2005-2014重庆中考数学(圆)集锦
- 格式:doc
- 大小:591.50 KB
- 文档页数:12
一、选择题1. (重庆市2001年4分)已知,在△ABC 中,∠C =90°,斜边长为217,两直角边的长分别是关于x 的方程x 2—3(m +21)x +9m =0的两个根,则△ABC 的内切圆面积是【 】. A .4π B .23π C .47π D .49π2. (重庆市2003年4分)如图,⊙O 中弦AB 、CD 相交于点F ,AB=10,AF=2.若CF :DF=1:4,则CF 的长等于【 】A .2B .2C .3D .22 【答案】B 。
【考点】相交弦定理。
【分析】根据相交弦定理“圆内两弦相交于圆内一点,各弦被这点所分得的两线段的长的乘积相等”进行计算:∵CF:DF=1:4,∴DF=4CF。
又AB=10,AF=2,∴BF=10-2=8。
由相交弦定理得:FA•FB=FC•FD,即2×8=FC×4FC,解得FC=2。
故选B。
3. (重庆市2004年4分)如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为【】A、221a2-B、21a2+C、2aD、12a4⎛⎫-⎪⎝⎭∵由切割线定理可得BF2=BH•BG,∴14a2=BH(BH+a)。
∴BH=12a2-+或BH=12a2--(舍去)。
∵OE∥DB,OE=OH,∴△OEH∽△BDH。
∴OE BD OH BH=。
∴BH=BD,CD=BC+BD=a+12a2-+=12a2+。
故选B。
4. (重庆市大纲卷2005年4分)如图,在半径为5cm的⊙O中,圆心O到弦AB的距离为3cm,则弦AB的长是【】A、4cmB、6cmC、8cmD、10cm5. (重庆市大纲卷2005年4分)如图,在⊙O中,P是弦AB的中点,CD是过点P的直径,则下列结论中不正确的是【】A、AB⊥CDB、∠AOB=4∠ACDC、AD=BDD、PO=PD【答案】D。
A .17B .C .﹣17D . ( ( ( F ( ( (2014 年重庆市中考数学试卷( A 卷)一、选择题(本大题共 12 小题,每小题 4 分共 48 分) 1.(4 分)(2014•重庆)实数﹣17 的相反数是( )﹣2.(4 分)(2014•重庆)计算 2x 6÷x 4 的结果是( )A .x 2B .2x 2C .2x 43.(4 分)(2014•重庆)在 中,a 的取值范围是( ) D .2x 10A .a ≥0B .a ≤0C .a >0D .a <04.(4 分)(2014•重庆)五边形的内角和是( )A .180°B .360°C .540°D .600°5. 4 分) 2014•重庆)2014 年 1 月 1 日零点,北京、上海、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃, 当时这四个城市中,气温最低的是( ) A .北京 B .上海 C .重庆 D .宁夏6.(4 分)(2014•重庆)关于 x 的方程 =1 的解是()A .x=4B .x=3C .x=2D .x=17.(4 分)(2014•重庆)2014 年 8 月 26 日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运 动员在为该运动会积极准备.在某天“110 米跨栏”训练中,每人各跑 5 次,据统计,他们的平均成绩都 是 13.2 秒,甲、乙、丙、丁的成绩的方差分别是 0.11、0.03、0.05、0.02.则当天这四位运动员“110 米 跨栏”的训练成绩最稳定的是( ) A .甲B .乙C .丙D .丁8. 4 分) 2014•重庆)如图,直线 AB ∥ CD ,直线 EF 分别交直线 AB 、CD 于点 E 、 ,过点F 作 FG ⊥FE , 交直线 AB 于点 G ,若∠ 1=42°,则∠ 2 的大小是( )A .56°B .48°C .46°D .40°9. 4 分) 2014•重庆)如图,△ABC 的顶点 A 、B 、C 均在⊙O 上,若∠ ABC+∠ AOC=90°,则∠ AOC 的大小是( )A.30°B.45°C.60°D.70°10.(4分)(2014•重庆)2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.11.(4分)(2014•重庆)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20B.27C.35D.4012.(4分)(2014•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C△,则AOC的面积为()A.8B.10C.12D.24二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)(2014•重庆)方程组的解是_________.14.(4分)(2014•重庆)据有关部分统计,截止到2014年5月1日,重庆市私家小轿车达到563000辆,将563000这个数用科学记数法表示为_________.15.4分)2014•重庆)如图,菱形ABCD中,∠A=60°,BD=7,则菱形ABCD的周长为_________.((16.(4分)(2014•重庆)如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,则图中阴影部分的面积为_________.(结果保留π)17.(4分)(2014•重庆)从﹣1,1,2这三个数字中,随机抽取一个数,记为a,那么,使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为,且使关于x的不等式组有解的概率为_________.18.(4分)(2014•重庆)如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为_________.三、解答题(本大题共2小题,每小题7分,共14分)19.(7分)(2014•重庆)计算:+(﹣3)2﹣20140×|﹣4|+.20.(7分)(2014•重庆)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.((21.(10分)(2014•重庆)先化简,再求值:÷(﹣)+,其中x的值为方程2x=5x﹣1的解.22.(10分)(2014•重庆)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有_________家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23.(10分)(2014•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0).则每户平均集资的资金在150元的基础上减少了a%,求a的值.24.10分)2014•重庆)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E△.在ABC外有一点F,使FA⊥AE,FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.( ( 25.(12 分)(2014•重庆)如图,抛物线 y=﹣x 2﹣2x+3 的图象与 x 轴交于 A 、B 两点(点 A 在点 B 的 左边),与 y 轴交于点 C ,点 D 为抛物线的顶点. (1)求 A 、B 、C 的坐标;(2)点 M 为线段 AB 上一点(点 M 不与点 A 、B 重合),过点 M 作 x 轴的垂线,与直线 AC 交于点 E , 与抛物线交于点 P ,过点 P 作 PQ ∥ AB 交抛物线于点 Q ,过点 Q 作 QN ⊥x 轴于点 N .若点 P 在点 Q 左 边,当矩形 PQMN 的周长最大时,求△ AEM 的面积;(3)在(2)的条件下,当矩形 PMNQ 的周长最大时,连接 DQ .过抛物线上一点 F 作 y 轴的平行线, 与直线 AC 交于点 G (点 G 在点 F 的上方).若 FG=2 DQ ,求点 F 的坐标.26. 12 分) 2014•重庆)已知:如图①,在矩形 ABCD 中,AB=5,AD=F 是点 E 关于 AB 的对称点,连接 AF 、BF .,AE ⊥BD ,垂足是 E .点(1)求 AE 和 BE 的长;(2)若将△ ABF 沿着射线 BD 方向平移,设平移的距离为 m (平移距离指点 B 沿 BD 方向所经过的线 段长度).当点 F 分别平移到线段 AB 、AD 上时,直接写出相应的 m 的值. (3)如图②△,将 ABF 绕点 B 顺时针旋转一个角 α(0°<α<180°),记旋转中的△ ABF △为 A ′BF ′, 在旋转过程中,设 A ′F ′所在的直线与直线 AD 交于点 P ,与直线 BD 交于点 Q .是否存在这样的 P 、Q 两点,使△ DPQ 为等腰三角形?若存在,求出此时 DQ 的长;若不存在,请说明理由.A .17B .C .﹣17D .2014 年重庆市中考数学试卷( A 卷)参考答案与试题解析一、选择题(本大题共 12 小题,每小题 4 分共 48 分) 1.(4 分)(2014•重庆)实数﹣17 的相反数是( )﹣考点: 实数的性质.分析: 根据只有符号不同的两个数互为相反数,可得一个数的相反数.解答: 解:实数﹣17 的相反数是 17,故选:A .点评: 本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.2.(4 分)(2014•重庆)计算 2x 6÷x 4 的结果是( )A .x 2B .2x 2C .2x 4D .2x 10考点: 整式的除法.分析: 根据单项式除单项式的法则计算,再根据系数相等,相同字母的次数相同列式求解即可. 解答: 解:原式=2x 2,故选 B .点评: 本题考查了单项式除单项式,理解法则是关键.3.(4 分)(2014•重庆)在 中,a 的取值范围是( ) A .a ≥0 B .a ≤0 C .a >0D .a <0考点: 二次根式有意义的条件.分析: 根据二次根式的性质:被开方数大于等于 0,就可以求解. 解答: 解:a 的范围是:a ≥0.故选 A .点评: 本题考查的知识点为:二次根式的被开方数是非负数.4.(4 分)(2014•重庆)五边形的内角和是( )A .180°B .360°C .540°D .600°考点: 多边形内角与外角. 专题: 常规题型.分析: 直接利用多边形的内角和公式进行计算即可. 解答: 解:(5﹣2)•180°=540°.故选 C .点评: 本题主要考查了多边形的内角和定理,是基础题,熟记定理是解题的关键.( ( ( F (5. 4 分) 2014•重庆)2014 年 1 月 1 日零点,北京、上海、宁夏的气温分别是﹣4℃、5℃、6℃、﹣8℃, 当时这四个城市中,气温最低的是( ) A .北京 B .上海 C .重庆 D .宁夏考点: 有理数大小比较. 专题: 应用题.分析: 根据正数大于 0,0 大于负数,可得答案. 解答: 解:﹣8<﹣4<5<6,故选:D .点评: 本题考查了有理数比较大小,正数大于 0,0 大于负数是解题关键.6.(4 分)(2014•重庆)关于 x 的方程 =1 的解是()A .x=4B .x=3C .x=2D .x=1考点: 解分式方程. 专题: 计算题.分析: 分式方程去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解.解答: 解:去分母得:x ﹣1=2,解得:x=3,经检验 x=3 是分式方程的解. 故选 B点评: 此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.7.(4 分)(2014•重庆)2014 年 8 月 26 日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运 动员在为该运动会积极准备.在某天“110 米跨栏”训练中,每人各跑 5 次,据统计,他们的平均成绩都 是 13.2 秒,甲、乙、丙、丁的成绩的方差分别是 0.11、0.03、0.05、0.02.则当天这四位运动员“110 米 跨栏”的训练成绩最稳定的是( ) A .甲B .乙C .丙D .丁考点: 方差.分析: 根据方差越大,越不稳定去比较方差的大小即可确定稳定性的大小. 解答: 解:∵ 甲、乙、丙、丁的成绩的方差分别是 0.11、0.03、0.05、0.02,∴ 丁的方差最小, ∴ 丁运动员最稳定,故选 D .点评: 本题考查了方差的知识,方差越大,越不稳定.8. 4 分) 2014•重庆)如图,直线 AB ∥ CD ,直线 EF 分别交直线 AB 、CD 于点 E 、 ,过点 F 作 FG ⊥FE ,交直线 AB 于点 G ,若∠ 1=42°,则∠ 2 的大小是( )((A.56°B.48°C.46°D.40°考点:平行线的性质.分析:根据两直线平行,同位角相等可得∠3=∠1,再根据垂直的定义可得∠GFE=90°,然后根据平角等于180°列式计算即可得解.解答:解:∵AB∥CD,∴∠3=∠1=42°,∵FG⊥FE,∴∠GFE=90°,∴∠2=180°﹣90°﹣42°=48°.故选B.点评:本题考查了平行线的性质,垂直的定义,熟记性质并准确识图是解题的关键.9.4分)2014•重庆)如图,△ABC的顶点A、B、C均在⊙O上,若∠ABC+∠AOC=90°,则∠AOC 的大小是()A.30°B.45°C.60°D.70°考点:圆周角定理.专题:计算题.分析:解答:先根据圆周角定理得到∠ABC=∠AOC,由于∠ABC+∠AOC=90°,所以∠AOC+∠AOC=90°,然后解方程即可.解:∵∠ABC=∠AOC,而∠ABC+∠AOC=90°,∴∠AOC+∠AOC=90°,∴∠AOC=60°.点评:本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.(4分)(2014•重庆)2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()A.B.C.D.考点:函数的图象.分析:根据在电脑上打字录入这篇文稿,录入字数增加,因事暂停,字数不变,继续录入并加快了录入速度,字数增加,变化快,可得答案.解答:解:A.暂停后继续录入并加快了录入速度,字数增加,故A不符合题意;B.字数先增加再不变最后增加,故B不符合题意错误;C.开始字数增加的慢,暂停后再录入字数增加的快,故C符合题意;D.中间应有一段字数不变,不符合题意,故D错误;故选:C.点评:本题考查了函数图象,字数先增加再不变最后增加的快是解题关键.11.(4分)(2014•重庆)如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为()A.20B.27C.35D.40考点:规律型:图形的变化类.分析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+n=,进一步求得第(6)个图形中面积为1的正方形的个数即可.解答:解:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n个图形中面积为1的正方形有2+3+4+…+(n+1)=个,则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.点评:此题考查图形的变化规律,找出图形与数字之间的运算规律,利用规律解决问题.12.(4分)(2014•重庆)如图,反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,直线AB与x轴交于点C△,则AOC的面积为()A.8B.10C.12D.24考点:反比例函数系数k的几何意义.分析:根据已知点横坐标得出其纵坐标,进而求出直线AB的解析式,求出直线AB与x轴横坐标交点,即可得出△AOC的面积.解答:解:∵反比例函数y=﹣在第二象限的图象上有两点A、B,它们的横坐标分别为﹣1,﹣3,∴x=﹣1,y=6;x=﹣3,y=2,∴A(﹣1,6),B(﹣3,2),设直线AB的解析式为:y=kx+b,则,解得:,解得:y=2x+8,∴y=0时,x=﹣4,∴CO=4,∴△AOC的面积为:×6×4=12.故选:C.点评:此题主要考查了反比例函数系数k的几何意义以及待定系数法求一次函数解析式,得出直线AB 的解析式是解题关键.二、填空题(本大题共6小题,每小题4分,共24分)13.(4分)(2014•重庆)方程组的解是.考点:解二元一次方程组.专题:计算题.分析:方程组利用代入消元法求出解即可.解答:解:,将①代入②得:y=2,则方程组的解为,故答案为:.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.14.(4分)(2014•重庆)据有关部分统计,截止到2014年5月1日,重庆市私家小轿车达到563000辆,将563000这个数用科学记数法表示为 5.63×105.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将563000用科学记数法表示为:5.63×105.故答案为:5.63×105.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.(4分)(2014•重庆)如图,菱形ABCD中,∠A=60°,BD=7,则菱形ABCD的周长为28.考点:菱形的性质.分析:根据菱形的性质可得:AB=AD,然后根据∠A=60°,可得三角形ABD为等边三角形,继而可得出边长以及周长.解答:解:∵四边形ABCD为菱形,∴AB=AD,∵∠A=60°,∴△ABD为等边三角形,∵BD=7,∴AB=BD=7,∴菱形ABCD的周长=4×7=28.故答案为:28.点评:本题考查了菱形的性质,解答本题的关键是掌握菱形的四条边都相等的性质,比较简单.16.(4分)(2014•重庆)如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,则图中阴影部分的面积为4﹣.(结果保留π)考点: 切线的性质;含 30 度角的直角三角形;扇形面积的计算. 专题: 计算题.分析: 连接 OC ,由 AB 为圆的切线,得到 OC 垂直于 AB ,再由 OA=OB ,利用三线合一得到 C 为 AB中点,且 OC 为角平分线,在直角三角形 AOC 中,利用 30 度所对的直角边等于斜边的一半求 出 OC 的长,利用勾股定理求出 AC 的长,进而确定出 AB 的长,求出∠ AOB 度数,阴影部分 面积=三角形 AOB 面积﹣扇形面积,求出即可.解答: 解:连接 OC ,∵ AB 与圆 O 相切, ∴ OC ⊥AB , ∵ OA=OB ,∴ ∠ AOC=∠ BOC ,∠ A=∠ B=30°,在 △Rt AOC 中,∠ A=30°,OA=4, ∴ OC= OA=2,∠ AOC=60°, ∴ ∠ AOB=120°,AC=则 S 阴影△=SAOB ﹣S 扇形= ×4×2﹣=2 ,即AB=2AC=4=4 ﹣,.故答案为:4﹣ .点评: 此题考查了切线的性质,含 30 度直角三角形的性质,以及扇形面积计算,熟练掌握切线的性质是解本题的关键.17.(4 分)(2014•重庆)从﹣1,1,2 这三个数字中,随机抽取一个数,记为 a ,那么,使关于 x 的一次函数 y=2x+a 的图象与 x 轴、y 轴围成的三角形的面积为 ,且使关于 x 的不等式组有解的概率为.考点: 概率公式;解一元一次不等式组;一次函数图象上点的坐标特征.分析: 将﹣1,1,2 分别代入 y=2x+a ,求出与 x 轴、y 轴围成的三角形的面积,将﹣1,1,2 分别代入,求出解集,有解者即为所求.解答:解:当 a=﹣1 时,y=2x+a 可化为 y=2x ﹣1,与 x 轴交点为( ,0),与 y 轴交点为(0,﹣1),三角形面积为 × ×1= ;当 a=1 时,y=2x+a 可化为 y=2x+1,与 x 轴交点为(﹣ ,0),与 y 轴交点为(0,1),三角形的面积为××1=;当a=2时,y=2x+2可化为y=2x+2,与x轴交点为(﹣1,0),与y轴交点为(0,2),三角形的面积为×2×1=1(舍去);当a=﹣1时,不等式组可化为,不等式组的解集为,无解;当a=1时,不等式组可化为,解得,解集为,解得x=﹣1.使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形的面积为,且使关于x的不等式组有解的概率为P=.故答案为.点评:本题考查了概率公式、解一元一次不等式、一次函数与坐标轴的交点,有一定的综合性.18.(4分)(2014•重庆)如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,过点C作CF⊥BE,垂足为F,连接OF,则OF的长为.考点:全等三角形的判定与性质;等腰直角三角形;正方形的性质.分析:在BE上截取BG=CF,连接OG,证明△OBG≌△OCF,则OG=OF,∠BOG=∠COF,得出等腰直角三角形GOF,在△RT BCE中,根据射影定理求得GF的长,即可求得OF的长.解答:解:如图,在BE上截取BG=CF,连接OG,∵△RT BCE中,CF⊥BE,∴∠EBC=∠ECF,∵∠OBC=∠OCD=45°,∴∠OBG=∠OCF,在OBG△与OCF中△∴△OBG≌△OCF(SAS)∴OG=OF,∠BOG=∠COF,∴OG⊥OF,在△RT BCE中,BC=DC=6,DE=2EC,∴EC=2,∴BE=∵BC2=BF•BE,==2,则62=BF∴EF=BE﹣BF=∵CF2=BF•EF,∴CF=,,解得:BF=,,∴GF=BF﹣BG=BF﹣CF=在等腰直角△OGF中OF2=GF2,∴OF=.,点评:本题考查了全等三角形的判定和性质,直角三角形的判定以及射影定理、勾股定理的应用.三、解答题(本大题共2小题,每小题7分,共14分)19.(7分)(2014•重庆)计算:+(﹣3)2﹣20140×|﹣4|+.考点:实数的运算;零指数幂;负整数指数幂.分析:分别根据0指数幂及负整数指数幂的计算法则、数的乘方法则及绝对值的性质计算出各数,再根据实数混合运算的法则进行计算即可.解答:解:原式=2+9﹣1×4+6=11﹣4+6=13.点评:本题考查的是实数的运算,熟知0指数幂及负整数指数幂的计算法则、数的乘方法则及绝对值的性质是解答此题的关键.20.(7分)(2014•重庆)如图,△ABC中,AD⊥BC,垂足是D,若BC=14,AD=12,tan∠BAD=,求sinC的值.考点:解直角三角形.分析:根据tan∠BAD=,求得BD的长,在直角△ACD中由勾股定理得AC,然后利用正弦的定义求解.解答:=,解:∵在直角△ABD中,tan∠BAD=∴BD=AD•tan∠BAD=12×=9,∴CD=BC﹣BD=14﹣9=5,==13,∴AC=∴sinC==.点评:本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系.四、解答题(本大题共4小题,每小题10分,共40分)21.(10分)(2014•重庆)先化简,再求值:÷(﹣)+,其中x的值为方程2x=5x ﹣1的解.考点:分式的化简求值;解一元一次方程.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后两项通分并利用同分母分式的加法法则计算得到最简结果,求出方程的解得到x的值,代入计算即可求出值.解答:解:原式=÷+=•+=+=,解方程2x=5x﹣1,得:x=,当x=时,原式=﹣.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.(10分)(2014•重庆)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有16家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.考点:折线统计图;扇形统计图;列表法与树状图法.分析:(1)根据3月份有4家,占25%,可求出某镇今年1﹣5月新注册小型企业一共有的家数,再求出1月份的家数,进而将折线统计图补充完整;(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业,根据题意画出树状图,然后由树状图求得所有等可能的结果与甲、乙2家企业恰好被抽到的情况,再利用概率公式求解即可求得答案.解答:解:(1)根据统计图可知,3月份有4家,占25%,所以某镇今年1﹣5月新注册小型企业一共有:4÷25%=16(家),1月份有:16﹣2﹣4﹣3﹣2=5(家).折线统计图补充如下:(2)设该镇今年3月新注册的小型企业为甲、乙、丙、丁,其中甲、乙为餐饮企业.画树状图得:( (∵ 共有 12 种等可能的结果,甲、乙 2 家企业恰好被抽到的有 2 种,∴ 所抽取的 2 家企业恰好都是餐饮企业的概率为:= .点评: 本题考查了折线统计图、扇形统计图和列表法与树状图法,解决本题的关键是从两种统计图中整理出解题的有关信息,在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形 圆心角的度数与 360°的比.用到的知识点为:概率=所求情况数与总情况数之比.23.(10 分)(2014•重庆)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建 立一个书刊阅览室.经预算,一共需要筹资30000 元,其中一部分用于购买书桌、书架等设施,另一部 分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的 3 倍,问最多用多少资金购买 书桌、书架等设施?(2)经初步统计,有 200 户居民自愿参与集资,那么平均每户需集资 150 元.镇政府了解情况后,赠 送了一批阅览室设施和书籍,这样,只需参与户共集资 20000 元.经筹委会进一步宣传,自愿参与的户数在 200 户的基础上增加了 a%(其中 a >0).则每户平均集资的资金在 150 元的基础上减少了a%,求 a 的值.考点: 一元二次方程的应用;一元一次不等式的应用.分析: (1)设用于购买书桌、书架等设施的为x 元,则购买书籍的有(30000﹣x )元,利用“购买书刊的资金不少于购买书桌、书架等设施资金的 3 倍”,列出不等式求解即可; (2)根据“自愿参与的户数在 200 户的基础上增加了 a%(其中 a >0).则每户平均集资的资金在 150 元的基础上减少了a%,且总集资额为 20000 元”列出方程求解即可.解答: 解:(1)设用于购买书桌、书架等设施的为 x 元,则购买书籍的有(30000﹣x )元, 根据题意得:30000﹣x ≥3x , 解得:x ≤7500.答:最多用 7500 元购买书桌、书架等设施;(2)根据题意得:200(1+a%)×150(1﹣a%)=20000整理得:a 2+10a ﹣3000=0, 解得:a=50 或 a=﹣60(舍去), 所以 a 的值是 50.点评: 本题考查了一元二次方程的应用及一元一次不等式的应用,解题的关键是从题目中整理出等量关系和不等关系,难度不大.24. 10 分) 2014•重庆)如图,△ ABC 中,∠ BAC=90°,AB=AC ,AD ⊥BC ,垂足是 D ,AE 平分∠ BAD , 交 BC 于点 E △.在 ABC 外有一点 F ,使 FA ⊥AE ,FC ⊥BC . (1)求证:BE=CF ;(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.求证:①ME⊥BC;②DE=DN.考点:全等三角形的判定与性质;角平分线的性质;等腰直角三角形.专题:证明题;几何综合题.分析:(1)根据等腰直角三角形的性质求出∠B=∠ACB=45°,再求出∠ACF=45°,从而得到∠B=∠ACF,根据同角的余角相等求出∠BAE=∠CAF,然后利用“角边角”△证明ABE△和ACF 全等,根据全等三角形对应边相等证明即可;(2)①过点E作EH⊥AB于H,求出△BEH是等腰直角三角形,然后求出HE=BH,再根据角平分线上的点到角的两边距离相等可得DE=HE,然后求出HE=HM,从而得到△HEM是等腰直角三角形,再根据等腰直角三角形的性质求解即可;②求出∠CAE=∠CEA=67.5°,根据等角对等边可得AC=CE,再利用“HL”证明△Rt ACM和△Rt ECM全等,根据全等三角形对应角相等可得∠ACM=∠ECM=22.5°,从而求出∠DAE=∠ECM,根据等腰直角三角形的性质可得AD=CD,再利用“角边角”△证明ADE和△CDN全等,根据全等三角形对应边相等证明即可.解答:证明:(1)∵∠BAC=90°,AB=AC,∴∠B=∠ACB=45°,∵FC⊥BC,∴∠BCF=90°,∴∠ACF=90°﹣45°=45°,∴∠B=∠ACF,∵∠BAC=90°,FA⊥AE,∴∠BAE+∠CAE=90°,∠CAF+∠CAE=90°,∴∠BAE=∠CAF,在ABE和△ACF中,△,∴△ABE≌△ACF(ASA),∴BE=CF;(2)①如图,过点E作EH⊥AB于H△,则BEH是等腰直角三角形,∴HE=BH,∠BEH=45°,∵AE平分∠BAD,AD⊥BC,∴DE=HE,∴DE=BH=HE,∵BM=2DE,∴HE=HM,∴△HEM是等腰直角三角形,∴∠MEH=45°,∴∠BEM=45°+45°=90°,∴ME⊥BC;②由题意得,∠CAE=45°+×45°=67.5°,∴∠CEA=180°﹣45°﹣67.5°=67.5°,∴∠CAE=∠CEA=67.5°,∴AC=CE,在△Rt ACM和△Rt ECM中,,∴△Rt ACM≌△Rt ECM(HL),∴∠ACM=∠ECM=×45°=22.5°,又∵∠DAE=×45°=22.5°,∴∠DAE=∠ECM,∵∠BAC=90°,AB=AC,AD⊥BC,∴AD=CD=BC,在ADE△和CDN中,△,∴△ADE≌△CDN(ASA),∴DE=DN.点评:本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线上的点到角的两边距离相等的性质,熟记性质并作辅助线构造出等腰直角三角形和全等三角形是解题的关键,难点在于最后一问根据角的度数得到相等的角.五、解答题(本大题共2个小题,每小题12分,共24分)25.(12分)(2014•重庆)如图,抛物线y=﹣x2﹣2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PQMN的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.考点:二次函数综合题.分析:(1)通过解析式即可得出C点坐标,令y=0,解方程得出方程的解,即可求得A、B的坐标.(2)设M点横坐标为m,则PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,矩形PMNQ的周长d=﹣m2﹣m+10,将﹣m2﹣m+10配方,根据二次函数的性质,即可得出m的值,然后求得直线AC的解析式,把x=m代入可以求得三角形的边长,从而求得三角形的面积.(3)设F(n,﹣n2﹣2n+3),根据已知若FG=2DQ,即可求得.解答:解:(1)由抛物线y=﹣x2﹣2x+3可知,C(0,3),令y=0,则0=﹣x2﹣2x+3,解得x=﹣3或x=1,∴A(﹣3,0),B(1,0).(2)由抛物线y=﹣x2﹣2x+3可知,对称轴为x=﹣1,设M点的横坐标为m,则PM=﹣m2﹣2m+3,MN=(﹣m﹣1)×2=﹣2m﹣2,∴矩形PMNQ的周长=2(PM+MN)=(﹣m2﹣2m+3﹣2m﹣2)×2=﹣2m2﹣8m+2=﹣2(m+2)2+10,∴当m=﹣2时矩形的周长最大.∵A(﹣3,0),C(0,3),设直线AC解析式为;y=kx+b,解得k=1,b=3,∴解析式y=x+3,当x=﹣2时,则E(﹣2,1),∴EM=1,AM=1,∴S=•AM•EM=.(3)∵M点的横坐标为﹣2,抛物线的对称轴为x=﹣1,∴N应与原点重合,Q点与C点重合,∴DQ=DC,把x=﹣1代入y=﹣x2﹣2x+3,解得y=4,∴D(﹣1,4)∴DQ=DC=,∵FC=2DQ,∴FG=4,设F(n,﹣n2﹣2n+3),则G(n,n+3),∴|﹣n2﹣2n+3|﹣|n+3|=4,即n2+2n﹣3+n+3=4,解得:n=﹣4或n=1,∴F(﹣4,﹣5)或(1,0).点评:本题考查了二次函数与坐标轴的交点的求法,矩形的性质,一元二次方程的解法,二次函数最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.。
中考数学圆经典必考题型中考试题(附答案)解答题1.(已知:如图,△ ABC 内接于O O 过点B 作的切线,交 CA 的延长线于点 E / EB & 2① 求证:AB= AC1AB ② 若tan / ABE=丄,(i )求 的值;(ii )求当 AC= 2时,AE 的长. 2BC=4cm 求O o 的半径.2.如图,PA 为O O 的切线, A 为切点,O 0的割线PBC 过点0与O O 分别交于B 、C, PA= 8cm PB3.已知:如图,BC 是O 0的直径,AC 切O 0于点C AB 交O 0于点D,若AD : DB= 2 : 3, AC= 10,求 sin B 的值.4.如图,PC 为O 0的切线,C 为切点,PAB 是过0的割线,1若tan B= _ , PC= 10cm 求三角形BCD的面积.25•如图,在两个半圆中,大圆的弦MNW小圆相切,D为切点,且MN AB MN a, ON CD分别为两圆的半径,求阴影部分的面积.6.已知,如图,以△ ABC的边AB作直径的O O分别并AC BC于点D E,弦FG// AB S A CDE S△ ABC= 1 : 4, DE= 5cm FG= 8cm,求梯形AFG啲面积.7.如图所示:PA为O O的切线,A为切点,PBC是过点O的割线,PA= 10, PB= 5,求:(1)O O的面积(注:用含n的式子表示);(2)cos / BAP的值.参考答案1.( 1)v BE 切O O 于点 B ,「. / ABE=Z C./ EBC= 2/ C,即 / ABH / ABC= 2/C,/ C +Z ABO 2 / C,/ ABC=Z C, ••• AB= AC.(2)①连结AO 交BC 于点F ,AB- AC, AOL BC 且 BF = FC.AF 在 Rt A ABF 中, =tan / ABF BF1 又 tan / ABF= tan C = tan / ABE=2 AF = 1 BF.AB AB .5BC 2BF4 ②在△ EBA M^ ECB 中 ,^EA 2- EA- (EA^ AC ),又 EA M 0 , 5 11EA= AC EA= — x 2 = 10 .5 11 11 22 •设O 的半径为r ,由切割线定理,得 PA = PB- PCAC 切O O 于点C,线段ADB 为O O 的割线,2AC = AD- ABAB= AM DB= 2k + 3k = 5k ,2 210 = 2k X 5k,••• k = 10,AB= AF 2 * * * BF 2BF 2 AF = 1BF 2/ E =Z E , / EBA=Z ECB△ EBA^A ECBEAEBBE 2 AB BC ,解之,得 EA ECk> 0,「. k= 10 .AB= 5k= 10 .AC切O O于C, BC为O O的直径,ACL BC在Rt A ACB中, sin B=虫10 10 .AB 5 屁5CD L AB于点D,/ADC=Z BD= 90°,/ 2= 90°—/ BAC=Z B.1tan B=2tan / 2=—.2AD CD 1 ACCD DB 2 CB .设AD= x (x > 0), CD= 2x, DB= 4x, AB= 5x .•/ PC切O O于点C,点B在O O上,• / 1 = / B./ P=/ P,「. △ PAC^ PCBPA AC 1PC CB 2 .PC= 10,「. PA= 5,PC 切O O 于点C, PAB 是O 0的割线,2PC = PA- PB210 = 5 (5 + 5 x ).解得 x = 3.AD= 3, CD= 6, DB= 12.1 1S ^BCD = CD" DB= — x 6X 12 = 36.2 22即三角形BCD 的面积36cm .PA= 10,二 PB= 20.2由切割线定理,得 PC = PA- PBA 內 DB= x + 4x = 15,解得 x = 3,CD= 2x = 6, DB= 4x = 12.S A BCD = ^CD- DB= 1 x 6X 12= 36.2 22即三角形BCD 的面积36cm .5.解:如图取 MN 的中点E 连结OE解法二:同解法一,由△ PAC^A PCB 得 PA PC AC CBPB 101220 AB= PB- PA= 15,2 2 2 a在 Rt A NOE 中 NO- OE = EN =2 6.解:T / CDE=/ CBA / DCE=/ BCA /• △ CDE^A ABC2S CDEDE S ABC AB DE = S CDE =任=1AB S ABC ' 42 ' 51 即 ,解得 AB= 10 (cm ,AB 2作OML FG 垂足为M11 则 FM= ^FG=丄^ 8= 4 (cm),22连结OF 11 OA= AB= — x 10= 5 (cm ).2 2OF= OA= 5 (cm ).在Rt A OMF 中由勾股定理,得 OM = . OF 2 FM 2 = -52 42 = 3 (cm ).A B FG10 Q 2 ••• 梯形 AFG 啲面积= -------------- • OM= -------- x 3 = 27 (cm ).2 27. 2 1 a n2 n ・ — =—a 2 2 8 2 2 1n( NO — OE ) 2 (平方单位). (2) CBAP AC PA △ ACP^A BAP —— P P AB PBAC 2AB 1S阴影 ⑴PA 是。
重庆市 2007 年初中毕业生学业暨高中招生考试【机密】2007 数学试卷年6月15 日前(全卷共四个大题,满分150 分,考试时间120 分钟)注意:凡同一题号下注有“课改实验区考生做” 的题目供课改实验区考生做,注有“非课改实验区考生做”的题目供非课改实验区考生做,没有注明的题目供所有考生做。
一、选择题:(本大题共 10 个小题,每题 4 分,共 40 分)每题只有一个答案是正确的,请将正确答案的代号填入题后的括号内。
1. 2 的相反数是()(A)- 2 ( B)2 (C)1( D) 1 2 22.计算6m3 ( 3m2 ) 的结果是()(A)3m (B)2m (C)2m ( D)3m3.重庆直辖十年以来,全市投入环保资本约3730000 万元,那么3730000 万元用科学记数法表示为()(A)×105万元(B)×10 6万元( C)×10 7万元( D)373×10 4万元4.在以下各电视台的台标图案中,是轴对称图形的是()( A)( B)( C)( D)5.(课改实验区考生做)将以下图的Rt △ ABC绕直角边 AC 旋转一周,所得几何体的主视图是()2 22 x2(非课改实验区考生做)用换元法解方程 x x 1 ,若设 y ,则原x x x 方程可化为()( A)y2 y 1 0 ( B)y2 y 1 0( C)y2 y 1 0 ( D)y2 y 1 06.已知⊙ O 的半径r为 3cm,⊙O 的半径 R为 4cm,两圆的圆心距OO 为 1cm,则这两圆的1 2 1 2地点关系是()(A )订交( B )内含 ( C )内切( D )外切7.分式方程1 1)的解为(2x 3(A ) x 2( B ) x 1( C ) x1( D ) x 28.已知一个等腰三角形两内角的度数之比为1∶4,则这个等腰三角形顶角的度数为()(A ) 200( B ) 1200( C ) 200或 1200( D )3609.甲、乙两名学生进行射击练习,两人在相同条件下各射靶5 次,射击成绩统计以下:命中环数(单位:环) 7 8 9 10 甲命中相应环数的次数 2 2 0 1 乙命中相应环数的次数 131 0从射击成绩的均匀数评论甲、乙两人的射击水平,则()(A )甲比乙高( B )甲、乙相同( C )乙比甲高 ( D )不可以确立10.如图,在矩形 ABCD 中, AB =3, BC = 4,点 P 在 BC 边上运动,连结 DP ,过点 A 作 AE ⊥DP ,垂足为 E ,设 DP = x , AE= y ,则能反应 y 与 x 之间函数关系的大概图象是()( A )(B ) ( C )( D )二、填空题: (本大题 10 个小题,每题 3 分,共 30分)请将答案直接填写在题后的横线上。
第 1 页 共 4 页 2005年中考试题精选之圆1.(2005重庆)30.如图,AB 是△ABC 的外接圆⊙O 的直径,D 是⊙O 上的一点,DE ⊥AB 于点E ,且DE 的延长线分别交AC 、⊙O 、BC 的延长线于F 、M 、G 。
(1)求证:AE ·BE =EF ·EG ;(2)连结BD ,若BD ⊥BC ,且EF =MF =2,求AE 和MG 的长。
3. (05,深圳)如下图左,AB 是⊙O 的直径,点E 是半圆上一动点(点E 与点A 、B 都不重合),点C 是BE 延长线上的一点,且CD ⊥AB ,垂足为D ,CD 与AE 交于点H ,点H 与点A 不重合。
(1)(5分)求证:△AHD ∽△CBD(2)(4分)连HB ,若CD=AB=2,求HD+HO 的值。
4.(05,日照)如上图右,⊙O 1和⊙O 2内切于点P ,且⊙O 1过点O 2,PB 是⊙O 2的直径,A 为⊙O 2上的点,连结AB ,过O 1作O 1C ⊥BA 于C ,连结CO 2.已知P A =34,PB =4. (1)求证:BA 是⊙O 1的切线;(2)求∠BCO 2的正切值.5.(05.威海)25.已知:如图1,在⊙O 中,弦AB =2,CD =1,AD ⊥BD .直线AD ,BC 相交于点E .(1)求∠E 的度数;(2)如果点C ,D 在⊙O 上运动,且保持弦CD 的长度不变,那么,直线AD ,BC 相交所成锐角的大小是否改变? 试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全). ① 如图2,弦AB 与弦CD 交于点F ;第30题图 O M G F E D C B A 图 6 A B C D E O 第25题图1 B C DA O FA O DB H E C第 2 页 共 4 页② 如图3,弦AB 与弦CD 不相交;③ 如图4,点B 与点C 重合.6. (05,连云港)26.如图,ABC ∆是等边三角形,⊙O 过点B ,C ,且与CA BA ,的延长线分别交于点D ,E .弦DF ∥AC ,EF 的延长线交BC 的延长线于点G .(1)求证:BEF ∆是等边三角形;(2)若4=BA ,2=CG ,求BF 的长.7.(05,武汉)如图,已知:⊙、⊙外切于点P ,A 是⊙上一点,直线AC 切⊙于点C交⊙于点B ,直线AP 交⊙于点D 。
2014年重庆中考数学试题b及答案一、选择题(本题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一项是正确的。
)1. 下列哪个数是实数?A. $\sqrt{-1}$B. $\pi$C. $i$D. $\frac{1}{0}$答案:B2. 如果一个多边形的内角和是1080°,那么这个多边形有多少条边?A. 6B. 7C. 8D. 9答案:C3. 以下哪个函数是二次函数?A. $y = x^2 + 2x + 1$B. $y = 2x + 3$C. $y = x^3 - 4x$D. $y = \frac{1}{x}$答案:A4. 以下哪个方程的解是x=2?A. $x^2 - 4x + 4 = 0$B. $x^2 - 3x + 2 = 0$C. $x^2 - 5x + 6 = 0$D. $x^2 - 6x + 9 = 0$答案:A5. 已知一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 7C. 9D. 12答案:A6. 以下哪个图形是轴对称图形?A. 平行四边形B. 等腰梯形C. 不规则多边形D. 任意三角形答案:B7. 以下哪个不等式组有解?A. $\begin{cases} x > 1 \\ x < 1 \end{cases}$B. $\begin{cases} x > 2 \\ x < 3 \end{cases}$C. $\begin{cases} x < 2 \\ x > 3 \end{cases}$D. $\begin{cases} x > 0 \\ x < 0 \end{cases}$答案:B8. 以下哪个统计量是描述数据集中趋势的?A. 方差B. 众数C. 中位数D. 极差答案:B9. 以下哪个图形是中心对称图形?A. 等边三角形B. 等腰梯形C. 圆D. 线段答案:C10. 如果一个数的平方根是2,那么这个数是多少?A. 4B. -4C. 2D. -2答案:A二、填空题(本题共5小题,每小题4分,共20分。
2014年重庆市初中毕业暨高中招生考试数学试题(含答案全解全析)参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标为--,对称轴为x=-.第Ⅰ卷(选择题,共48分)一、选择题(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的.1.实数-17的相反数是( )A.17B.C.-17D.-2.计算2x6÷x4的结果是( )A.x2B.2x2C.2x4D.2x103.在中,a的取值范围是( )A.a≥0B.a≤0C.a>0D.a<04.五边形的内角和是( )A. 80°B.360°C.5 0°D.600°5.2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是-℃、5 ℃、6 ℃、-8 ℃ 当时这四个城市中,气温最低的是( )A.北京B.上海C.重庆D.宁夏=1的解是( )6.关于x的方程-A.x=4B.x=3C.x=2D.x=17.2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“ 0米跨栏”训练中,每人各跑5次,据统计,他们的平均成绩都是13.2秒,甲、乙、丙、丁的成绩的方差分别是0.11、0.03、0.05、0.02.则当天这四位运动员“ 0米跨栏”的训练成绩最稳定的是( )A.甲B.乙C.丙D.丁8.如图,直线AB∥CD 直线EF分别交直线AB、CD于点E、F,过点F作FG⊥FE 交直线AB 于点G.若∠ = ° 则∠ 的大小是( )A.56°B. 8°C. 6°D. 0°9.如图 △ABC的顶点A、B、C均在☉O上,若∠ABC+∠AOC=90° 则∠AOC的大小是( )A.30°B. 5°C.60°D. 0°10.2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是( )11.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个 … 按此规律,则第(6)个图形中面积为1的正方形的个数为( )A.20B.27C.35D.4012.如图,反比例函数y=-6在第二象限的图象上有两点A、B,它们的横坐标分别为-1、-3,直线AB与x轴交于点C,则△AOC的面积为( )A.8B.10C.12D.24第Ⅱ卷(非选择题,共102分)二、填空题(本大题共6个小题,每小题4分,共24分)的解是.13.方程组 3514.据有关部门统计,截止到2014年5月1日,重庆市私家小轿车已达到563 000辆,将563 000这个数用科学记数法表示为.15.如图,菱形ABCD中 ∠A=60° BD= 则菱形ABCD的周长为.16.如图 △OAB中 OA=OB= ∠A=30° AB与☉O相切于点C,则图中阴影部分的面积为.(结果保留π)17.从-1,1,2这三个数字中,随机抽取一个数,记为a.那么,使关于x的一次函数y=2x+a 的图象与x轴、y轴围成的三角形面积为,且使关于x的不等式组有解的概率-为.18.如图,正方形ABCD的边长为6,点O是对角线AC、BD的交点,点E在CD上,且DE=2CE,连结BE.过点C作CF⊥BE 垂足是F,连结OF,则OF的长为.三、解答题(本大题共2个小题,每小题7分,共14分)解答时每小题都必须写出必要的演算过程或推理步骤.19.计算:+(-3)2-2 0140×|-4|+6-.20.如图 △ABC中 AD⊥BC 垂足是D,若BC= AD= tan∠BAD=3,求sin C的值.四、解答题(本大题共4个小题,每小题10分,共40分)解答时每小题都必须写出必要的演算过程或推理步骤.21.先化简,再求值:÷-x --+,其中x的值为方程2x=5x-1的解.22.为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇今年1~5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)该镇今年1~5月新注册小型企业一共有家,请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23.为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20 000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a%(其中a>0),则每户平均集资的资金在150 a%,求a的值.元的基础上减少了 0924.如图 △ABC中 ∠BAC=90° AB=AC AD⊥BC 垂足是D,AE平分∠BAD 交BC于点E.在△ABC外有一点F,使FA⊥AE FC⊥BC.(1)求证:BE=CF;(2)在AB上取一点M,使BM=2DE,连结MC,交AD于点N,连结ME.求证:①ME⊥BC;②DE=DN.五、解答题(本大题共2个小题,每小题12分,共24分)解答时每小题都必须写出必要的演算过程或推理步骤.25.如图,抛物线y=-x2-2x+3的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求点A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N,若点P 在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连结DQ,过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.26.已知:如图① 在矩形ABCD中,AB=5,AD= 0AE⊥BD 垂足是E.点F是点E关于AB的对称3点,连结AF、BF.(1)求AE和BE的长;(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度),当点F分别平移到线段AB、AD上时,直接写出相应的m的值;(3)如图② 将△ABF绕点B顺时针旋转一个角α(0°<α< 80°) 记旋转中的△ABF为△A'BF' 在旋转过程中,设A'F'所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.答案全解全析:一、选择题1.A 根据相反数的定义知,-17的相反数为-(-17)=17.故选A.2.B 2x6÷x4=2x2,故选B.3.A 二次根式的被开方数为非负数,即a≥0 故选A.4.C 五边形的内角和为(5- )× 80°=5 0° 故选C.5.D 根据正数都大于0,负数都小于0,正数大于一切负数,两个负数绝对值大的反而小得-8<- <5<6 ∴气温最低的是宁夏,故选D.6.B 去分母,得x-1=2,解得x=3.经检验,x=3是原分式方程的根,故选B.7.D 方差是描述一组数据波动大小的量,方差越大,数据的波动就越大,甲、乙、丙、丁的成绩的方差最小的是丁,则当天这四位运动员“ 0米跨栏”的训练成绩最稳定的是丁.故选D.8.B ∵AB∥CD ∠ = ° ∴∠EFD= °.∵FG⊥EF ∴∠EFG=90° 则∠ = 80°-∠EFD-∠EFG= 8° ∴选B.9.C 根据圆周角定理知 ∠ABC=∠AOC ∵∠ABC+∠AOC=90° ∴∠AOC=60°.故选C.10.C 接到通知后,小华立即在电脑上打字录入这篇文稿,所以函数图象平缓上升;录入一段时间后因事暂停,录入字数不变;过了一会儿,小华继续录入并加快了录入速度,函数图象上升,且比开始时上升得快.综合这些信息可知答案为C.11.B 第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个 … 按此规律,第n个图形中面积为1的正方形有 +3+ +…+(n+ )=(3)个,则第(6)个图形中面积为1的正方形的个数为6(63)=27.故选B.评析本题考查了图形的变化规律.探索规律的问题是近几年数学中考的一个“热门”题型.解决这类问题的基本思路是通过观察、分析若干特殊情形,归纳总结出一般性结论,然后验证结论的正确性.12.C 由题意知A(-1,6),B(-3,2),设直线AB的解析式为y=kx+b(k≠0)则- 6-3解得8∴y= x+8 当y=0时,x=-4,即CO=4,∴△AOC的面积为×6× = .故选C.二、填空题13.答案3解析把x=3代入x+y=5得y=2,所以方程组35的解是3.14.答案 5.63× 05解析563 000是一个6位整数,所以563 000用科学记数法可表示为5.63× 05.评析科学记数法是将一个数写成a× 0n的形式,其中 ≤|a|< 0 n为整数.15.答案28解析∵菱形ABCD中 ∠A=60° ∴△ABD为等边三角形.∵BD= ∴AB= 则菱形ABCD的周长为 × = 8.16.答案43-3π解析设OA,OB分别与☉O交于D,E两点 ∵AB与☉O相切于点C ∴OC⊥AB.∵OA=OB= ∠A=30° ∴∠B=∠A=30° OC= .∴∠AOB= 0° AB= 3.则题图中阴影部分的面积=S△AOB-S扇形ODE=× 3× - 0π360=43-3π.17.答案3解析一次函数y=2x+a的图象与x轴、y轴的交点坐标分别为- 0、(0,a).一次函数的图象与x轴、y轴围成的三角形的面积为,即a2=,解得a=± .使关于x的不等式组-有解的a值为1.所以所求概率为3.18.答案655解析如图,在BE上截取BG=CF,连结OG,∵CF⊥BE ∴∠EBC+∠BCF=90°.又∵∠ECF+∠BCF=90°∴∠EBC=∠ECF∵∠OBC=∠OCD= 5° ∴∠OBG=∠OCF.在△OBG与△OCF中,∠∠∴△OBG≌△OCF(SAS)∴OG=OF ∠BOG=∠COF ∴OG⊥OF.∵BC=DC=6 DE= EC ∴EC=∴BE=C=6=2∵BC2=BF BE∴62=BF 0,解得BF=9 05,∴EF=BE-BF= 05,∵CF2=BF EF∴CF=3 05,∴GF=BF-BG=BF-CF=6 05.在等腰直角△OGF 中,OF 2=GF 2, ∴OF=6 55. 三、解答题19.解析 原式=2+9- × +6(5分) =13.(7分)20.解析 ∵AD⊥BC ∴tan∠BAD=,(1分)∵tan∠BAD=3,AD=12, ∴3=,(2分)∴BD=9.(3分)∴CD=BC -BD=14-9=5,(4分)∴在Rt△ADC 中,AC= C = 5 =13,(6分) ∴sin C= =3.(7分)四、解答题21.解析 原式=÷( - )- - +(1分)=÷- x( - )+(2分)= ( - )( - ) +(4分)= - +(6分)=( )( - )+- ( )( - )=-.(7分)解方程2x=5x-1得x=3,(9分) 当x= 3时,原式=33- =-3.(10分)22.解析 (1)16.(2分)补图如下:今年1~5月各月新注册小型企业数量折线统计图(5分)(2)用A 1,A 2表示餐饮企业,B 1,B 2表示非餐饮企业,画树状图如下:(8分)(8分) 由树状图或列表可知,共有12种等可能情况,其中所抽取的企业恰好都是餐饮企业的有2种..(10分)所以,所抽取的企业恰好都是餐饮企业的概率为P==623.解析(1)设用于购买书桌、书架等设施的资金为x元,由题意,得30 000-x≥3x (3分)解得 x≤ 500.答:最多花7 500元资金购买书桌、书架等设施.(5分)a%=20 000.(8分)(2)由题意,得 00( +a%) 50- 09x=2,整理得,10x2+x-3=0,设x=a%,则3(1+x)- 09解得x1=-0.6(舍),x2=0.5,(9分)∴a%=0.5 ∴a=50.( 0分)24.证明如图.( )∵∠BAC=90° AF⊥AE∴∠ +∠EAC=90° ∠ +∠EAC=90°∴∠ =∠ .( 分)又∵AB=AC∴∠B=∠ACB= 5°.∵FC⊥BC∴∠FCA=90°-∠ACB=90°- 5°= 5°∴∠B=∠FCA ( 分)∴△ABE≌△ACF(ASA).(3分)∴BE=CF.( 分)( )①过E作EG⊥AB于点G.∵∠B= 5° ∴△GBE是等腰直角三角形,∴BG=EG ∠3= 5°.(5分)∵AD⊥BC AE平分∠BAD ∴EG=ED ∴BG=ED.∵BM= ED ∴BM= BG 即G是BM的中点.(6分)∴EG是BM的垂直平分线 ∴EB=EM ∴∠ =∠3= 5°∴∠MEB=∠ +∠3= 5°+ 5°=90° 即ME⊥BC.( 分)②∵AD⊥BC ∴ME∥AD ∴∠5=∠6.∵∠ =∠5 ∴∠ =∠6 ∴AM=EM.∵MC=MC ∴Rt△AMC≌Rt△EMC(HL) (8分)∴∠ =∠8.∵∠BAC=90° AB=AC ∴∠ACB= 5° ∠BAD=∠CAD= 5°∴∠5=∠ = .5° AD=CD.∵∠ADE=∠CDN=90° ∴△ADE≌△CDN(ASA) (9分)∴DE=DN.( 0分)评析本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,角平分线的性质定理,构造出等腰直角三角形和全等三角形是解题的关键.五、解答题25.解析(1)对y=-x2-2x+3,令x=0,得y=3,则C(0,3).(1分)令y=0,得-x2-2x+3=0,解得x1=-3,x2=1,∴A(-3,0),B(1,0).(3分)(2)由x=--(- )=-1得抛物线的对称轴为直线x=-1.(4分) 设点M(x,0),P(x,-x2-2x+3),其中-3<x<-1.易知P、Q关于直线x=-1对称,设Q的横坐标为a,则a-(-1)=-1-x ∴a=-2-x,∴Q(-2-x,-x2-2x+3).(5分)∴MP=-x2-2x+3,PQ=-2-x-x=-2-2x,∴周长d=2(-2-2x-x2-2x+3)=-2x2-8x+2.当x=--8(- )=-2时,d取最大值,(6分)此时,M(- 0) ∴AM=-2-(-3)=1.设直线AC解析式为y=kx+b(k≠0) 则30-3解得3∴直线AC的解析式为y=x+3.将x=-2代入y=x+3得y=1,∴E(- ) ∴EM= .( 分)∴S△AEM=AM ME=× × =.(8分)(3)由(2)知,当矩形PMNQ的周长最大时,x=-2,此时点Q(0,3),与点C重合 ∴OQ=3.将x=-1代入y=-x2-2x+3,得y=4,∴D(-1,4).如图,过D作DK⊥y轴于K,则DK=1,OK=4.∴QK=OK-OQ=4-3=1,∴△DKQ是等腰直角三角形,DQ=,(9分)∴FG= =4.(10分)设F(m,-m2-2m+3),G(m,m+3),则FG=(m+3)-(-m2-2m+3)=m2+3m,∵FG= ∴m2+3m=4,解得m1=-4,m2=1.当m=-4时,-m2-2m+3=-(-4)2- ×(-4)+3=-5,当m=1时,-m2-2m+3=-12- × +3=0∴F(-4,-5)或(1,0).(12分)评析本题考查了矩形的性质,一元二次方程的解法,二次函数图象与坐标轴的交点及最值的求法,综合性较强,难度适中.运用数形结合、方程思想是解题的关键.26.解析(1)AB=5,AD= 03,由勾股定理得BD=A=5 03= 53.(1分)∵ AB AD=S △ABD =BD AE∴ ×5× 03= × 53AE,解得AE=4,(3分)∴BE= -A = 5 - =3.(4分)(2)当点F 在线段AB 上时,m=3;(6分) 当点F 在线段AD 上时,m= 63.(8分)(3)存在.理由如下:①当DP=DQ 时,若点Q 在线段BD 的延长线上,如图①图① 有∠Q=∠则∠ =∠ +∠Q= ∠Q.∵∠3=∠ +∠Q ∠3=∠∴∠ +∠Q= ∠Q ∴∠ =∠Q∴A'Q=A'B=5 ∴F'Q= +5=9.在Rt△BF'Q 中,92+32= 53 DQ , ∴ 53+DQ=±3 ,∴DQ=3 0- 53或DQ=-3 0- 53(舍).(9分)若点Q 在线段BD 上,如图②图②有∠ =∠ =∠ .∵∠ =∠3 ∴∠3=∠∵∠3=∠5+∠A' ∠A'=∠CBD ∴∠3=∠5+∠CBD=∠A'BQ∴∠ =∠A'BQ∴A'Q=A'B=5∴F'Q=5-4=1,∴BQ= 3 = 0.∴DQ= 53- 0.(10分)②当QP=QD 时,如图③ 有∠P=∠图③ ∵∠A'=∠ ∠ =∠3 ∴∠ =∠P∴∠ =∠A' ∴QB=QA'设QB=QA'=x,在Rt△BF'Q 中,32+(4-x)2=x 2, 解得x= 58,∴DQ= 53- 58= 5 .(11分)图④③当PD=PQ 时,如图④ 有∠ =∠ =∠3 ∵∠ =∠A' ∴∠3=∠A' ∴BQ=A'B=5 ∴DQ= 53-5= 03.综上,当△DPQ 是等腰三角形时, DQ 的值为3 0- 53, 53- 0, 5 , 03.(12分)。
重庆市2014年初中毕业暨高中招生考试数学答案解析第Ⅰ卷一、选择题 1.【答案】A【解析】根据相反数的定义:只有符号不同的两个数是互为相反数,可知17-的相反数是17,故选A . 【考点】相反数的定义 2.【答案】B【解析】根据同底数幂的除法法则:底数不变,指数相减得64642222x x x x -÷==,故选B . 【考点】同底数幂的除法运算 3.【答案】A【解析】因为二次根式中被开方数是非负数,即0a ≥,故选A 【考点】二次根式中被开方数的取值范围 4.【答案】C【解析】n 边形的内角和是(2)180n -⨯︒,将5n =代人即得五边形的内角和是540,故选C . 【考点】多边形的内角和 5.【答案】D【解析】气温最低即数值最小,8-在这四个数中处在数轴的最左边,故8-最小,故选D 【考点】有理数的大小比较 6.【答案】B【解析】将方程的两边向时乘最简公分母1x -得整式方程21x =-,解得3x =.经检验,3x =是原分式方程的解,故选B .【考点】分式方程的解法 7.【答案】D【解析】根据方差越小越稳定,而0.020.03 0.050.11<<<,故丁的成绩最稳定,故选D 【考点】方差的意义 8.【答案】B【解析】因为//AB CD ,根据“两直线平行,同位角相等”得142EFD ∠=∠=︒,又因为FG FE ⊥,所以2180904248∠=︒-︒-︒=︒,故选B .【考点】平行线的性质及垂直的定义,OA OB =3,43AOB S AB OC ∴=△242=3π.所以【考点】等腰三角形的性质、三角形及扇形面积的计算 22ax a ,由①得a 只能等于【考点】一次函数图象与坐标轴的交点、解不等式组、三角形的面积计算等交BE 于点M ,DC BC =62210BC CE BE ⨯=CF BE ⊥︒,OCF ∴∠+∠又OBM ∠+OBM ∴∠COF ,根据“ASA ≌△O C F,BM CF =3101055-等腰R 2MF OF =【解析】解:AD BC ⊥3tan 4BAD ∠=,12AD =9BD ∴=14CD BC BD ∴==-∴在Rt ADC ∆中,AC =2(1)(x 1)x x -+-1111x +-+补图如下:(2)用1A ,2A 表示餐饮企业,1B ,2B 表示非餐饮企业,画树状图如下:10%)150(19-则3(1)(1x +30x +-=0.6(舍),24.【答案】证明:如图) BAC ∠=1EAC ∴∠+∠12∴∠=∠,AB AC =,∴∠B FCA ∠=∠ABF ∴≅△△BE CF ∴=(2)①过E 45B ∠=BG EG ∴=AD BC ⊥2BM ED =⊥②AD BC∠=∠,∴∠15=MC MC∴∠=∠,78∠=90BAC∴∠=ACB57∴∠=∠∠=ADE∴=DE DN【解析】【考点】全等三角形的判定和性质、等腰直角三角形的性质、角乎分线的性质等25.【答案】11AM ME=⨯12x=-,(3)由(2)知,当矩形PMNQ的周长最大时,2)5AB =,2BD AB =+1122ABD AB AD S BD AE ==△ 解得4AE =2222543BE AB AE ∴=-=-=(2)当点F 在线段AB 上时,3m =; 16若点Q 在线段BD 的延长线上时,如图1,34∠=∠4+Q ∴∠∠'A Q A ∴=在Rt BF ∆25DQ ∴+若点Q 在线段BD 上,如图2:1=3∠∠,3=5+∠∠35∴∠=∠4A ∴∠=∠'5F Q ∴=253DQ ∴='1A ∠=∠4A ∴∠=∠设QB QA =在Rt BF ∆253DQ ∴=③当PD PQ =时,如图4,有1=2=3∠∠∠1A ∠=∠BQ A ∴=253DQ ∴=综上,当△11 / 11数学试卷 第1页(共8页) 数学试卷 第2页(共8页)绝密★启用前重庆市2014年初中毕业暨高中招生考试数 学本试卷满分150分,考试时间120分钟.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标为24(,)24b ac b a a--,对称轴为2b x a =-第Ⅰ卷(选择题 共48分)一、选择题(本大题共12小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数17-的相反数是( )A .17B .117C .17-D .117-2.计算642x x ÷的结果是( ) A .2xB .22xC .42xD .102x3.,a 的取值范围是( )A .0a ≥B .0a ≤C .0a >D .0a < 4.五边形的内角和是( )A .°180B .°360 C .°540 D .°600 5.2014年1月1日零点,北京、上海、重庆、宁夏的气温分别是4568--℃,℃,℃,℃,当时这四个城市中,气温最低的是( )A .北京B .上海C .重庆D .宁夏 6.关于x 的方程211x =-的解是( )A .4x =B .3x =C .2x =D .1x =7.2014年8月26日,第二届青奥会将在南京举行,甲、乙、丙、丁四位跨栏运动员在为该运动会积极准备.在某天“110米跨栏”训练中,每人各跑5次,据统计,它们的平均成绩都是13.2秒,甲、乙、丙、丁成绩的方差分别是0.110.030.050.02,,,,则当天这四位运动员“110米跨栏”的训练成绩最稳定的是( ) A .甲B .乙C .丙D .丁8.如图,直线AB CD ∥,直线EF 分别交直线,AB CD 于点,E F ,过点F 作FG FE ⊥,交直线AB 于点G .若142∠=,则2∠的大小是( )A .56B .48C .46D .409.如图,ABC △的顶点,,A B C 均在O 上,若90AOC ∠=,则AOC ∠的大小是( )A .30B .45C .60D .7010.2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文章,录入一段时间后因事暂停,过了一会儿,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x ,录入字数为y ,下面能反映y 与x 的函数关系的大致图象是( )ABCD11.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律,则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共8页) 数学试卷 第4页(共8页)12.如图,反比例函数6y x=-在第二象限的图象上有两点,A B ,它们的横坐标分别为1,3--,直线AB 与x 轴交于点C ,则AOC △的面积为( ) A .8B .10C .12D .24第Ⅱ卷(非选择题 共102分)二、填空题(本大题共6小题,每小题4分,共24分.请把答案填在题中的横线上) 13.方程组3,5x x y =⎧⎨+=⎩的解是 .14.据有关部门统计,截止到2014年5月1日,重庆市私家小轿车已达到563000辆,将563000这个数用科学记数法表示为 .15.如图,菱形ABCD 中,60A ∠=,7BD =,则菱形ABCD 的周长为 .16.如图,OAB △中,4,30,OA OB A AB ==∠=与O 相切于点C ,则图中阴影部分的面积为 (结果保留π).17.从1,1,2-这三个数字中,随机抽取一个数,记为a .那么,使关于x 的一次函数2y x a =+的图象与x 轴、y 轴围成的三角形面积为14,且使关于x 的不等式组212x a x a +⎧⎨-⎩≤,≤有解的概率为 . 18.如图,正方形ABCD 的边长为6,点O 是对角线,AC BD 的交点,点E 在CD 上,且2DE CE =,连接BE .过点C 作CF BE ⊥,垂足为F ,连接OF ,则OF 的长为 .三、解答题(本大题共8小题,共78分.解答应写出文字说明、证明过程或演算步骤)19.(本小题满分7分)2011(3)2014|4|()6---⨯-+.20.(本小题满分7分)如图,ABC △中,AD BC ⊥,垂足为D ,若314,12,tan 4BC AD BAD ==∠=,求sin C 的值.21.(本小题满分10分)先化简,再求值:221121()11x x x x x x +÷-+-++,其中x 的值为方程251x x =-的解.数学试卷 第5页(共8页) 数学试卷 第6页(共8页)22.(本小题满分10分)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生.某镇统计了该镇2014年1-5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇2014年1-5月新注册小型企业一共有 家,请将折线统计图补充完整; (2)该镇2014年3月新注册的小型企业中,只有2家是餐饮企业.现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.23.(本小题满分10分)为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.(1)筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,问最多用多少资金购买书桌、书架等设施?(2)经初步统计,有200户居民自愿参与集资,那么平均每户需集资150元.镇政府了解情况后,赠送了一批阅览室设施和书籍,这样,只需参与户共集资20000元.经筹委会进一步宣传,自愿参与的户数在200户的基础上增加了a %(其中0a >),则每户平均集资的资金在150元的基础上减少了109a %,求a 的值.24.(本小题满分10分)如图,ABC △中,90,,BAC AB AC AD BC ∠==⊥,垂足是,D AE 平分BAD ∠,交BC 于点E .在ABC △外有一点F ,使,FA AE FC BC ⊥⊥.(1)求证:BE CF =;(2)在AB 上取一点M ,使2BM DE =,连接MC ,交AD 于点N ,连接ME .求证: ①ME BC ⊥; ②DE DN =.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第7页(共8页) 数学试卷 第8页(共8页)25.(本小题满分12分)如图,抛物线223y x x =--+的图象与x 轴交于,A B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点. (1)求,,A B C 的坐标;(2)点M 为线段AB 上一点(点M 不与点,A B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ AB ∥交抛物线于点Q ,过点Q 作QN x ⊥轴于点N ,若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FC =,求点F 的坐标.26.(本小题满分12分)已知:如图1,在矩形ABCD 中,205,,3AB AD AE BD ==⊥,垂足是E .点F 是点E 关于AB 的对称点,连接,AF BF .(1)求AE 和BE 的长;(2)若将ABF △沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度),当点F 分别平移到线段AB AD ,上时,直接写出相应的m 值;(3)如图2,将ABF △绕点B 顺时针旋转一个角α(0180α<<),记旋转中的ABF △为A BF ''△,在旋转过程中,设A F ''所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P ,Q 两点,使DPQ △为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.。
重庆市2005年初中毕业暨高中招生统一考试数 学 试 卷(本卷共三大题,满分150分,考试时间120分钟)注:未加“﹡”的为毕业考试题一、选择题:(本大题12个小题,每小题4分,共48分)每小题只有一个答案是正确的,请将正确答案的代号填入题后的括号内。
1、5的相反数是( )A 、-5B 、5C 、51 D 、51- 2、下列四个数中,大于-3的数是( )A 、-5B 、-4C 、-3D 、-2 3、已知∠A =400,则∠A 的补角等于( )A 、500B 、900C 、1400D 、1800 4、下列运算中,错误的是( )A 、32a a a =⋅ B 、ab b a 632=+C 、224a a a =÷ D 、()222b a ab =-5、函数3-=x y 中自变量x 的取值范围是( )A 、x >3B 、x ≥3C 、x >-3D 、x ≥-36、如图,在半径为5cm 的⊙O 中,圆心O 到弦AB 的距离为3cm ,则弦AB 的长是( ) A 、4cm B 、6cmC 、8cmD 、10cm 7、抛物线()322+-=x y 的顶点坐标是( )A 、(-2,3)B 、(2,3)C 、(-2,-3)D 、(2,-3) 8、顺次连结任意四边形四边中点所得的四边形一定是( )A 、平行四边形B 、矩形C 、菱形D 、正方形 9、点A (4-m ,m 21-)在第三象限,则m 的取值范围是( )A 、21>m B 、4<mC 、421<<m D 、4>m10、如图,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,则下列结论中不正确的是( )A 、AB ⊥CD B 、∠AOB =4∠ACDC 、⋂⋂=BD ADD 、PO =PD11﹡、为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装【机密】2005年6月15日前第6题图 OCB A 第10题图DP OCBA了两个进水管和一个出水管(两个进水管的进水速度相同)一个进水管和一个出水管的进出水速度如图1所示,某天0点到6点(到少打开一个水管),该蓄水池的蓄水量如图2所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水。
重庆市2005-2014有关圆的中考题1. (重庆2005年4分)如图,在半径为5cm 的⊙O 中,圆心O 到弦AB 的距离为3cm ,则弦AB 的长是【 】A 、4cmB 、6cmC 、8cD 、10cm2. (重庆2005年4分)如图,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,则下列结论中不正确的是【 】A 、AB ⊥CD B 、∠AOB =4∠ACDC 、AD=BD D 、PO =PD3. (重庆市2005年4分)已知⊙O 1与⊙O 2的半径分别为3㎝和7㎝,两圆的圆心距O 1O 2=10㎝,则两圆的位置关系是【 】A .外切B .内切C .相交D .相离4. (重庆市2006年4分)⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是【 】A.相交B.相切C.相离D. 无法确定5.(重庆市2006年4分)如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD=40°,则∠DCF 等于【 】 A.80° B. 50° C. 40° D. 20°6.(重庆市2007年4分). 已知⊙O 1的半径r 为3cm ,⊙O 2的半径R 为4cm ,两圆的圆心距12O O 为1cm ,则这两圆的位置关系是【 】A .相交B .内含C .内切D .外切 7.(重庆市2008年4分)如图,AB 是⊙O 的直径,点C 在⊙O 上,则∠ACB 的度数为【 】A 、30°B 、45°C 、60°D 、90°8. (重庆市2009年4分)如图, O ⊙是ABC △的外接圆,AB 是直径.若BOC 80∠=°,则A ∠等于【 】 A .60° B .50° C .40° D .30°9. (重庆市2010年4分)如图,△ABC 是⊙O 的内接三角形,若∠ABC =70°,则∠AOC第1题 第2题 第5题 第7题第13题 第15题 第16题 第17题11题图OD C B A 的度数等于【 】A .140°B .130°C .120°D .110°10.(重庆市2011年4分)如图,⊙O 是△ABC 的外接圆,∠OCB=40°,则∠A 的度数等于【 】A 、60°B 、50°C 、40°D 、30°11. (重庆市2012年4分)已知:如图,OA ,OB 是⊙O 的两条半径,且OA⊥OB,点C 在⊙O 上,则∠ACB 的度数为【 】A .45°B .35°C .25°D .20°12.(2013•重庆4分)如图,AB 是⊙O 的切线,B 为切点,AO 与⊙O 交于点C ,若∠BAO=40°,则∠OCB 的度数为( )A .40°B .50°C .60°D .75°13.(2013•重庆4分)如图,P 是⊙O 外一点,PA 是⊙O 的切线,PO=26cm ,PA=24cm ,则⊙O(2014•重庆4分)如图,△ABC 的顶点A 、B 、C 均在⊙O 上,若∠ABC+∠AOC =90°,则∠AOC 的大小是( )A 、30° B 、45° C 、60° D 、70°(2014•重庆4分)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,AC =8,BD =6,以AB 为直径作一个半圆,则图中阴影部分的面积为( )A 、256π-B 、2562π- C 、2566π- D 、2568π-第8题 第9题 第10题 第11题 第12题第18题第19题第21题第22题第28题二、填空题14. (重庆市2003年4分)把一个半径为8cm的圆形纸片,剪去一个圆心角为90°的扇形后,用剩下的部分做成一个圆锥的侧面,那么这个圆锥的高为.15. (重庆市2004年4分)某人用如下方法测一钢管的内径:将一小段钢管竖直放在平台上,向内放入两个半径为5cm 的钢球,测得上面一个钢球顶部高DC=16cm(钢管的轴截面如图所示),则钢管的内直径AD长为cm。
16. (重庆市2005年3分)如图,OB、OC是⊙O的半径,A是⊙O上一点,若已知∠B=200,∠C=300,则∠A=度。
17. (重庆市2005年3分)如图,水平放置的圆柱形油桶的截面半径是R,油面高为32R,截面上有油的弓形(阴影部分)的面积为。
18. (重庆市2005年3分)如图,四边形ABCD是⊙O的内接正方形,P是AB的中点,PD 与AB交于E点,则PEDE=。
19. (重庆市2005年3分)如图,已知OB是⊙O的半径,点C、D在⊙O上,∠DCB=40°,则∠DOB=度.20. (重庆市2006年3分)圆柱的底面周长为2π,高为1,则圆柱的侧面展开图的面积为.21. (重庆市2006年3分)如图,△ABC内接于⊙O,∠A所对弧的度数为120°.∠ABC、∠ACB 的角平分线分别交于AC、AB于点D、E,CE、BD相交于点F.以下四个结论:①BF1cos E2∠=;②BC=BD;③EF=FD;④BF=2DF.其中结论一定正确的序号数是22. (重庆市2007年3分)已知:如图,AB为O的直径,AB=AC,BC交O于点D,AC 交O于点E,05BAC4∠=.给出以下五个结论:①02EBC 2.5∠=;②BD=DC;③AE=2EC;④劣弧AE是劣弧DE的2倍;⑤AE=BC.其中正确结论的序号是.23. (重庆市2008年3分)在平面内,⊙O的半径为5cm,点P到圆心O的距离为3cm,则点P与⊙O的位置关系是.24. (重庆市2009年4分)已知1O⊙的半径为3cm,2O⊙的半径为4cm,两圆的圆心距12O O为7cm,则1O⊙与2O⊙的位置关系是.25.(重庆市2010年4分)已知⊙O的半径为3cm,圆心O到直线l的距离是4cm,则直线l 与⊙O的位置关系是.26. (重庆市2011年4分)在半径为4π的圆中,45°的圆心角所对的弧长等于.27. (重庆市2012年4分)一个扇形的圆心角为120°,半径为3,则这个扇形的面积为(结果保留π)28. (重庆市2013年4分)如图,一个圆心角为90°的扇形,半径OA=2,那么图中阴影部分的面积为(结果保留π) _________ .29. (重庆市2013年4分)如图,在边长为4的正方形ABCD中,以AB为直径的半圆与对角线AC交于点E,则图中阴影部分的面积为 _________ .(结果保留π)(重庆市2014年4分)如图,△OAB中,OA=OB=4,∠A=30°,AB与O相切于点C,则图中阴影部分的面积为。
(结果保留π)(重庆市2014年4分)如图,C为⊙O外点,CA与⊙O相切,切点为A,AB为⊙O的直径,连接CB。
若⊙O的半径为2,∠ABC=60°,则BC=。
29题圆中考试题集锦一、选择题1.(北京西城)如图,BC是⊙O的直径,P是CB延长线上一点,PA切⊙O于点A,如果PA=3,PB=1,那么∠APC等于()A、15B、30C、45D、602.(北京西城)如果圆柱的高为20厘米,底面半径是高的41,那么这个圆柱的侧面积是()平方厘米。
A、100π B、200π C、500π D、2003.(北京市西城区)“圆材埋壁”是我国古代著名的数学菱《九章算术》中的一个问题,“今在圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺,问径几何?”用现在的数学语言表述是:“如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=寸,求直径CD的长”.依题意,CD长为()(A)225寸(B)13寸(C)25寸(D)26寸4.(北京市朝阳区)如果圆锥的侧面积为20π平方厘米,它的母线长为5厘米,那么此圆锥的底面半径的长等于()(A)2厘米(B)22厘米(C)4厘米(D)8厘米5.(天津市)相交两圆的公共弦长为16厘米,若两圆的半径长分别为10厘米和17厘米,则这两圆的圆心距为()(A)9厘米(B)21厘米(C)9厘米或21厘米(D)27厘米6.(重庆市)如图,⊙O为△ABC的内切圆,∠C=90,AO的延长线交BC于点D,AC=4,DC=1,,则⊙O的半径等于()(A)54(B)45(C)43(D)657.(重庆市)一居民小区有一正多边形的活动场.为迎接“AAPP”会议在重庆市的召开,小区管委会决定在这个多边形的每个顶点处修建一个半径为2米的扇形花台,花台都以多边形的顶点为圆心,比多边形的内角为圆心角,花台占地面积共为12π平方米.若每个花台的造价为第1题第2题第3题第6题第8题第9题第10题第11题400元,则建造这些花台共需资金()(A)2400元(B)2800元(C)3200元(D)3600元8.(河北省)如图,AB是⊙O直径,CD是弦.若AB=10厘米,CD=8厘米,那么A、B两点到直线CD的距离之和为()(A)12厘米(B)10厘米(C)8厘米(D)6厘米9.(河北省)某工件形状如图所示,圆弧BC的度数为60,AB=6厘米,点B到点C的距离等于AB,∠BAC=30,则工件的面积等于()(A)4π(B)6π(C)8π(D)10π10.(陕西省)如图,两个等圆⊙O和⊙O'的两条切线OA、OB,A、B是切点,则∠AOB等于()(A)30(B)45(C)60(D)9011.(甘肃省)如图,AB是⊙O的直径,∠C=30,则∠ABD=()(A)30(B)40(C)50(D)6012.(甘肃省)弧长为6π的弧所对的圆心角为60,则弧所在的圆的半径为()(A)6 (B)62(C)12 (D)1813.(甘肃省)如图,在△ABC中,∠BAC=90,AB=AC=2,以AB为直径的圆交BC于D,则图中阴影部分的面积为()(A)1 (B)2 (C)1+4π(D)2-4π14.(宁夏)已知圆的内接正六边形的周长为18,那么圆的面积为()(A)18π(B)9π(C)6π(D)3π15.(山东省)如图,点P是半径为5的⊙O内一点,且OP=3,在过点P的所有弦中,长度为整数的弦一共有()(A)2条(B)3条(C)4条(D)5条第13题 第15题 第16题 第19题 第20题 第21题 第25题 第26题 16.(南京市)如图,正六边形ABCDEF 的边长的上a ,分别以C 、F 为圆心,a 为半径画弧,则图中阴影部分的面积是 ( )(A )261a π (B )231a π (C )232a π (D )234a π17.(杭州市)过⊙O 内一点M 的最长的弦长为6厘米,最短的弦长为4厘米,则OM 的长为( )(A )3厘米 (B )5厘米 (C )2厘米 (D )5厘米18.(安徽省)已知圆锥的底面半径是3,高是4,则这个圆锥侧面展开图的面积是( )(A )12π (B )15π (C )30π (D )24π19.(安微省)已知⊙O 的直径AB 与弦AC 的夹角为 30,过C 点的切线PC 与AB 延长线交P .PC =5,则⊙O 的半径为( )(A )335 (B )635 (C )10 (D )520.(福州市)如图:PA 切⊙O 于点A ,PBC 是⊙O 的一条割线,有PA =32,PB =BC ,那么BC 的长是( )。