D 正确.12.(2021·长郡模拟)设a >b >1,0<c <1,则下列不等式中成立的是( ) A .a c <b c B .a b >b c C .log b c <log a c D .log c b <log c a 答案 BC解析 0<c <1⇒a c >b c ,故A 错误;因为a >b >1,0<c <1,所以a b >b b >b c ,故B 正确;由对数函数的单调性可得log c b >log c a ,故D 错误;因为log b c =1log cb ,log ac =1log ca ,0>log c b >log c a ,所以log b c <log a c ,故C 正确.故选BC. 13.下列结论正确的是( )A .若ab >0,则b a +ab ≥2 B .函数y =x 2+3x 2+2的最小值为2C .若x 2+y 2=1(x >0,y >0),则1x 2+4y 2≥9 D .函数f (x )=e -x +e x (x >0)有最小值2 答案 AC解析 因为ab >0,所以a b >0,b a >0,所以由基本不等式可得b a +ab ≥2,当且仅当a =b 时等号成立,A 正确;易知y =x 2+3x 2+2=x 2+2+1x 2+2,因为x 2+2≥2,f (x )=x +1x 在[2,+∞)上单调递增,所以y =x 2+2+1x 2+2≥2+12=322,所以函数y =x 2+3x 2+2的最小值为322,B 错误;因为x 2+y 2=1(x >0,y >0),所以1x 2+4y 2=(x 2+y 2)⎝ ⎛⎭⎪⎫1x 2+4y 2=5+y 2x 2+4x 2y 2≥9,当且仅当y 2=2x 2时等号成立,C 正确;f (x )=e -x +e x =1e x +e x ≥2,当且仅当x =0时取等号,而x >0,故D 错误.故选AC.14.(2021·唐山市三模)已知函数f (x )=x +1x (x >0),若f (a )=f (b ),且a <b ,则下列不等式成立的有( )A .ab =1B .a 2+b 2>2 C.1a +2b ≥22 D .log a b <log b a 答案 ABC解析 ∵f (x )=x +1x (x >0),f (a )=f (b ),∴a +1a =b +1b ,即a -b =1b -1a =a -b ab .∵a <b ,∴a -b ≠0,∴1ab =1,即ab =1,故A 正确. ∵a <b ,ab =1,∴a 2+b 2>2ab ,即a 2+b 2>2,故B 正确. 1a +2b ≥22ab =22,当且仅当⎩⎪⎨⎪⎧1a =2b ,ab =1,即⎩⎨⎧a =22,b =2时“=”成立,故C 正确. ∵ab =1,∴a =1b ,b =1a,∴log a b =log b a =-1,故D 错误.故选ABC. 15.已知2a =3b =6,则下列选项一定正确的是( ) A .ab >4 B .(a -1)2+(b -1)2<2 C .log 2a +log 2b >2 D .a +b >4 答案 ACD解析 ∵2a=3b=6,∴a =log 26,b =log 36.∴1a =log 62,1b =log 63,∴1a +1b =1.∵1=1a +1b ≥21ab ,∴ab ≥4.∵a ≠b ,∴ab >4,故A 正确.∵log 2a +log 2b =log 2(ab )>log 24=2,故C 正确.∵a +b =(a +b )·⎝ ⎛⎭⎪⎫1a +1b =a b +ba +2≥4.∵a ≠b ,∴a +b >4,故D 正确. ∵a -1=log 23,b -1=log 32,∴(a -1)·(b -1)=1,∴(a -1)2+(b -1)2≥2(a -1)·(b -1)=2.∵a -1≠b -1,∴(a -1)2+(b -1)2>2.故B 不正确.故选ACD.三、填空题16.(2021·济南学情诊断)若实数x ,y 满足lg x +lg y =lg(x +y ),则xy 的最小值为________. 答案 4解析 依题意可知x >0,y >0,由lg x +lg y =lg(x +y )得lg(xy )=lg(x +y ),得xy =x +y .由基本不等式得xy =x +y ≥2xy ,即xy -2xy =xy (xy -2)≥0,所以xy ≥2,xy ≥4,当且仅当x =y =2时取等号,所以xy 的最小值为4.17.(2021·辽宁五校期末联考)已知正实数a ,b 满足ab -b +1=0,则1a +4b 的最小值是________. 答案 9解析 本题考查基本不等式的应用.∵ab -b +1=0,∴a =b -1b >0,∴b -1>0. 又1a +4b =b b -1+4b =5+1b -1+4(b -1)≥5+21b -1·4(b -1)=5+4=9,当且仅当1b -1=4(b -1),即b =32,a =13时等号成立,则1a +4b 的最小值是9.18.(2021·吉林五校联考)若正实数a ,b 满足ab =1,则1a +1b +1a +b 的最小值为________.答案 52解析 方法一:因为a >0,所以a +1a ≥2,当且仅当a =1a =1时等号成立,又ab =1,所以a =1b ,则1a +1b +1a +b=1a +a +1a +1a .令t =a +1a ≥2,f (t )=t +1t ,则f (t )在[2,+∞)上单调递增,所以f (t )min =f (2)=2+12=52,所以1a +1b +1a +b的最小值为52.方法二:因为ab =1,所以a +b ≥2ab =2,当且仅当a =b =1时取“=”.1a +1b +1a +b =b +a +1a +b ,令t =a +b ≥2,f (t )=t +1t ,则f (t )在[2,+∞)上单调递增,所以1a +1b +1a +b 的最小值为2+12=52.19.(2021·临渭期末)已知正数x ,y 满足x 2+2xy -3=0,则2x +y 的最小值是( ) A .1 B .3 C .6 D .12 答案 B解析 ∵x 2+2xy -3=0,∴y =3-x 22x ,∴2x +y =2x +3-x 22x =3x 2+32x =3x 2+32x ≥23x 2·32x=3,当且仅当3x 2=32x ,即x =1时取等号.故选B.20.(2021·毕业班第二次文科卷)已知a -5=ln a 5<0,b -4=ln b 4<0,c -3=ln c3<0,则a ,b ,c 的大小关系是( )A .b <c <aB .a <c <bC .a <b <cD . c <b <a 答案 C解析 令f (x )=x -ln x ,则f ′(x )=1-1x =x -1x , 当x >1时,f ′(x )>0,函数单调递增.当0<x <1时,f ′(x )<0,函数单调递减,故f (5)>f (4)>f (3), ∴5-ln 5>4-ln 4>3-ln 3. ∵a -5=ln a5=ln a -ln 5<0, ∴a -ln a =5-ln 5,∴f (a )=f (5),且a ∈(0,1).同理f (b )=f (4),f (c )=f (3),且b ∈(0,1),c ∈(0,1), ∴f (a )>f (b )>f (c ),∴a <b <c .故选C.1.(2021·山东滨州市一模)已知p :|x -a |<1,q :3x +1>1,若p 是q 的充分不必要条件,则a 的取值范围为( )A .[0,1]B .(0,1]C .[-1,2)D .(-1,2) 答案 A解析 因为|x -a |<1,所以a -1<x <a +1,即p :a -1<x <a +1, 因为3x +1>1,所以-1<x <2,即q :-1<x <2. 因为p 是q 的充分不必要条件,所以⎩⎨⎧a -1≥-1,a +1≤2,且等号不能同时取到,解得0≤a ≤1.故选A.2.不等式x2x -1>1的解集为( )A.⎝ ⎛⎭⎪⎫12,1 B .(-∞,1) C.⎝ ⎛⎭⎪⎫-∞,12∪(1,+∞) D.⎝ ⎛⎭⎪⎫12,2 答案 A解析 原不等式等价于x2x -1-1>0,即x -(2x -1)2x -1>0,整理得x -12x -1<0,不等式等价于(2x -1)(x -1)<0,解得12<x <1.故选A.3.【多选题】(2021·梅州市高三总复习)若1a >1b >0,下列不等式中正确的是( )A .a 2(1+b )<ab (1+a )B .a 3+b 3>2ab 2 C.b -a <b -a D .log a +23>log b +13答案 AC解析 ∵1a >1b >0,∴b >a >0.a 2(1+b )-ab (1+a )=a 2+a 2b -ab -a 2b =a 2-ab =a (a -b )<0,故a 2(1+b )<ab (1+a ),故A 正确.a 3+b 3-2ab 2=a 3-ab 2+b 3-ab 2=a (a -b )·(a +b )+b 2(b -a )=(a -b )(a 2+ab -b 2). 令a =2,b =3,则a 2+ab -b 2>0.∴此时a 3+b 3<2ab 2,故B 不正确.b -a <b -a 等价于b +a -2ab <b -a ,即a <ab .即a <b .∴b -a <b -a 成立,故C 正确.令b =2,a =1,则log a +23=log b +13=1,故D 错误.故选AC.4.(2021·A 佳湖南大联考)已知a >0,b >0,则“a >b ”是“a -b >1a -1b ”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案 C解析 若a >b >0,则1b >1a ,所以a +1b >b +1a ,所以a -b >1a -1b ,充分性成立.若a -b >1a -1b ,则a +1b -b -1a >0,即(a -b )⎝ ⎛⎭⎪⎫1+1ab >0,又a >0,b >0,所以1+1ab >0,所以a -b >0,即a >b ,必要性成立.故“a >b ”是“a -b >1a -1b ”的充要条件.故选C.5.【多选题】(2021·山东滨州二模)下列命题为真命题的是( )A .若a >b ,则2a -b >12B .若a >b >0,则lg a lg b >1C .若a >0,b >0,则ab ≥2ab a +bD .若a >b ,则ac 2>bc 2 答案 AC 解析 对于A ,因为a >b ,所以a -b >0,所以2a -b >1>12,故正确;对于B ,a =10,b =110,lg a lg b >1不成立;对于C ,因为a >0,b >0,所以a +b ≥2ab ,所以ab =2ab 2ab ≥2ab a +b ,当且仅当a =b 时等号成立,故正确;对于D ,当c =0时不成立.故选AC.6.【多选题】(2021·高三5月数学)已知两个不为零的实数x ,y 满足x <y ,则下列结论正确的是( )A .3|x -y |>1B .xy <y 2C .x |x |<y |y | D.1x -1y <e x -e y答案 AC解析 因为x <y ,所以|x -y |>0,所以3|x -y |>1,则A 正确;因为x <y ,当y >0时,xy <y 2,当y <0时,xy >y 2,则B 错误;令f (x )=x |x |,易知f (x )在R 上单调递增,又x <y ,所以f (x )<f (y ),即x |x |<y |y |,则C 正确;对于D ,方法一:令g (x )=1x -e x ,易知g (x )在(-∞,0)和(0,+∞)上单调递减,不妨设0<x <y ,则g (x )>g (y ),即1x -e x >1y -e y ,亦即1x -1y >e x -e y ,则D 错误;方法二:取x =-1,y =1,则1x -1y =-2>e -1-e ,则D 错误.故选AC.7.【多选题】(2021·茂名第三次联考)已知1a <1b <0,则下列不等式错误的是( )A.⎝ ⎛⎭⎪⎫13a -b >1B.1b -a >1b C .a 3>b 3 D.b a +b <1a答案 ABD解析 ∵1a <1b <0,∴b <a <0.∴a -b >0,∴⎝ ⎛⎭⎪⎫13a -b ∈(0,1),故A 错误;不妨设b =-2,a =-1, ∴1b =-12,1b -a =-1,∴1b -a<1b ,故B 错误;∵b <a <0,y =x 3在R 上单调递增,∴a 3>b 3,故C 正确;不妨设b =-2,a =-1,∴b a +b =-2-3=23,1a=-1, ∴b a +b >1a,故D 错误.故选ABD. 8.【多选题】(2021·山东4月联考)若a >b >0,且ab =1,则( )A .a >b +1 B.1a 2+1<1b 2+1C.⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫12b D .log 2(a +b )>1 答案 BD解析 ∵a >b >0且ab =1,∴a >1>b >0,∴a -b -1=1b -b -1=1-b 2-b b =-⎝ ⎛⎭⎪⎫b +122+54b,不能确定正负,故A 错误. ∵a >b >0,∴a 2>b 2.∴a 2+1>b 2+1>0.∴1a 2+1<1b 2+1,故B 正确. ∵a >b >0,∴⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12b ,故C 错误. 由基本不等式得a +b ≥2ab =2.∵a ≠b ,∴a +b >2,∴log 2(a +b )>1,故D 正确.故选BD.9.已知x >0,y >0,且2x +1y =1,若x +2y >m 2+2m 恒成立,则实数m 的取值范围为________.答案 (-4,2)解析 记t =x +2y ,由不等式恒成立可得m 2+2m <t min .因为2x +1y =1,所以t =x +2y =(x +2y )·⎝ ⎛⎭⎪⎫2x +1y =4+4y x +x y . 而x >0,y >0,所以4y x +x y ≥2 4y x ·xy =4.⎝ ⎛⎭⎪⎫当且仅当4y x =x y ,即x =4,y =2时等号成立 所以t =4+4y x +x y ≥4+4=8,即t min =8.故m 2+2m <8,即(m -2)(m +4)<0,解得-4<m <2.所以实数m 的取值范围为(-4,2).10.已知正实数x ,y 满足2xy +2x +y =3,则2x +3y 的最小值为________. 答案 43-4解析 由2xy +2x +y =3得2x =3-y y +1. 又x ,y 为正实数,所以2x =3-y y +1>0,得0<y <3. 则2x +3y =3-y y +1+3y =4y +1+3(y +1)-4≥2 4y +1×3(y +1)-4=43-4, 当且仅当4y +1=3(y +1),即y =233-1时取等号.。
高中数学基本不等式的巧用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 3.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域 (1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
不等式总结一、不等式的主要性质:(举例子验证)(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>,(3)加法法则:c b c a b a +>+⇒>(同加c ); d b c a d c b a +>+⇒>>,(大+大>小+小) (4)乘法法则(变不变号):bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(5)倒数法则:ba ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且 (7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n 且二、一元二次不等式02>++c bx ax 和)0(02≠<++a c bx ax 及其解法0>∆0=∆0<∆ 二次函数c bx ax y ++=2(0>a )的图象))((212x x x x a cbx ax y --=++=))((212x x x x a c bx ax y --=++=c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x <有两相等实根ab x x 221-== 无实根的解集)0(02>>++a c bx ax{}21x x x x x><或 ⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x x x<<∅∅注意:一般常用求根公式法求解一元二次不等式顺口溜:在二次项系数为正的前提下:大于型取两边,小于型取中间 三、均值不等式1.均值不等式:如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba n nn a a a n a a a 2121≥+++2、使用均值不等式的条件:一正、二定、“三相等(非常重要)”3、平均不等式:平方平均≥算术平均≥几何平均≥调和平均(a 、b 为正数),即2112a b a b++(当a = b 时取等)4、柯西不等式:))(()(222212222122211n n n n b b b a a a b a b a b a ++++++≤+++推论:)()(22221221n n a a a n a a a +++≤+++四、含有绝对值的不等式1.绝对值的几何意义:||x 是指数轴上点x 到原点的距离;12||x x -是指数轴上12,x x 两点间的距离 ,例如 |4||2|-+-x x 的最小值为___________(答案:2) 2、分类讨论思想则不等式:如果,0>aa x a x a x -≤≥<=>≥或||(公式)a x a a x <<-<=><||(公式)如果0≤a ,则不等式:<=>≥a x ||R <=><ax ||Φ3. 当0c >时, ||ax b c ax b c +>⇔+>或ax b c +<-, ||ax b c c ax b c +<⇔-<+<;当0c <时,||ax b c x R +>⇔∈,||ax b c x φ+<⇔∈. 当0=c 时,<=>>+c b ax || <=><+c b ax ||4、解含有绝对值不等式的主要方法:公式法 步1:是否需对a 分类讨论步2:套用公式 || (0)x a a a x a <>⇔-<<,|| (0)x a a x a >>⇔>或x a <-.练习1:4332+<+x x 832≥+x 练习2:a x <+32 a x ≥-32五、其他常见不等式形式总结:①分式不等式的解法:先移项通分标准化,则()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩ ②无理不等式:转化为有理不等式求解(利用x y =的单调性)()0()0()()f x g x f x g x ⎧≥⎫⇒⎪⎬≥⎨⎭⎪>⎩定义域⎩⎨⎧<≥⎪⎩⎪⎨⎧>≥≥⇔>0)(0)()]([)(0)(0)()()(2x g x f x g x f x g x f x g x f 或 ⎪⎩⎪⎨⎧<≥≥⇔<2)]([)(0)(0)()()(x g x f x g x f x g x f ③指数不等式:转化为代数不等式(利用x a y =的单调性)()()()()()(1)()();(01)()()(0,0)()lg lg f x g x f x g x f x a a a f x g x a a a f x g x a b a b f x a b>>⇔>><<⇔<>>>⇔⋅>④对数不等式:转化为代数不等式(利用x y a log =的单调性)()0()0log ()log ()(1)()0;log ()log ()(01)()0()()()()a a a a f x f x f x g x a g x f x g x a g x f x g x f x g x >>⎧⎧⎪⎪>>⇔>><<⇔>⎨⎨⎪⎪><⎩⎩六、三角不等式: |b ||a ||b a ||b |-|a |+≤+≤七、不等式证明的几种常用方法比较法(做差法、做商法)、综合法(由已知推结论)、分析法(由结论到已知)、换元法、反证法、放缩法。
高中数学第二章一元二次函数方程和不等式必考知识点归纳单选题1、已知a>0,b>0且ab=1,不等式12a +12b+ma+b≥4恒成立,则正实数m的取值范围是()A.m≥2B.m≥4C.m≥6D.m≥8答案:D分析:由条件结合基本不等式可求a+b的范围,化简不等式可得m≥4(a+b)−(a+b)22,利用二次函数性质求4(a+b)−(a+b)22的最大值,由此可求m的取值范围.不等式12a +12b+ma+b≥4可化为a+b2ab+ma+b≥4,又a>0,b>0,ab=1,所以m≥4(a+b)−(a+b)22,令a+b=t,则m≥4t−t22,因为a>0,b>0,ab=1,所以t=a+b≥2√ab=2,当且仅当a=b=1时等号成立,又已知m≥4t−t22在[2,+∞)上恒成立,所以m≥(4t−t22)max因为4t−t22=12(8t−t2)=−12(t−4)2+8≤8,当且仅当t=4时等号成立,所以m≥8,当且仅当a=2−√3,b=2+√3或a=2−√3,b=2+√3时等号成立,所以m的取值范围是[8,+∞),故选:D.2、已知正数x,y满足x+y=4,则xy的最大值()A. 2B.4C. 6D.8答案:B分析:直接使用基本不等式进行求解即可.因为正数x,y满足x+y=4,所以有4=x+y≥2√xy⇒√xy≤2⇒xy≤4,当且仅当x=y=2时取等号,故选:B3、下列命题正确的是()A.若ac>bc,则a>b B.若ac=bc,则a=bC.若a>b,则1a <1bD.若ac2>bc2,则a>b答案:D分析:由不等式性质依次判断各个选项即可.对于A,若c<0,由ac>bc可得:a<b,A错误;对于B,若c=0,则ac=bc=0,此时a=b未必成立,B错误;对于C,当a>0>b时,1a >0>1b,C错误;对于D,当ac2>bc2时,由不等式性质知:a>b,D正确.故选:D.4、已知x>0,y>0,且x+y=2,则下列结论中正确的是()A.2x +2y有最小值4B.xy有最小值1C.2x+2y有最大值4D.√x+√y有最小值4答案:A分析:利用基本不等式和不等式的性质逐个分析判断即可解:x>0,y>0,且x+y=2,对于A,2x +2y=12(x+y)(2x+2y)=2+xy+yx≥2+2√xy⋅yx=4,当且仅当x=y=1时取等号,所以A正确,对于B,因为2=x+y≥2√xy,所以xy≤1,当且仅当x=y=1时取等号,即xy有最大值1,所以B错误,对于C,因为2x+2y≥2√2x⋅2y=2√2x+y=4,当且仅当x=y=1时取等号,即2x+2y有最小值4,所以C错误,对于D,因为(√x+√y)2=x+y+2√xy≤2(x+y)=4,当且仅当x=y=1时取等号,即√x+√y有最大值4,所以D 错误, 故选:A5、已知使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则实数a 的取值范围为( )A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞)答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解. 解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集, 又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13, 当a >1,x ∈[−a,−1]⊆(−∞,13],符合,故实数a 的取值范围为[−13,+∞). 故选:C.6、某公司准备对一项目进行投资,提出两个投资方案:方案A 为一次性投资300万;方案B 为第一年投资80万,以后每年投资20万.下列不等式表示“经过n 年之后,方案B 的投入不大于方案A 的投入”的是( ) A .80+20n ≥300B .80+20n ≤300C .80+20(n −1)≥300D .80+20(n −1)≤300 答案:D分析:由不等关系求解即可.经过n 年之后,方案B 的投入为80+20(n −1),故经过n 年之后,方案B 的投入不大于方案A 的投入,即80+20(n −1)≤300 故选:D7、已知a >b >0,下列不等式中正确的是( ) A .ca >cb B .ab <b 2C .a −b +1a−b ≥2D .1a−1<1b−1 答案:C分析:由a >b >0,结合不等式的性质及基本不等式即可判断出结论. 解:对于选项A ,因为a >b >0,0<1a <1b ,而c 的正负不确定,故A 错误; 对于选项B ,因为a >b >0,所以ab >b 2,故B 错误;对于选项C ,依题意a >b >0,所以a −b >0,1a−b >0,所以a −b +1a−b ≥2√(a −b )×1a−b =2,故C 正确; 对于选项D ,因为a >b >0,a −1>b −1>−1,1a−1与1b−1正负不确定,故大小不确定,故D 错误; 故选:C.8、若不等式ax 2+bx +c >0的解集为{x |−1<x <2},则不等式a (x 2+1)+b(x −1)+c >2ax 的解集是( )A .{x |0<x <3}B .{x |x <0或x >3}C .{x |1<x <3}D .{x |−1<x <3} 答案:A分析:由题知{ba =−1ca=−2,a <0,进而将不等式转化为x 2−3x <0,再解不等式即可. 解:由a (x 2+1)+b (x −1)+c >2ax ,整理得ax 2+(b −2a )x +(a +c −b )>0 ①. 又不等式ax 2+bx +c >0的解集为{x |−1<x <2},所以a <0,且{(−1)+2=−ba (−1)×2=c a,即{ba =−1ca=−2②. 将①两边同除以a 得:x 2+(b a −2)x +(1+ca −ba )<0③.将②代入③得:x 2−3x <0,解得0<x <3. 故选:A 多选题9、(多选题)下列命题为真命题的是( )A .若a >b >0,则ac 2≥bc 2B .若a <b <0,则a 2>ab >b 2C .若a >b >0且c >0,则ca 2>cb 2D .若a >b 且1a >1b ,则ab <0 答案:ABD解析:由不等式的性质结合作差法,逐项判断即可得解.对于A ,若a >b >0,则ac 2−bc 2=c 2(a −b )≥0,即ac 2≥bc 2,故A 正确; 对于B ,若a <b <0,则a 2−ab =a (a −b )>0,ab −b 2=b (a −b )>0, 所以a 2>ab >b 2,故B 正确;对于C ,若a >b >0且c >0,则ca 2−cb 2=c (b 2−a 2)a 2b 2=c (b−a )(b+a )a 2b 2<0,所以c a 2<c b 2,故C 错误;对于D ,若a >b 且1a >1b ,则b −a <0,1a −1b =b−a ab>0,所以ab <0,故D 正确. 故选:ABD.10、已知函数y =x 2+ax +b (a >0)有且只有一个零点,则( ) A .a 2−b 2≤4 B .a 2+1b ≥4C .若不等式x 2+ax −b <0的解集为(x 1,x 2),则x 1x 2>0D .若不等式x 2+ax +b <c 的解集为(x 1,x 2),且,则c =4答案:ABD分析:由函数的零点的定义和二次方程有两个相等的实数解的条件可得a ,b 的关系式,由二次函数的最值求法,可判断A ;由基本不等式可判断B ;由二次方程的韦达定理可判断C ,D .124x x -=根据题意,函数y =x 2+ax +b(a >0)有且只有一个零点,必有a 2−4b =0,即a 2=4b ,(b >0), a 2−b 2−4=4b −b 2−4=−(b 2−4b +4)=−(b −2)2≤0,b =2时,等号成立,即有a 2−b 2≤4,故A 正确;a 2+1b =4b +1b ≥2√4b ⋅1b =4,当且仅当b =12时,取得等号,故B 正确; 由x 1,x 2为方程x 2+ax −b =0的两根,可得x 1x 2=−b <0,故C 错误; 由x 1,x 2为方程x 2+ax +b −c =0的两根,可得x 1+x 2=−a ,x 1x 2=b −c , 则|x 1−x 2|2=(x 1+x 2)2−4x 1x 2=a 2−4(b −c)=a 2−4b +4c =4c =16, 解得c =4,故D 正确. 故选:ABD .11、设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>a B .a 2+9>6aC .(a +b )(1a +1b )≥4D .(a +1a )(b +1b )≥4答案:ACD分析:选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围. 由(a 2+1)−a =(a −12)2+34>0可得a 2+1>a ,故A 正确; 由(a 2+9)−6a =(a −3)2≥0可得a 2+9≥6a ,故B 错误;由(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ⋅ba =4,当且仅当a =b 时取等号,故C 正确; 由(a +1a )(b +1b )=(ab +1ab )+(ab +ba )≥2√ab ⋅1ab +2√ab ⋅ba =4, 当且仅当{ab =1aba b =b a ,即a =b =1时取等号,故D 正确.故选:ACD.12、已知a >0,b >0,a 2+b 2=1,则( ) A .ab 的最大值为12B .2ab+3a+b的最小值为2√2C .a 2(1+2b 2)的最大值为94D .1a 2+4b 2的最小值为9答案:ABD分析:利用基本不等式判断A 、B 、D 的正误,注意等号成立条件,将a 2(1+2b 2)化为关于a 2的二次函数形式求最值判断C.因为a >0,b >0,a 2+b 2=1, 所以1≥2ab ,即ab ≤12,2ab+3a+b=(a+b )2+2a+b=a +b +2a+b≥2√2,当且仅当a =b =√22时等号成立,则A ,B正确. a 2(1+2b2)=a 2[1+2(1−a2)]=3a 2−2a 4=−2(a 2−34)2+89,当a 2=34时取得最大值98,则C 错误.1a 2+4b 2=(a 2+b 2)(1a 2+4b 2)=5+b 2a 2+4a 2b 2≥5+2√4=9,当且仅当b 2=2a 2=23时等号成立,则D 正确.故选:ABD13、已知a,b ∈R +且a +b =1,那么下列不等式中,恒成立的有( ). A .ab ⩽14B .ab +1ab ⩾174C .√a +√b ⩽√2D .1a +12b ⩾2√2 答案:ABC分析:利用基本不等式,逐个进行验证,即可得到结论. ∵a,b ∈R +,a +b =1,∴ab ⩽(a+b 2)2=14(当且仅当a =b =12时取得等号).所以选项A 正确由选项A 有ab ≤14,设y =x +1x ,则y =x +1x 在(0,14]上单调递减. 所以ab +1ab ≥14+4=174,所以选项B 正确∵(√a +√b)2=a +b +2√ab ⩽a +b +a +b =2(当且仅当a =b =12时取得等号), ∴√a +√b ⩽√2.所以选项C 正确. ∵1a +12b=a+b a+a+b 2b=32+b a+a 2b⩾32+2√b a⋅a 2b=32+√2(当且仅当a 2=2b 2时等号成立),所以选项D 不正确.故A ,B ,C 正确 故选:ABC小提示:本题考查基本不等式的运用,考查学生分析解决问题的能力,属于中档题填空题14、已知x,y∈(0,+∞),a∈R,若(x−y+sin2α+1)(x+3y−2sin2α)=2,则3x+y的最小值为______. 答案:2分析:利用基本不等式即可求解.∵(x−y+sin2α+1)(x+3y−2sin2α)=2,∴4=(2x−2y+2sin2α+2)(x+3y−2sin2α)即4=(2x−2y+2sin2α+2)(x+3y−2sin2α)≤(2x−2y+2sin2α+2+x+3y−2sin2α2)2=(3x+y+2)24,所以(3x+y+2)2≥16,解得3x+y≥2,当且仅当2x−2y+2sin2α+2=x+3y−2sin2α时,取等号,所以3x+y的最小值为2.所以答案是:2小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15、已知x>0,则7−x−9x的最大值为________.答案:1分析:直接利用基本不等式求最大值.∵x>0,则7−x−9x =7−(x+9x)≤7−2√x⋅9x=1,当且仅当x=9x即x=3时取等号.所以答案是:116、已知关于x的不等式−x2+6ax−3a2≥0(a>0)的解集为[x1,x2],则x1+x2+3ax1x2的最小值是___________.答案:2√6分析:由题知x1+x2=6a,x1x2=3a2,进而根据基本不等式求解即可.解:因为关于x的不等式−x2+6ax−3a2≥0(a>0)的解集为[x1,x2],所以x1,x2是方程−x2+6ax−3a2=0(a>0)的实数根,所以x1+x2=6a,x1x2=3a2,因为a>0,所以x1+x2+3ax1x2=6a+1a≥2√6,当且仅当6a=1a,即a=√66时等号成立,所以x1+x2+3ax1x2的最小值是2√6所以答案是:2√6解答题17、已知不等式(a+1)x2−4x−6<0的解集是{x|−1<x<3}.(1)求常数a的值;(2)若关于x的不等式ax2+mx+4≥0的解集为R,求m的取值范围.答案:(1)a=1(2)[−4,4]分析:(1)由题意可得-1和3是方程(a+1)x2−4x−6=0的解,将x=−1代入方程中可求出a的值;(2)由x2+mx+4≥0的解集为R,可得Δ≤0,从而可求出m的取值范围(1)因为不等式(a+1)x2−4x−6<0的解集是{x|−1<x<3}.所以-1和3是方程(a+1)x2−4x−6=0的解,把x=−1代入方程解得a=1.经验证满足题意(2)若关于x的不等式ax2+mx+4≥0的解集为R,即x2+mx+4≥0的解集为R,所以Δ=m2−16≤0,解得−4≤m≤4,所以m的取值范围是[−4,4].18、为持续推进“改善农村人居环境,建设宜居美丽乡村”,某村委计划在该村广场旁一矩形空地进行绿化.如图所示,两块完全相同的长方形种植绿草坪,草坪周围(斜线部分)均摆满宽度相同的花,已知两块绿草坪的面积均为400平方米.(1)若矩形草坪的长比宽至少多9米,求草坪宽的最大值;(2)若草坪四周及中间的花坛宽度均为2米,求整个绿化面积的最小值.答案:(1)最大值为16米;(2)最小值为(824+160√3)平方米.分析:(1)设草坪的宽为x米,长为y米,依题意列出不等关系,求解即可;(2)表示S=(2x+6)(y+4)=(2x+6)(400x+4),利用均值不等式,即得最小值.(1)设草坪的宽为x米,长为y米,由面积均为400平方米,得y=400x.因为矩形草坪的长比宽至少大9米,所以400x⩾x+9,所以x2+9x−400⩽0,解得−25⩽x⩽16.又x>0,所以0<x⩽16.所以宽的最大值为16米.(2)记整个的绿化面积为S平方米,由题意可得S=(2x+6)(y+4)=(2x+6)(400x +4)=824+8(x+300x)⩾(824+160√3)(平方米)当且仅当x=10√3米时,等号成立.所以整个绿化面积的最小值为(824+160√3)平方米.。
目录不等关系与不等式 (2)考点1:不等关系与不等式 (2)考点2:等式性质与不等式性质 (7)考点1:不等关系与不等式知识点一基本事实两个实数a,b,其大小关系有三种可能,即a>b,a=b,a<b.思考x2+1与2x两式都随x的变化而变化,其大小关系并不显而易见.你能想个办法,比较x2+1与2x的大小吗?答案作差:x2+1-2x=(x-1)2≥0,所以x2+1≥2x.知识点二重要不等式∀a,b∈R,有a2+b2≥2ab,当且仅当a=b时,等号成立.题型1:用不等式(组)表示不等关系例1《铁路旅行常识》规定:一、随同成人旅行,身高在1.2~1.5米的儿童享受半价客票(以下称儿童票),超过1.5米的应买全价票,每一名成人旅客可免费带一名身高不足1.2米的儿童,超过一名时,超过的人数应买儿童票.……十、旅客免费携带物品的体积和重量是每件物品的外部长、宽、高尺寸之和不得超过160厘米,杆状物品不得超过200厘米,重量不得超过20千克……设身高为h(米),物品外部长、宽、高尺寸之和为P(厘米),请用不等式表示下表中的不等关系.解由题意可获取以下主要信息:(1)身高用h(米)表示,物体长、宽、高尺寸之和为P(厘米);(2)题中要求用不等式表示不等关系.解答本题应先理解题中所提供的不等关系,再用不等式表示.身高在1.2~1.5米可表示为1.2≤h ≤1.5, 身高超过1.5米可表示为h >1.5, 身高不足1.2米可表示为h <1.2,物体长、宽、高尺寸之和不得超过160厘米可表示为P ≤160.如下表所示:变式 某套试卷原以每本2.5元的价格销售,可以售出8万本.据市场调查,若单价每提高0.1元,销售量就可能相应减少2 000本.若把提价后试卷的定价设为x 元,怎样用不等式表示销售的总收入仍不低于20万元呢?解 提价后销售的总收入为⎝⎛⎭⎫8-x -2.50.1×0.2x 万元,那么不等关系“销售的总收入仍不低于20万元”可以表示为不等式⎝⎛⎭⎫8-x -2.50.1×0.2x ≥20(2.5≤x <6.5).题型2:作差法比较大小例2 已知a ,b 均为正实数.试利用作差法比较a 3+b 3与a 2b +ab 2的大小. 解 ∵a 3+b 3-(a 2b +ab 2)=(a 3-a 2b )+(b 3-ab 2) =a 2(a -b )+b 2(b -a )=(a -b )(a 2-b 2)=(a -b )2(a +b ). 当a =b 时,a -b =0,a 3+b 3=a 2b +ab 2; 当a ≠b 时,(a -b )2>0,a +b >0,a 3+b 3>a 2b +ab 2. 综上所述,a 3+b 3≥a 2b +ab 2.变式 已知x <1,试比较x 3-1与2x 2-2x 的大小. 解 ∵(x 3-1)-(2x 2-2x )=x 3-2x 2+2x -1 =(x 3-x 2)-(x 2-2x +1)=x 2(x -1)-(x -1)2 =(x -1)(x 2-x +1)=(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34,又∵⎝⎛⎭⎫x -122+34>0,x -1<0, ∴(x -1)⎣⎡⎦⎤⎝⎛⎭⎫x -122+34<0,∴x 3-1<2x 2-2x .考点1:练习题1.下列说法正确的是( )A .某人月收入x 元不高于2 000元可表示为“x <2 000”B .小明的身高为x ,小华的身高为y ,则小明比小华矮可表示为“x >y ”C .变量x 不小于a 可表示为“x ≥a ”D .变量y 不超过a 可表示为“y ≥a ” 答案 C解析 对于A ,x 应满足x ≤2 000,故A 错误;对于B ,x ,y 应满足x <y ,故B 错误;C 正确;对于D ,y 与a 的关系可表示为“y ≤a ”,故D 错误.2.在开山工程爆破时,已知导火索燃烧的速度是每秒0.5 cm ,人跑开的速度为每秒4 m ,为了使点燃导火索的人能够在爆破时跑到100 m 以外的安全区,导火索的长度x (cm)应满足的不等式为( ) A .4×x0.5≥100B .4×x0.5≤100 C .4×x0.5>100D .4×x0.5<100答案 C解析 导火索燃烧的时间x 0.5秒,人在此时间内跑的路程为4×x0.5m .由题意可得4×x0.5>100. 3.设M =x 2,N =-x -1,则M 与N 的大小关系是( ) A .M >N B .M =N C .M <N D .与x 有关答案 A解析 ∵M -N =x 2+x +1=⎝⎛⎭⎫x +122+34>0, ∴M >N .4.若y 1=2x 2-2x +1,y 2=x 2-4x -1,则y 1与y 2的大小关系是( ) A .y 1>y 2B .y 1=y 2C .y 1<y 2D .随x 值变化而变化答案 A5.如图,在一个面积为200 m 2的矩形地基上建造一个仓库,四周是绿地,仓库的长a 大于宽b 的4倍,则表示上述的不等关系正确的是( )A .a >4bB .(a +4)(b +4)=200C.⎩⎪⎨⎪⎧a >4b ,(a +4)(b +4)=200 D.⎩⎪⎨⎪⎧a >4b ,4ab =200 答案 C解析 由题意知a >4b ,根据面积公式可以得到(a +4)(b +4)=200,故选C.6.某次数学智力测验,共有20道题,答对一题得5分,答错一题得-2分,不答得零分.某同学有一道题未答,设这个学生至少答对x 题,成绩才能不低于80分,列出其中的不等关系:________.(不用化简) 答案 5x -2(19-x )≥80,x ∈N *解析 这个学生至少答对x 题,成绩才能不低于80分,即5x -2(19-x )≥80,x ∈N *. 7.某商品包装上标有重量500±1克,若用x 表示商品的重量,则可用含绝对值的不等式表示该商品的重量的不等式为________. 答案 |x -500|≤1解析 ∵某商品包装上标有重量500±1克, 若用x 表示商品的重量, 则-1≤x -500≤1, ∴|x -500|≤1.8.若x ∈R ,则x 1+x 2与12的大小关系为________.答案x 1+x 2≤12解析 ∵x 1+x 2-12=2x -1-x 22(1+x 2)=-(x -1)22(1+x 2)≤0.∴x 1+x 2≤12. 9.已知a ,b ∈R ,x =a 3-b ,y =a 2b -a ,试比较x 与y 的大小. 解 因为x -y =a 3-b -a 2b +a =a 2(a -b )+a -b =(a -b )(a 2+1),所以当a >b 时,x -y >0,所以x >y ; 当a =b 时,x -y =0,所以x =y ; 当a <b 时,x -y <0,所以x <y .10.已知甲、乙、丙三种食物的维生素A ,B 含量及成本如下表:若用甲、乙、丙三种食物各x kg 、y kg 、z kg 配成100 kg 的混合食物,并使混合食物内至少含有56 000单位维生素A 和63 000单位维生素B.试用x ,y 表示混合食物成本c 元,并写出x ,y 所满足的不等关系. 解 依题意得c =11x +9y +4z , 又x +y +z =100,∴c =400+7x +5y ,由⎩⎪⎨⎪⎧600x +700y +400z ≥56 000,800x +400y +500z ≥63 000及z =100-x -y , 得⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130. ∴x ,y 所满足的不等关系为⎩⎪⎨⎪⎧2x +3y ≥160,3x -y ≥130,x ≥0,y ≥0.11.已知0<a 1<1,0<a 2<1,记M =a 1a 2,N =a 1+a 2-1,则M 与N 的大小关系是( ) A .M <N B .M >N C .M =N D .无法确定答案 B解析 ∵0<a 1<1,0<a 2<1,∴-1<a 1-1<0,-1<a 2-1<0,∴M -N =a 1a 2-(a 1+a 2-1)=a 1a 2-a 1-a 2+1=a 1(a 2-1)-(a 2-1)=(a 1-1)(a 2-1)>0, ∴M >N ,故选B.12.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2 C .a 1b 2+a 2b 1 D.12答案 A解析 令a 1=0.1,a 2=0.9;b 1=0.2,b 2=0.8.则A 项a 1b 1+a 2b 2=0.74;B 项,a 1a 2+b 1b 2=0.25;C 项,a 1b 2+a 2b 1=0.26,故最大值为A.13.一个盒子中红、白、黑三种球分别为x 个、y 个、z 个,黑球个数至少是白球个数的一半,至多是红球个数的13,白球与黑球的个数之和至少为55,则用不等式(组)将题中的不等关系表示为________.答案 ⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N *)解析 由题意可得⎩⎪⎨⎪⎧y 2≤z ≤x 3,y +z ≥55(x ,y ,z ∈N *).14.若a 1<a 2,b 1<b 2,则a 1b 1+a 2b 2________a 1b 2+a 2b 1.(填“>”“<”“=”) 答案 >解析 a 1b 1+a 2b 2-(a 1b 2+a 2b 1) =a 1(b 1-b 2)+a 2(b 2-b 1) =(b 1-b 2)(a 1-a 2), ∵a 1<a 2,b 1<b 2, ∴b 1-b 2<0,a 1-a 2<0, 即(b 1-b 2)(a 1-a 2)>0, ∴a 1b 1+a 2b 2>a 1b 2+a 2b 1.考点2:等式性质与不等式性质知识点一 等式的基本性质 (1)如果a =b ,那么b =a . (2)如果a =b ,b =c ,那么a =c . (3)如果a =b ,那么a ±c =b ±c . (4)如果a =b ,那么ac =bc . (5)如果a =b ,c ≠0,那么a c =bc .知识点二 不等式的性质题型1:利用不等式的性质判断或证明例1 (1)给出下列命题: ①若ab >0,a >b ,则1a <1b ;②若a >b ,c >d ,则a -c >b -d ;③对于正数a ,b ,m ,若a <b ,则a b <a +mb +m .其中真命题的序号是________.答案 ①③解析 对于①,若ab >0,则1ab>0, 又a >b ,所以a ab >b ab ,所以1a <1b ,所以①正确;对于②,若a =7,b =6,c =0,d =-10, 则7-0<6-(-10),②错误; 对于③,对于正数a ,b ,m , 若a <b ,则am <bm , 所以am +ab <bm +ab , 所以0<a (b +m )<b (a +m ), 又1b (b +m )>0,所以a b <a +m b +m ,③正确.综上,真命题的序号是①③.(2)已知a >b >0,c <d <0.求证:3a d<3b c. 证明 因为c <d <0,所以-c >-d >0. 所以0<-1c <-1d.又因为a >b >0,所以-a d >-bc>0.所以3-ad>3-bc,即-3a d>-3b c, 两边同乘-1,得3a d<3b c.变式 若1a <1b <0,有下面四个不等式:①|a |>|b |,②a <b ,③a +b <ab ,④a 3>b 3. 则不正确的不等式的个数是( ) A .0 B .1 C .2 D .3 答案 C解析 由1a <1b <0可得b <a <0,从而|a |<|b |,①②均不正确;a +b <0,ab >0,则a +b <ab 成立,③正确;a 3>b 3,④正确. 故不正确的不等式的个数为2.题型2:利用性质比较大小例2 若P =a +6+a +7,Q =a +5+a +8(a >-5),则P ,Q 的大小关系为( ) A .P <Q B .P =Q C .P >Q D .不能确定答案 C解析 P 2=2a +13+2(a +6)(a +7), Q 2=2a +13+2(a +5)(a +8),因为(a +6)(a +7)-(a +5)(a +8)=a 2+13a +42-(a 2+13a +40)=2>0, 所以(a +6)(a +7)>(a +5)(a +8),所以P 2>Q 2,所以P >Q .变式 下列命题中一定正确的是( ) A .若a >b ,且1a >1b ,则a >0,b <0B .若a >b ,b ≠0,则ab >1C .若a >b ,且a +c >b +d ,则c >dD .若a >b ,且ac >bd ,则c >d 答案 A解析 对于A ,∵1a >1b ,∴b -a ab >0,又a >b ,∴b -a <0,∴ab <0, ∴a >0,b <0,故A 正确;对于B ,当a >0,b <0时,有ab<1,故B 错;对于C ,当a =10,b =2时,有10+1>2+3,但1<3, 故C 错;对于D ,当a =-1,b =-2时,有(-1)×(-1)>(-2)×3,但-1<3,故D 错.题型3:利用性质比较大小例3 已知12<a <60,15<b <36.求a -b 和ab 的取值范围.解 ∵15<b <36,∴-36<-b <-15, ∴12-36<a -b <60-15,即-24<a -b <45. 又136<1b <115,∴1236<a b <6015,即13<a b <4. 故-24<a -b <45,13<a b <4.变式 已知0<a +b <2,-1<b -a <1,则2a -b 的取值范围是____________. 答案 -32<2a -b <52解析 因为0<a +b <2,-1<-a +b <1,且2a -b =12(a +b )-32(-a +b ),结合不等式的性质可得,-32<2a -b <52.考点2:练习题1.如果a <0,b >0,那么下列不等式中正确的是( )A.1a <1bB.-a <bC .a 2<b 2D .|a |>|b |答案 A解析 ∵a <0,b >0,∴1a <0,1b >0,∴1a <1b ,故选A.2.若a ,b ,c ∈R ,且a >b ,则下列不等式一定成立的是() A .a +c ≥b -c B .ac >bcC.c 2a -b >0 D .(a -b )c 2≥0答案 D解析 ∵a >b ,∴a -b >0,∴(a -b )c 2≥0,故选D.3.已知a >b >c ,则1b -c +1c -a 的值是( )A .正数B .负数C .非正数D .非负数答案 A解析 1b -c +1c -a =c -a +b -c (b -c )(c -a )=b -a (b -c )(c -a ), ∵a >b >c ,∴b -c >0,c -a <0,b -a <0,∴1b -c +1c -a>0,故选A. 4.若x >1>y ,下列不等式不一定成立的是( )A .x -y >1-yB .x -1>y -1C .x -1>1-yD .1-x >y -x 答案 C解析 利用性质可得A ,B ,D 均正确,故选C.5.已知a <0,b <-1,则下列不等式成立的是( )A .a >a b >a b 2 B.a b 2>a b >a C.a b >a >a b 2 D.a b >a b 2>a 答案 D解析 ∵a <0,b <-1,∴a b>0,b 2>1, ∴0<1b 2<1,∴0>a b 2>a 1, ∴a b >a b 2>a . 6.不等式a >b 和1a >1b同时成立的条件是________. 答案 a >0>b解析 若a ,b 同号,则a >b ⇒1a <1b. 7.给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确命题的序号是________.答案 ②③解析 ①当c 2=0时不成立;②一定成立;③当a >b 时,a 3-b 3=(a -b )(a 2+ab +b 2)=(a -b )·⎣⎡⎦⎤⎝⎛⎭⎫a +b 22+34b 2>0成立; ④当b <0时,不一定成立.如:|2|>-3,但22<(-3)2.8.设a >b >c >0,x =a 2+(b +c )2,y =b 2+(c +a )2,z =c 2+(a +b )2,则x ,y ,z 的大小顺序是________.答案 z >y >x解析 ∵a >b >c >0,y 2-x 2=b 2+(c +a )2-a 2-(b +c )2=2ac -2bc=2c (a -b )>0,∴y 2>x 2,即y >x .同理可得z >y ,故z >y >x .9.判断下列各命题的真假,并说明理由.(1)若a <b ,c <0,则c a <c b; (2)a c 3<b c 3,则a >b ; (3)若a >b ,且k ∈N *,则a k >b k ;(4)若a >b ,b >c ,则a -b >b -c .解 (1)假命题.∵a <b ,不一定有ab >0,∴1a >1b不一定成立, ∴推不出c a <c b,∴是假命题. (2)假命题.当c >0时,c -3>0,则a <b ,∴是假命题.(3)假命题.当a =1,b =-2,k =2时,显然命题不成立,∴是假命题.(4)假命题.当a =2,b =0,c =-3时,满足a >b ,b >c 这两个条件,但是a -b =2<b -c =3,∴是假命题.10.若-1<a +b <3,2<a -b <4,求2a +3b 的取值范围.解 设2a +3b =x (a +b )+y (a -b ),则⎩⎪⎨⎪⎧ x +y =2,x -y =3,解得⎩⎨⎧ x =52,y =-12.因为-52<52(a +b )<152,-2<-12(a -b )<-1, 所以-92<52(a +b )-12(a -b )<132, 所以-92<2a +3b <132. 11.下列命题正确的是( )A .若ac >bc ,则a >bB .若a 2>b 2,则a >bC .若1a >1b,则a <b D .若a <b ,则a <b答案 D 解析 对于A ,若c <0,其不成立;对于B ,若a ,b 均小于0或a <0,其不成立;对于C ,若a >0,b <0,其不成立;对于D ,其中a ≥0,b >0,平方后显然有a <b .12.已知x >y >z ,x +y +z =0,则下列不等式中一定成立的是( )A .xy >yzB .xz >yzC .xy >xzD .x |y |>z |y | 答案 C解析 因为x >y >z ,x +y +z =0,所以3x >x +y +z =0,3z <x +y +z =0,所以x >0,z <0.所以由⎩⎪⎨⎪⎧x >0,y >z ,可得xy >xz . 13.若a ,b ,c ∈R ,a >b ,则下列不等式成立的是( )A.1a <1bB .a 2>b 2 C.a c 2+1>b c 2+1D .a |c |>b |c |答案 C解析 对于A ,若a >0>b ,则1a >0,1b<0, 此时1a >1b,∴A 不成立; 对于B ,若a =1,b =-2,则a 2<b 2,∴B 不成立;对于C ,∵c 2+1≥1,且a >b ,∴a c 2+1>b c 2+1恒成立,∴C 成立; 对于D ,当c =0时,a |c |=b |c |,∴D 不成立.14.有外表一样,重量不同的四个小球,它们的重量分别是a ,b ,c ,d ,已知a +b =c +d ,a +d >b +c ,a +c <b ,则这四个小球由重到轻的排列顺序是( )A .d >b >a >cB .b >c >d >aC .d >b >c >aD .c >a >d >b答案 A解析 ∵a +b =c +d ,a +d >b +c ,∴a +d +(a +b )>b +c +(c +d ),即a >c .∴b <d .又a+c<b,∴a<b.综上可得,d>b>a>c.。
高中数学必修一第二章一元二次函数方程和不等式知识点总结归纳完整版单选题1、已知x,y,z都是正实数,若xyz=1,则(x+y)(y+z)(z+x)的最小值为()A.2B.4C.6D.8答案:D分析:均值定理连续使用中要注意等号是否同时成立.由x>0,y>0,z>0可知x+y≥2√xy>0(当且仅当x=y时等号成立)y+z≥2√yz>0(当且仅当y=z时等号成立)x+z≥2√xz>0(当且仅当x=z时等号成立)以上三个不等式两边同时相乘,可得(x+y)(y+z)(z+x)≥8√x2y2z2=8(当且仅当x=y=z=1时等号成立)故选:D2、已知2<a<3,−2<b<−1,则2a−b的范围是()A.(6,7)B.(5,8)C.(2,5)D.(6,8)答案:B分析:由不等式的性质求解即可.2<a<3,−2<b<−1,故4<2a<6,1<−b<2,得5<2a−b<8故选:B3、下列命题中,是真命题的是()A.如果a>b,那么ac>bc B.如果a>b,那么ac2>bc2C.如果a>b,那么ac >bcD.如果a>b,c<d,那么a−c>b−d答案:D分析:根据不等式的性质和特殊值法,逐项验证可得出答案.对于A ,如果c =0,那么ac =bc ,故错误; 对于B ,如果c =0,那么ac 2=bc 2,故错误; 对于C ,如果c <0,那么ac <bc ,故错误;对于D ,如果c <d ,那么−c >−d ,由a >b ,则a −c >b −d ,故正确. 故选:D.4、y =x +4x (x ≥1)的最小值为( ) A .2B .3C .4D .5 答案:C分析:利用均值不等式求解即可.因为y =x +4x(x ≥1),所以x +4x≥2√x ×4x=4,当且仅当x =4x即x =2时等号成立.所以当x =2时,函数y =x +4x 有最小值4. 故选:C.5、已知使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则实数a 的取值范围为( )A .(−∞,−13)B .(−∞,−13] C .[−13,+∞)D .(−13,+∞) 答案:C分析:使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0,则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集,求出两个不等式的解集,利用集合的包含关系列不等式求解.解:由3x −1≤0得x ≤13,因为使不等式x 2+(a +1)x +a ≤0成立的任意一个x ,都满足不等式3x −1≤0 则不等式x 2+(a +1)x +a ≤0的解集是(−∞,13]的子集, 又由x 2+(a +1)x +a ≤0得(x +a )(x +1)≤0, 当a =1,x ∈{−1}⊆(−∞,13],符合;当a <1,x ∈[−1,−a ]⊆(−∞,13],则−a ≤13,∴1>a ≥−13, 当a >1,x ∈[−a,−1]⊆(−∞,13],符合, 故实数a 的取值范围为[−13,+∞). 故选:C.6、已知x ∈R ,则“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的( )条件. A .充分不必要B .必要不充分 C .充分必要D .既不充分也不必要 答案:C分析:先证充分性,由(x −2)(x −3)≤0 求出x 的取值范围,再根据x 的取值范围化简|x −2|+|x −3|即可,再证必要性,若|x −2|+|x −3|=1,即|x −2|+|x −3|=|(x −2)−(x −3)|,再根据绝对值的性质可知(x −2)(x −3)≤0.充分性:若(x −2)(x −3)≤0,则2≤x ≤3, ∴|x −2|+|x −3|=x −2+3−x =1,必要性:若|x −2|+|x −3|=1,又∵|(x −2)−(x −3)|=1, ∴|x −2|+|x −3|=|(x −2)−(x −3)|, 由绝对值的性质:若ab ≤0,则|a |+|b |=|a −b|, ∴(x −2)(x −3)≤0,所以“(x −2)(x −3)≤0成立”是“|x −2|+|x −3|=1成立”的充要条件, 故选:C .7、若非零实数a ,b 满足a <b ,则下列不等式成立的是( ) A .ab <1B .ba +ab >2C .1ab 2<1a 2b D .a 2+a <b 2+b 答案:C分析:举出符合条件的特例即可判断选项A ,B ,D ,对于C ,作出不等式两边的差即可判断作答.取a=−2,b=−1,满足a<b,而ab=2>1,A不成立;取a=−2,b=1,满足a<b,而ba +ab=−12+(−2)=−52<2,B不成立;因1ab2−1a2b=a−ba2b2<0,即有1ab2<1a2b,C成立;取a=−2,b=−1,满足a<b,而a2+a=2,b2+b=0,即a2+a>b2+b,D不成立.故选:C8、若a,b,c为实数,且a<b,c>0,则下列不等关系一定成立的是()A.a+c<b+c B.1a <1bC.ac>bc D.b−a>c答案:A分析:由不等式的基本性质和特值法即可求解.对于A选项,由不等式的基本性质知,不等式的两边都加上(或减去)同一个数或同一个整式,不等号方向不变,则a<b⇒a+c<b+c,A选项正确;对于B选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个负数,不等号方向改变,若a=−2,b=−1,则1a >1b,B选项错误;对于C选项,由不等式的基本性质知,不等式的两边都乘以(或除以)同一个正数,不等号方向不变,c>0,0<a<b⇒ac<bc,C选项错误;对于D选项,因为a<b⇒b−a>0,c>0,所以无法判断b−a与c大小,D选项错误.多选题9、若−1<a<b<0,则()A.a2+b2>2ab B.1a <1bC.a+b>2√ab D.a+1a>b+1b答案:AD分析:应用作差法判断B、D,根据重要不等式判断A,由不等式性质判断C.A:由重要不等式知:a2+b2≥2ab,而−1<a<b<0,故a2+b2>2ab,正确;B:由−1<a<b<0,则1a −1b=b−aab>0,故1a>1b,错误;C:由−1<a<b<0,则a+b<0<2√ab,错误;D :(a +1a )−(b +1b )=a −b +1a −1b =a −b +b−a ab=(a −b)(ab−1ab)>0,故a +1a >b +1b ,正确.故选:AD10、设a >0,b >0,给出下列不等式恒成立的是( ) A .a 2+1>a B .a 2+9>6aC .(a +b )(1a +1b )≥4D .(a +1a )(b +1b )≥4 答案:ACD分析:选项A ,B 可用作差法比较大小;选项C ,D 可用基本不等式求范围. 由(a 2+1)−a =(a −12)2+34>0可得a 2+1>a ,故A 正确;由(a 2+9)−6a =(a −3)2≥0可得a 2+9≥6a ,故B 错误;由(a +b )(1a +1b )=2+ab +ba ≥2+2√ab ⋅ba =4,当且仅当a =b 时取等号,故C 正确; 由(a +1a )(b +1b )=(ab +1ab )+(ab +ba )≥2√ab ⋅1ab +2√ab ⋅ba =4, 当且仅当{ab =1ab a b =b a ,即a =b =1时取等号,故D 正确. 故选:ACD.11、十六世纪中叶,英国数学家雷科德在《砺智石》一书中首先把“=”作为等号使用,后来英国数学家哈利奥特首次使用“<”和“>”符号,并逐步被数学界接受,不等号的引入对不等式的发展影响深远.若a 、b 、c ∈R ,则下列命题正确的是( )A .若a >b >0,则ac 2>bc 2B .若a <b <0,则a +1b <b +1a C .若a <b <c <0,则ba <b+ca+c D .若a >0,b >0,则b 2a +a 2b≥a +b答案:BCD解析:取c =0可判断A 选项的正误;利用作差法可判断BCD 选项的正误. 对于A 选项,当c =0时,则ac 2=bc 2,A 选项错误;对于B 选项, (a +1b )−(b +1a )=(a −b )+(1b −1a )=(a −b )+a−b ab=(a −b )(1+1ab ),∵a <b <0,a −b <0,ab >0,∴1+1ab >0,则(a +1b )−(b +1a )<0,B 选项正确; 对于C 选项,ba −b+ca+c =b (a+c )−a (b+c )a (a+c )=c (b−a )a (a+c ),∵a <b <c <0,则b −a >0,a +c <0,则ba −b+ca+c <0,C 选项正确; 对于D 选项,(b 2a +a 2b)−(a +b )=b 2−a 2a+a 2−b 2b=(b 2−a 2)(1a −1b )=(b 2−a 2)(b−a )ab=(b+a )(b−a )2ab,∵a >0,b >0,则(b 2a +a 2b)−(a +b )=(b+a )(b−a )2ab≥0,D 选项正确.故选:BCD.小提示:判断不等式是否成立,主要利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简便. 填空题 12、不等式x 2+2x−3x+1≥0的解集为__________.答案:[−3,−1)∪[1,+∞) 分析:将x 2+2x−3x+1≥0等价转化为{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解不等式组可得答案.原不等式等价于{x 2+2x −3≥0x +1>0 或{x 2+2x −3≤0x +1<0,解得x ≥1 或−3≤x <−1 , 所以答案是:[−3,−1)∪[1,+∞)13、x −y ≤0,x +y −1≥0,则z =x +2y 的最小值是___________. 答案:32##1.5分析:分析可得x +2y =32(x +y )−12(x −y ),利用不等式的基本性质可求得z =x +2y 的最小值. 设x +2y =m (x +y )+n (x −y )=(m +n )x +(m −n )y ,则{m +n =1m −n =2 ,解得{m =32n =−12, 所以,z =x +2y =32(x +y )−12(x −y )≥32, 因此,z =x +2y 的最小值是32.所以答案是:32.14、已知集合A={x|−5<−2x+3<7},B={x|x2−(3a−1)x+2a2−a<0} ,若B⊆A,则实数a的取值范围为______.答案:[−12,5 2 ]分析:分类讨论解不等式,再利用集合的包含关系列式求解作答.依题意,B={x|(x−a)(x−2a+1)<0},当a<2a−1,即a>1时,B=(a,2a−1),当a=2a−1,即a=1时,B=∅,当a>2a−1,即a<1时,B=(2a−1,a),又A=(−2,4),B⊆A,于是得{a>12a−1≤4,解得1<a≤52,或{a<12a−1≥−2,解得−12≤a<1,而∅⊆A,则a=1,综上得:−12≤a≤52,所以实数a的取值范围为[−12,52 ].所以答案是:[−12,5 2 ]解答题15、实数a、b满足-3≤a+b≤2,-1≤a-b≤4.(1)求实数a、b的取值范围;(2)求3a-2b的取值范围.答案:(1)a∈[-2,3],b∈[-72,3 2 ](2)[-4,11]分析:(1)由a=12[(a+b)+(a-b)],b=12[(a+b)-(a-b)]根据不等式的性质计算可得;(2)求出3a-2b=12(a+b)+52(a-b),再利用不等式的性质得解.(1)解:由-3≤a+b≤2,-1≤a-b≤4,则a=12[(a+b)+(a-b)],所以-4≤(a+b)+(a-b)≤6,所以-2≤12[(a+b)+(a-b)]≤3,即-2≤a≤3,即实数a的取值范围为[-2,3].因为b=12[(a+b)-(a-b)],由-1≤a-b≤4,所以-4≤b -a ≤1,所以-7≤(a +b )-(a -b)≤3, 所以-72≤12[(a +b )-(a -b)]≤32,∴-72≤b ≤32,即实数b 的取值范围为[-72,32].(2)解:设3a -2b =m (a +b )+n(a -b)=(m +n )a +(m -n)b , 则{m +n =3m -n =-2 ,解得{m =12n =52 ,∴3a -2b =12(a +b )+52(a -b ), ∵-3≤a +b ≤2,-1≤a -b ≤4. ∴-32≤12(a +b )≤1,-52≤52(a -b )≤10, ∴-4≤3a -2b ≤11,即3a -2b 的取值范围为[-4,11].。
..;..高中数学简单不等式的分类、解法一、知识点回顾1.简单不等式类型:一元一次、二次不等式,分式不等式,高次不等式,指数、对数不等式,三角不等式,含参不等式,函数不等式,绝对值不等式。
2.一元二次不等式的解法解二次不等式时,将二次不等式整理成首项系数大于0的一般形式,再求根、结合图像写出解集 3三个二次之间的关系:二次函数的图象、一元二次方程的根与一元二次不等式的解集之间的关系(见复习教材P228)二次函数的零点---对应二次方程的实根----对应二次不等式解集区间的端点 4.分式不等式的解法法一:转化为不等式组;法二:化为整式不等式;法三:数轴标根法 5.高次不等式解法法一:转化为不等式组;法二:数轴标根法 6.指数与对数不等式解法 a>1时)()()()(x g x f a ax g x f >⇔>;0)()()(log )(log >>⇔>x g x f x g x f a a0<a<1时,)()()()(x g x f a ax g x f <⇔>;)()(0)(log )(log x g x f x g x f a a <<⇔>7.三角不等式解法利用三角函数线或用三角函数的图像求解 8.含参不等式解法根据解题需要,对参数进行分类讨论 9.函数不等式解法利用函数的单调性求解,化为基本不等式(有时还会结合奇偶性)10.绝对值不等式解法(后面详细讨论) 二、练习:(1)23440x x -++>解集为(223x -<< )(一化二算三写)(2)213022x x ++>解集为(R ) (变为≤,则得∅)(无实根则配方) 三、例题与练习例1已知函数)()1()(b x ax x f +∙-= ,若不等式0)(>x f 的解集为)3,1(-,则不等式0)2(<-x f 的解集为 ),21()23,(+∞--∞ 解法一:由根与系数关系求出3,1-=-=b a ,得32)(2++-=x x x f ,再得出新不等式,求解解法二:由二次不等式0)(>x f 的解集为)3,1(-得0)(<x f 解集为),3()1,(+∞--∞ ,再由∈-x 2),3()1,(+∞--∞ 得解集变式 1. 已知关于x 的不等式20x mx n -+≤的解集是{|51}x x -≤≤,则不等式0>+n mx 的解集为 (m, n )=(-4,-5),解集为)45,(--∞ 例2:不等式2232x x x -++≥0的解集是_____. 答案:(-2,-1)∪[2,+∞)法一:化为不等式组 法二:数轴标根法 法三:化为整式不等式(注意等价性)变式2:不等式03323<+--x x x 的解集为 . 答案:)1,()3,1(--∞例3:解关于x 的不等式ax x ax -≥-222分析:化为02)2(2≥--+x a ax ,考虑分类标准:①a 与0的关系②a2与-1的关系 变式3:①解关于x 的不等式ax 2-(a +1)x +1<0 解:原不等式可化为(ax-1)(x-1)<0 当a<0时,原不等式解集为),1()1,(+∞-∞ a当a=0时,x-1>0, 原不等式解集为(1,+ ∞) 当0<a<1时,原不等式解集为)1,1(a当a=1时,0)1(2<-x ,原不等式解集为φ 当a>1时,原不等式解集为)1,1(a..;..②.解关于x 的不等式0)1(log 12<--x a a答案:当a>1时,解集为)2log 21,0(a 当0<a<1时,解集为)2log 21,(a -∞(总结指数与对数不等式解法)思维点拨:含参数不等式,应选择恰当的讨论标准对所含字母分类讨论,要做到不重不漏.例4:已知函数⎩⎨⎧≤≥+=)0(,1)0(,1)(2x x x x f ,则不等式)2()1(2x f x f >-的解集为分析:考虑解题思路,有两种方向---函数不等式或分段解不等式画出函数图像,结合图像易得不等式组⎩⎨⎧>-<01022x x 或⎩⎨⎧≥-≥xx x 21022得解集为)12,1(-- 变式4:定义在R 上的偶函数,当0≥x 时,x x x f 4)(2-=,则不等式x x f ≥)(的解集为 法一:结合图像求解;法二:化为不等式组 解集为{}),5[0]3,(+∞--∞例5:)(x f 是定义在R 上的偶函数,当0≥x 时,a x e x f x --=sin )(,解不等式)2()1(f x f >- 分析:0≥x 时,0cos )(>-='x e x f x,)(x f 在),0[+∞上单调增,又它为偶函数,所以,不等式转化为)2()1(f x f >-,化为21>-x ,得解集为),3()1,(+∞--∞探究:改为奇函数,解集为变式5:函数f (x )的定义域为R ,f ′(x )为f (x )的导函数,函数y =f ′(x )的图象如右图所示,且f (-2)=1,f (3)=1,则不等式f (x 2-6)>1的解集为__________________.答案:(2,3)∪(-3,-2)解析 由导函数图象知f (x )在(-∞,0)上为增函数;在(0,+∞)上为减函数,故不等式f (x 2-6)>1等价于-2<x 2-6<3,解得x ∈(2,3)∪(-3,-2) 四、小结1.含参不等式求解要先考虑分类标准,做到不漏不重2.要善于转化,化为不等式组或整式不等式或代数不等式,注意数形结合。
不等式恒成立问题初步一、图象法【例1】若关于x的不等式mx2-x-1<0对x∈R恒成立,求实数m的取值范围.【练】若关于x的不等式mx2-mx+2≥0对x∈R恒成立,求实数m的取值范围.【变1】若关于x的不等式(a2-4)x2+(a+2)x-1≥0的解集为空集,求实数a的取值范围.【变2】已知函数f (x )=mx 2-6mx +m +8的定义域为R ,求实数m 的取值范围.【例2】当x ∈[﹣2,2]时,不等式p 2+px +1>2p +x 恒成立,求实数p 的取值范围.【练】对任意[ 1 1]a ∈-,,不等式024)4(2>-+-+a x a x 恒成立,求x 的取值范围.二、最值法【例3】若不等式x2-mx+1>0对x∈[0,2]恒成立,求实数m的取值范围.【练】若不等式x2+ax+1≥0对x∈[0,1]恒成立,求实数a的取值范围.【变】若8x4+8(a-2)x2-a+5>0对于任意的实数x恒成立,求实数a的取值范围.【练】若不等式的x2+ax-2<0对x∈(-1,3)恒成立,求实数a的取值范围.【例5】若不等式mx2-2mx-1<0对x∈(1,2]恒成立,求实数m的取值范围.三、分离法【例6】若2ax2-x≤0对x∈[1,2]恒成立,求a的取值范围.【练】若不等式ax2+2x+1>0对于x∈R恒成立,求实数a的取值范围.【例7】若不等式x2-mx+1>对x∈[0,2]恒成立,求实数m的取值范围.【练】若不等式x2+ax+1≥0对x∈[0,1]恒成立,求实数a的取值范围.【变】已知x2+(a-3)x+a>0,对x∈(-1,2)恒成立,求实数a的取值范围.【家庭作业】1、对一切实数x,不等式ax2+(a-6)x+2>0恒成立,求实数a的取值范围.2、若对任意实数p∈[﹣1,1],不等式px2+(p﹣3)x﹣3>0成立,求实数x的取值范围.3、不等式x2-3<ax-a对一切3≤x≤4恒成立,求实数a的取值范围.4、对一切实数x,不等式x2+a|x|+1≥0恒成立,求实数a的取值范围.5、若不等式mx2-x+1>0对x∈(1,3)恒成立,求实数a的取值范围.6、设对任意实数x∈[-1,1],不等式x2+ax-3a<0恒成立,求实数a的取值范围.。
高中不等式知识点总结一、知识点1.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a > bb > a②传递性: a > b, b > ca > c③可加性: a > b a + c > b + c④可积性: a > b, c > 0ac > bc;a > b, c < 0ac < bc;⑤加法法则: a > b, c > d a + c > b + d⑥乘法法则:a > b > 0, c > d > 0 ac > bd⑦乘方法则:a > b > 0, an > bn (n∈N)⑧开方法则:a > b > 0,2.算术平均数与几何平均数定理:(1)如果a、b∈R,那么a2 + b2 ≥2ab(当且仅当a=b时等号)(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:如果为实数,则重要结论1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。
3.证明不等式的常用方法:比较法:比较法是最基本、最重要的方法。
当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。
综合法:以已知或已证明的不等式为基础,根据不等式的性质推导出待证明的不等式。
平均不等式常用于综合法的标度。
分析方法:不等式两边的关系不够清晰。
通过寻找不等式成立的充分条件,对待证明的不等式进行逐步转化,直到找到一个容易证明或已知成立的结论。
4.不等式的解法(1) 不等式的有关概念同解不等式:如果两个不等式有相同的解集,那么这两个不等式称为同解不等式。
同解变形:当一个不等式转化为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形称为同解变形。