二次函数对应练习试题及答案
- 格式:doc
- 大小:27.50 KB
- 文档页数:4
二次函数测试题及答案一、选择题(每题3分,共30分)1. 以下哪个选项是二次函数的一般形式?A. y = 2x + 1B. y = x^2 + 3x + 2C. y = 3x^3 - 5D. y = 4/x答案:B2. 二次函数y = ax^2 + bx + c的顶点坐标为(h, k),那么h的值为:A. -b/2aB. -b/aC. b/2aD. b/a答案:C3. 二次函数y = 2x^2 - 4x + 3的对称轴方程是:A. x = 1B. x = -1C. x = 2D. x = -2答案:A4. 如果二次函数y = ax^2 + bx + c的图象开口向上,那么a的值:A. 大于0B. 小于0C. 等于0D. 可以是任意实数答案:A5. 二次函数y = -x^2 + 4x - 3的顶点坐标是:A. (1, 2)B. (2, 1)C. (3, 0)D. (3, 4)答案:C6. 二次函数y = 3x^2 - 6x + 5的图象与x轴的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:C7. 二次函数y = x^2 - 4x + 4的最小值是:A. 0B. 4C. -4D. 1答案:A8. 二次函数y = 2x^2 - 4x + 3的图象开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A9. 二次函数y = -x^2 + 2x + 3的图象与y轴的交点坐标是:A. (0, 3)B. (0, -3)C. (0, 5)D. (0, -5)答案:A10. 二次函数y = 5x^2 - 10x + 8的图象与x轴的交点坐标是:A. (2, 0)B. (-2, 0)C. (1, 0)D. (-1, 0)答案:A二、填空题(每题4分,共20分)1. 二次函数y = ax^2 + bx + c的图象开口向上,且经过点(2, 0),则a的值至少为______。
答案:02. 二次函数y = 2x^2 - 4x + 3的顶点坐标是(______, ______)。
二次函数练习题及答案一、选择题1. 将抛物线23y x =先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是 ( )A 23(2)1y x =++B 。
23(2)1y x =+-C 。
23(2)1y x =-+ D.23(2)1y x =-- 2.将抛物线22+=x y 向右平移1个单位后所得抛物线的解析式是………………( ) A.32+=x y ; B.12+=x y ;C.2)1(2++=x y ; D.2)1(2+-=x y .3.将抛物线y= (x —1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )A .y=(x —2)2B .y=(x —2)2+6C .y=x 2+6D .y=x 24.由二次函数1)3(22+-=x y ,可知( )A .其图象的开口向下B .其图象的对称轴为直线3x =-C .其最小值为1D .当x<3时,y 随x 的增大而增大5.如图,抛物线的顶点P 的坐标是(1,﹣3),则此抛物线对应的二次函数有( )A .最大值1B .最小值﹣3C .最大值﹣3D .最小值16.把函数()y f x ==246x x -+的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是( )A .2(3)3y x =-+B .2(3)1y x =-+C .2(1)3y x =-+D .2(1)1y x =-+7.抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为A . b=2, c=2 B. b=2,c=0 C 。
b= -2,c=-1 D 。
b= -3, c=2二、填空题8.二次函数y=-2(x -5)2+3的顶点坐标是 .9.已知二次函数2y x bx c =-++中函数y 与自变量x 之间的部分对应值如下表所示,点11(,)A x y 、22(,)B x y 在函数图象上,当1201,23x x <<<<时,则1y 2y (填“>”或“<”).x 0 1 2 3 y1- 2 3 210.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式为 .11.求二次函数2245y x x =--的顶点坐标(___)对称轴____。
二次函数练习题(1)1.二次函数y=ax 2+bx+c 的图象如图1所示,下列五个代数式ab 、ac 、a-b+c 、b 2- 4ac 、2a+b 中,值大于0的个数为( )A.5B.4C.3D.22.二次函数c bx ax y ++=2的图象如图所示,下列结论:①0<c ;②0>b ;③024>++c b a ;④042>-ac b .其中正确的有 ( )(A ) 1个 (B ) 2个 (C ) 3个 (D ) 4个3.已知二次函数c bx ax y ++=2的图象与x 轴交于点(-2,0),(x 1,0)且1<x 1<2,与y·轴正半轴的交点在点(0,2)的下方,下列结论:①a <b <0;②2a+c >0;③4a+c< 0,④2a -b+l >0.其中的有正确的结论是(填写序号)__________.4.把抛物线y=12x 2 向左平移三个单位, 再向下平移两个单位所得的关系式为________.5.将抛物线y=ax 2向右平移2个单位,再向上平移3个单位,移动后的抛物线经过点(3,-1),那么移动后的抛物线的关系式为__________.6.抛物线c bx ax y ++=2如右图所示,则它关于y 轴对称的抛物线的解析式是__________.7.已知二次函数y=2x 2-mx-4的图象与x 轴的两个交点的横坐标的倒数和为2,则m=_________.8.如图,四边形ABCD 是矩形,A 、B 两点在x 轴的正半轴上,C 、D 两点在抛物线y =-x 2+6x 上.设OA =m (0<m <3),矩形ABCD 的周长为l ,则l 与m 的函数解析式为 .9.已知抛物线22b x x y ++=经过点1()4a -,和1()a y -,,则1y 的值是 .10、若二次函数y=ax 2+bx+c 的顶点在第一象限,且经过点(0,1),(-1,0),则S=a+b+c 的变化范围是 ( )图1(A) 0<S<2 (B) S>1 (C) 1<S<2 (D)-1<S<111、已知二次函数y =ax 2(a ≥1)的图像上两点A 、B 的横坐标分别是-1、2,点O 是坐标原点,如果△AOB 是直角三角形,则△OAB 的周长为 。
《二次函数》练习一.选择题(共8小题)1.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大2.对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7) D.图象与x轴有两个交点 3 43.如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0 ②4a+2b+c>0 ③4ac﹣b2<8a ④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④ C.②④⑤ D.①③④⑤4.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.45.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A.1 B.2 C.3 D.46.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是()A.1 B.2 C.3 D.47.如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c<0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是()A.①②B.②③C.②④D.①③④8.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③5 6 7 8二.填空题(共4小题)9.若二次函数y=x2+2x+m的图象与x轴没有公共点,则m的取值范围是.10.若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为.11.二次函数y=x2+mx+n的图象经过点(1,﹣2),则代数式(m+n﹣1)(1﹣m﹣n)的值为.12.若二次函数y=mx2+(m﹣2)x+的图象与x轴有交点,那么m的取值范围为.三.解答题(共8小题)13.2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?14.天水市某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李红第几天生产的粽子数量为260只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画,若李红第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)15.某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?16.如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C 是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.17.如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.18.如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.(1)求该抛物线的解析式;(2)连接PB、PC,求△PBC的面积;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.19.如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.20.在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.初中数学组卷参考答案与试题解析一.选择题(共8小题)1.(2016•宁波)已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.2.(2016•广州)对于二次函数y=﹣+x﹣4,下列说法正确的是()A.当x>0时,y随x的增大而增大B.当x=2时,y有最大值﹣3C.图象的顶点坐标为(﹣2,﹣7) D.图象与x轴有两个交点【解答】解:∵二次函数y=﹣+x﹣4可化为y=﹣(x﹣2)2﹣3,又∵a=﹣<0∴当x=2时,二次函数y=﹣x2+x﹣4的最大值为﹣3.故选B.3.(2016•达州)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是()A.①③B.①③④ C.②④⑤ D.①③④⑤【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在y轴右侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=1,∴图象与x轴的另一个交点为(3,0),∴当x=2时,y<0,∴4a+2b+c<0,故②错误;③∵图象与x轴交于点A(﹣1,0),∴当x=﹣1时,y=(﹣1)2a+b×(﹣1)+c=0,∴a﹣b+c=0,即a=b﹣c,c=b﹣a,∵对称轴为直线x=1∴=1,即b=﹣2a,∴c=b﹣a=(﹣2a)﹣a=﹣3a,∴4ac﹣b2=4•a•(﹣3a)﹣(﹣2a)2=﹣16a2<0∵8a>0∴4ac﹣b2<8a故③正确④∵图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间,∴﹣2<c<﹣1∴﹣2<﹣3a<﹣1,∴>a>;故④正确⑤∵a>0,∴b﹣c>0,即b>c;故⑤正确;故选:D.4.(2016•孝感)如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间.则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选C.5.(2016•广安)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,并且关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,下列结论:①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,其中,正确的个数有()A.1 B.2 C.3 D.4【解答】解:如图所示:图象与x轴有两个交点,则b2﹣4ac>0,故①错误;∵图象开口向上,∴a>0,∵对称轴在y轴右侧,∴a,b异号,∴b<0,∵图象与y轴交于x轴下方,∴c<0,∴abc>0,故②正确;当x=﹣1时,a﹣b+c>0,故此选项错误;∵二次函数y=ax2+bx+c的顶点坐标纵坐标为:﹣2,∴关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,则m>﹣2,故④正确.故选:B.6.(2016•兰州)二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=﹣1,有以下结论:①abc>0;②4ac<b2;③2a+b=0;④a﹣b+c>2.其中正确的结论的个数是()A.1 B.2 C.3 D.4【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc>0,所以①正确;∵抛物线与x轴有2个交点,∴△=b2﹣4ac>0,所以②正确;∵b=2a,∴2a﹣b=0,所以③错误;∵抛物线开口向下,x=﹣1是对称轴,所以x=﹣1对应的y值是最大值,∴a﹣b+c>2,所以④正确.故选C.7.(2016•日照)如图是二次函数y=ax2+bx+c的图象,其对称轴为x=1,下列结论:①abc>0;②2a+b=0;③4a+2b+c <0;④若(﹣),()是抛物线上两点,则y1<y2其中结论正确的是()A.①②B.②③C.②④D.①③④【解答】解:∵抛物线开口向下,∴a<0,∵抛物线的对称轴为直线x=﹣=1,∴b=﹣2a>0,∵抛物线与y轴的交点在x轴上方,∴c>0,∴abc<0,所以①错误;∵b=﹣2a,∴2a+b=0,所以②正确;∵抛物线与x轴的一个交点为(﹣1,0),抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点为(3,0),∴当x=2时,y>0,∴4a+2b+c>0,所以③错误;∵点(﹣)到对称轴的距离比点()对称轴的距离远,∴y1<y2,所以④正确.故选C.8.(2015•恩施州)如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③【解答】解:∵抛物线的开口方向向下,∴a<0;∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即b2>4ac,故①正确由图象可知:对称轴x=﹣=﹣1,∴2a﹣b=0,故②错误;∵抛物线与y轴的交点在y轴的正半轴上,∴c>0由图象可知:当x=1时y=0,∴a+b+c=0;故③错误;由图象可知:若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,故④正确.故选B二.填空题(共4小题)9.(2016•徐州)若二次函数y=x2+2x+m的图象与x轴没有公共点,则m的取值范围是m>1.【解答】解:∵二次函数y=x2+2x+m的图象与x轴没有公共点,∴方程x2+2x+m=0没有实数根,∴判别式△=22﹣4×1×m<0,解得:m>1;故答案为:m>1.10.(2016•泸州)若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为﹣4.【解答】解:设y=0,则2x2﹣4x﹣1=0,∴一元二次方程的解分别是点A和点B的横坐标,即x1,x2,∴x1+x2=﹣=2,x1,•x2=﹣,∴+==﹣4,故答案为:﹣4.11.(2016•无锡二模)二次函数y=x2+mx+n的图象经过点(1,﹣2),则代数式(m+n﹣1)(1﹣m﹣n)的值为﹣16.【解答】解:∵二次函数y=x2+mx+n的图象经过点(1,﹣2),∴1+m+n=﹣2,∴m+n=﹣3,∴(m+n﹣1)(1﹣m﹣n)=(﹣3﹣1)(1+3)=﹣16.故答案为:﹣16.12.(2016•微山县一模)若二次函数y=mx2+(m﹣2)x+的图象与x轴有交点,那么m的取值范围为m且m≠0.【解答】解:由题意知:,解得m且m≠0,故答案为m且m≠0.三.解答题(共8小题)13.(2016•铜仁市)2016年3月国际风筝节在铜仁市万山区举办,王大伯决定销售一批风筝,经市场调研:蝙蝠型风筝进价每个为10元,当售价每个为12元时,销售量为180个,若售价每提高1元,销售量就会减少10个,请回答以下问题:(1)用表达式表示蝙蝠型风筝销售量y(个)与售价x(元)之间的函数关系(12≤x≤30);(2)王大伯为了让利给顾客,并同时获得840元利润,售价应定为多少?(3)当售价定为多少时,王大伯获得利润最大,最大利润是多少?【解答】解:(1)设蝙蝠型风筝售价为x元时,销售量为y个,根据题意可知:y=180﹣10(x﹣12)=﹣10x+300(12≤x≤30).(2)设王大伯获得的利润为W,则W=(x﹣10)y=﹣10x2+400x﹣3000,令W=840,则﹣10x2+400x﹣3000=840,解得:x1=16,x2=24,答:王大伯为了让利给顾客,并同时获得840元利润,售价应定为16元.(3)∵W=﹣10x2+400x﹣3000=﹣10(x﹣20)2+1000,∵a=﹣10<0,∴当x=20时,W取最大值,最大值为1000.答:当售价定为20元时,王大伯获得利润最大,最大利润是1000元.14.(2016•天水)天水市某企业接到一批粽子生产任务,按要求在19天内完成,约定这批粽子的出厂价为每只4元,为按时完成任务,该企业招收了新工人,设新工人李红第x天生产的粽子数量为y只,y与x满足如下关系:y=(1)李红第几天生产的粽子数量为260只?(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画,若李红第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)【解答】解:(1)设李红第x天生产的粽子数量为260只,根据题意得20x+60=260,解得x=10,答:李红第10天生产的粽子数量为260只;(2)根据图象得当0≤x≤9时,p=2;当9<x≤19时,设解析式为y=kx+b,把(9,2),(19,3)代入得,解得,所以p=x+,①当0≤x≤5时,w=(4﹣2)•32x=64x,x=5时,此时w的最大值为320(元);②当5<x≤9时,w=(4﹣2)•(20x+60)=40x+120,x=9时,此时w的最大值为480(元);③当9<x≤19时,w=[4﹣(x+)]•(20x+60)=﹣2x2+52x+174=﹣2(x﹣13)2+512,x=13时,此时w的最大值为512(元);综上所述,第13天的利润最大,最大利润是512元.15.(2016•丹东)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?【解答】解:(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),得,解得,∴该函数的表达式为y=﹣0.5x+80,(2)根据题意,得,(﹣0.5x+80)(80+x)=6750,解得,x1=10,x2=70∵投入成本最低.∴x2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.(3)根据题意,得w=(﹣0.5x+80)(80+x)=﹣0.5 x2+40 x+6400=﹣0.5(x﹣40)2+7200∵a=﹣0.5<0,则抛物线开口向下,函数有最大值∴当x=40时,w最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.16.(2016•淄博)如图,抛物线y=ax2+2ax+1与x轴仅有一个公共点A,经过点A的直线交该抛物线于点B,交y轴于点C,且点C是线段AB的中点.(1)求这条抛物线对应的函数解析式;(2)求直线AB对应的函数解析式.【解答】解:(1)∵抛物线y=ax2+2ax+1与x轴仅有一个公共点A,∴△=4a2﹣4a=0,解得a1=0(舍去),a2=1,∴抛物线解析式为y=x2+2x+1;(2)∵y=(x+1)2,∴顶点A的坐标为(﹣1,0),∵点C是线段AB的中点,即点A与点B关于C点对称,∴B点的横坐标为1,当x=1时,y=x2+2x+1=1+2+1=4,则B(1,4),设直线AB的解析式为y=kx+b,把A(﹣1,0),B(1,4)代入得,解得,∴直线AB的解析式为y=2x+2.17.(2016•威海)如图,抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),与y轴交于点C,作直线BC,连接AC,CD.(1)求抛物线的函数表达式;(2)E是抛物线上的点,求满足∠ECD=∠ACO的点E的坐标;(3)点M在y轴上且位于点C上方,点N在直线BC上,点P为第一象限内抛物线上一点,若以点C,M,N,P为顶点的四边形是菱形,求菱形的边长.【解答】解:(1)∵抛物线y=ax2+bx+c的图象经过点A(﹣2,0),点B(4,0),点D(2,4),∴设抛物线解析式为y=a(x+2)(x﹣4),∴﹣8a=4,∴a=﹣,∴抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)如图1,①点E在直线CD上方的抛物线上,记E′,连接CE′,过E′作E′F′⊥CD,垂足为F′,由(1)知,OC=4,∵∠ACO=∠E′CF′,∴tan∠ACO=tan∠E′CF′,∴=,设线段E′F′=h,则CF′=2h,∴点E′(2h,h+4)∵点E′在抛物线上,∴﹣(2h)2+2h+4=h+4,∴h=0(舍)h=∴E′(1,),②点E在直线CD下方的抛物线上,记E,同①的方法得,E(3,),点E的坐标为(1,),(3,)(3)①CM为菱形的边,如图2,在第一象限内取点P′,过点P′作P′N′∥y轴,交BC于N′,过点P′作P′M′∥BC,交y轴于M′,∴四边形CM′P′N′是平行四边形,∵四边形CM′P′N′是菱形,∴P′M′=P′N′,过点P′作P′Q′⊥y轴,垂足为Q′,∵OC=OB,∠BOC=90°,∴∠OCB=45°,∴∠P′M′C=45°,设点P′(m,﹣m2+m+4),在Rt△P′M′Q′中,P′Q′=m,P′M′=m,∵B(4,0),C(0,4),∴直线BC的解析式为y=﹣x+4,∵P′N′∥y轴,∴N′(m,﹣m+4),∴P′N′=﹣m2+m+4﹣(﹣m+4)=﹣m2+2m,∴m=﹣m2+2m,∴m=0(舍)或m=4﹣2,菱形CM′P′N′的边长为(4﹣2)=4﹣4.②CM为菱形的对角线,如图3,在第一象限内抛物线上取点P,过点P作PM∥BC,交y轴于点M,连接CP,过点M作MN∥CP,交BC于N,∴四边形CPMN是平行四边形,连接PN交CM于点Q,∵四边形CPMN是菱形,∴PQ⊥CM,∠PCQ=∠NCQ,∵∠OCB=45°,∴∠NCQ=45°,∴∠PCQ=45°,∴∠CPQ=∠PCQ=45°,∴PQ=CQ,设点P(n,﹣n2+n+4),∴CQ=n,OQ=n+2,∴n+4=﹣n2+n+4,∴n=0(舍),∴此种情况不存在.∴菱形的边长为4﹣4.18.(2016•黔东南州)如图,直线y=﹣x+3与x轴、y轴分别相交于点B、C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一个交点为A,顶点为P,且对称轴为直线x=2.(1)求该抛物线的解析式;(2)连接PB、PC,求△PBC的面积;(3)连接AC,在x轴上是否存在一点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,求出点Q的坐标;若不存在,请说明理由.【解答】解:(1)∵直线y=﹣x+3与x轴相交于点B,∴当y=0时,x=3,∴点B的坐标为(3,0),∵y=﹣x+3过点C,易知C(0,3),∴c=3.又∵抛物线过x轴上的A,B两点,且对称轴为x=2,根据抛物线的对称性,∴点A的坐标为(1,0).又∵抛物线y=ax2+bx+c过点A(1,0),B(3,0),∴解得:∴该抛物线的解析式为:y=x2﹣4x+3;(2)如图1,∵y=x2﹣4x+3=(x﹣2)2﹣1,又∵B(3,0),C(0,3),∴PC===2,PB==,∴BC===3,又∵PB2+BC2=2+18=20,PC2=20,∴PB2+BC2=PC2,∴△PBC是直角三角形,∠PBC=90°,∴S△PBC=PB•BC=××3=3;(3)如图2,由y=x2﹣4x+3=(x﹣2)2﹣1,得P(2,﹣1),设抛物线的对称轴交x轴于点M,∵在Rt△PBM中,PM=MB=1,∴∠PBM=45°,PB=.由点B(3,0),C(0,3)易得OB=OC=3,在等腰直角三角形OBC中,∠ABC=45°,由勾股定理,得BC=3.假设在x轴上存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似.①当=,∠PBQ=∠ABC=45°时,△PBQ∽△ABC.即=,解得:BQ=3,又∵BO=3,∴点Q与点O重合,∴Q1的坐标是(0,0).②当=,∠QBP=∠ABC=45°时,△QBP∽△ABC.即=,解得:QB=.∵OB=3,∴OQ=OB﹣QB=3﹣,∴Q2的坐标是(,0).③当Q在B点右侧,则∠PBQ=180°﹣45°=135°,∠BAC<135°,故∠PBQ≠∠BAC.则点Q不可能在B点右侧的x轴上,综上所述,在x轴上存在两点Q1(0,0),Q2(,0),能使得以点P,B,Q为顶点的三角形与△ABC相似.19.(2016•贵港)如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.(1)求该抛物线的解析式;(2)若点E为x轴下方抛物线上的一动点,当S△ABE=S△ABC时,求点E的坐标;(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.【解答】解:(1)把A、B两点坐标代入解析式可得,解得,∴抛物线解析式为y=x2+x﹣5;(2)在y=x2+x﹣5中,令x=0可得y=﹣5,∴C(0,﹣5),∵S△ABE=S△ABC,且E点在x轴下方,∴E点纵坐标和C点纵坐标相同,当y=﹣5时,代入可得x2+x=﹣5,解得x=﹣2或x=0(舍去),∴E点坐标为(﹣2,﹣5);(3)假设存在满足条件的P点,其坐标为(m,m2+m﹣5),如图,连接AP、CE、AE,过E作ED⊥AC于点D,过P作PQ⊥x轴于点Q,则AQ=AO+OQ=5+m,PQ=|m2+m﹣5|,在Rt△AOC中,OA=OC=5,则AC=5,∠ACO=∠DCE=45°,由(2)可得EC=2,在Rt△EDC中,可得DE=DC=,∴AD=AC﹣DC=5﹣=4,当∠BAP=∠CAE时,则△EDA∽△PQA,∴=,即=,∴m2+m﹣5=(5+m)或m2+m﹣5=﹣(5+m),当m2+m﹣5=(5+m)时,整理可得4m2+5m﹣75=0,解得m=或m=﹣5(与A点重合,舍去),当m2+m﹣5=﹣(5+m)时,整理可得4m2+11m﹣45=0,解得m=或m=﹣5(与A点重合,舍去),∴存在满足条件的点P,其横坐标为或.20.(2016•河池)在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.【解答】解:(1)当y=﹣x2﹣2x+3中y=0时,有﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,∵A在B的左侧,∴A(﹣3,0),B(1,0).当y=﹣x2﹣2x+3中x=0时,则y=3,∴C(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点D(﹣1,4).(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,如图1所示.∵C(0,3),∴C′(0,﹣3).设直线C′D的解析式为y=kx+b,则有,解得:,∴直线C′D的解析式为y=﹣7x﹣3,当y=﹣7x﹣3中y=0时,x=﹣,∴当△CDE的周长最小,点E的坐标为(﹣,0).(3)设直线AC的解析式为y=ax+c,则有,解得:,∴直线AC的解析式为y=x+3.假设存在,设点F(m,m+3),△AFP为等腰直角三角形分三种情况(如图2所示):①当∠PAF=90°时,P(m,﹣m﹣3),∵点P在抛物线y=﹣x2﹣2x+3上,∴﹣m﹣3=﹣m2﹣2m+3,解得:m1=﹣3(舍去),m2=2,此时点P的坐标为(2,﹣5);②当∠AFP=90°时,P(2m+3,0)∵点P在抛物线y=﹣x2﹣2x+3上,∴0=﹣(2m+3)2﹣2×(2m+3)+3,解得:m3=﹣3(舍去),m4=﹣1,此时点P的坐标为(1,0);③当∠APF=90°时,P(m,0),∵点P在抛物线y=﹣x2﹣2x+3上,∴0=﹣m2﹣2m+3,解得:m5=﹣3(舍去),m6=1,此时点P的坐标为(1,0).综上可知:在抛物线上存在点P,使得△AFP为等腰直角三角形,点P的坐标为(2,﹣5)或(1,0).。
二次函数经典测试题附答案二次函数经典测试题附答案一、选择题1.小明从如图所示的二次函数 $y=ax^2+bx+c$ 的图像中,观察得出了下面五条信息:①$c0$,③$a-b+c>0$,④$b^2>4ac$,⑤$2a=-2b$,其中正确结论是().A。
①②④B。
②③④C。
③④⑤D。
①③⑤解析】本题考查了二次函数图像与系数关系,观察图像判断图像开口方向、对称轴所在位置、与 $x$ 轴交点个数即可得出二次函数系数满足条件。
由抛物线的开口方向判断 $a$ 的符号,由抛物线与 $y$ 轴的交点判断 $c$ 的符号,然后根据对称轴及抛物线与 $x$ 轴交点情况进行推理,进而对所得结论进行判断。
详解】①由抛物线交 $y$ 轴于负半轴,则 $c0$;由对称轴在 $y$ 轴右侧,对称轴为 $x=-\frac{b}{2a}$,又 $a>0$,故$b0$,故②错误;③结合图像得出 $x=-1$ 时,对应 $y$ 的值在 $x$ 轴上方,故 $y>0$,即 $a-b+c>0$,故③正确;④由抛物线与 $x$ 轴有两个交点可以推出 $b^2-4ac>0$,故④正确;⑤由图像可知:对称轴为 $x=-\frac{b}{2a}$,则 $2a=-2b$,故⑤正确;故正确的有:③④⑤。
故选:C。
点睛】本题考查了二次函数图像与系数关系,观察图像判断图像开口方向、对称轴所在位置、与 $x$ 轴交点个数即可得出二次函数系数满足条件。
2.二次函数 $y=ax^2+bx+c$($a\neq0$)图像如图所示,下列结论:①$abc>0$;②$2a+b^2=2$;③当 $m\neq1$ 时,$a+b>am^2+bm$;④$a-b+c>0$;⑤若$ax_1+bx_1=ax_2+bx_2$,且 $x_1\neq x_2$,则 $x_1+x_2=2$。
其中正确的有()A。
①②③B。
②④C。
②⑤D。
九年级数学二次函数测试题含答案(精选5套)九年级数学二次函数测试题含答案(精选5套)第一套:1. 将函数 $y = 2x^2 - 3x - 2$ 化简为标准形式,并求出它的顶点坐标。
答案:将函数化简为标准形式得到 $y = 2(x-\frac{3}{4})^2 -\frac{33}{8}$,顶点坐标为 $(\frac{3}{4}, -\frac{33}{8})$。
2. 求函数 $y = -x^2 + 4x + 1$ 的零点。
答案:将函数化简为标准形式得到 $y = -(x-2)^2 + 5$,令 $y = 0$,解得 $x = 2 \pm \sqrt{5}$,即零点为 $x_1 = 2 + \sqrt{5}$ 和 $x_2 = 2 -\sqrt{5}$。
3. 给定函数 $y = x^2 - 6x + 5$,求其对称轴的方程式。
答案:对称轴的方程式为 $x = \frac{-b}{2a}$,代入 $a = 1$ 和 $b = -6$ 得到 $x = \frac{6}{2} = 3$。
4. 若函数 $y = ax^2 + bx - 9$ 与 $y = -x^2 + 7x$ 有相同的图像,求$a$ 和 $b$ 的值。
答案:由于两个函数有相同的图像,所以它们的系数相等。
比较两个函数的对应系数得到 $a = -1$ 和 $b = 7$。
5. 已知函数 $y = x^2 - 4x + 5$ 的图像上存在一点 $(h, k)$,使得 $x= h - 3$ 时,$y = 2k + 12$,求点 $(h, k)$ 的坐标。
答案:将 $x = h - 3$ 代入函数得到 $y = (h-3)^2 - 4(h-3) + 5$。
代入$y = 2k + 12$ 得到 $(h-3)^2 - 4(h-3) + 5 = 2k + 12$。
整理得到 $(h-3)^2 -4(h-3) - 2k - 7 = 0$。
由于该方程为二次方程,必然存在实数解。
二次函数练习题及答案1. 已知二次函数的顶点为(2, 3),且经过点(1, 5),求该二次函数的解析式。
2. 抛物线y=ax^2+bx+c与x轴交于点A(-1, 0)和B(3, 0),求抛物线的对称轴方程。
3. 函数f(x)=2x^2-4x+m在区间[0, 2]上的最大值为8,求m的值。
4. 已知二次函数y=ax^2+bx+c的图象经过点(-1, 2)和(2, 2),且在x=1处取得最小值,求a、b、c的值。
5. 抛物线y=ax^2+bx+c的图象开口向上,且经过点(0, 1)和(2, 5),求a的取值范围。
6. 函数y=x^2-2x+3的图象与x轴的交点坐标为多少?7. 抛物线y=-2x^2+4x+1的顶点坐标是什么?8. 已知二次函数y=ax^2+bx+c的图象与y轴交于点(0, 2),且在x=-1处取得最大值,求a、b、c的值。
9. 函数f(x)=x^2-6x+8在区间[1, 4]上的最大值和最小值分别是多少?10. 抛物线y=3x^2-6x+2与x轴的交点坐标是什么?11. 已知二次函数y=ax^2+bx+c的图象经过点(1, 0)和(-2, 0),且在x=0处取得最小值,求a、b、c的值。
12. 函数y=2x^2-4x+1在区间[0, 3]上的最大值和最小值分别是多少?13. 抛物线y=-x^2+2x+3的图象开口向下,求抛物线的顶点坐标。
14. 已知二次函数y=ax^2+bx+c的图象经过点(-3, -2)和(1, -2),求a、b、c的值。
15. 函数y=x^2-4x+5的图象与x轴的交点坐标为多少?16. 抛物线y=4x^2-12x+9的顶点坐标是什么?17. 已知二次函数y=ax^2+bx+c的图象与y轴交于点(0, -1),且在x=2处取得最大值,求a、b、c的值。
18. 函数f(x)=-2x^2+8x-8在区间[0, 4]上的最大值和最小值分别是多少?19. 抛物线y=x^2-4x+5的图象开口向上,求抛物线的对称轴方程。
二次函数练习题及答案一、选择题1.下列函数中,是二次函数的是()A. y=3x+2B. y=x^3+2xC. y=x^2-5x+6D. y=2^x2.二次函数y=ax^2+bx+c的图象是()A. 一条直线B. 一个抛物线C. 一个圆D. 一个双曲线3.已知二次函数f(x)=ax^2+bx+c的对称轴方程为x=2,则a、b和c 的值分别是()A. a=1, b=0, c=-4B. a=0, b=1, c=-4C. a=1, b=0, c=4D. a=0, b=1, c=4二、填空题1. 已知二次函数f(x)=2x^2+4x+1,求其对称轴的方程:________2. 二次函数y=x^2-4x+3的顶点坐标为:________3. 已知二次函数f(x)=ax^2+12x+3的图象与y轴交于点(0, -3),则a 的值为:________三、解答题1. 某商品的生产成本y(万元)与产量x(万件)之间的关系为二次函数y=2x^2-8x+20。
求:a) 生产2000件商品时的生产成本;b) 使生产成本最小的产量。
2. 已知二次函数y=ax^2+bx+c的图象顶点坐标为(-3, 4),且经过点(2, -2)。
求a、b和c的值。
答案及解析:一、选择题1. 答案:C解析:二次函数的标准形式为y=ax^2+bx+c,其中a不等于0。
只有选项C满足二次函数的形式。
2. 答案:B解析:二次函数的图象为一个抛物线。
3. 答案:A解析:对称轴方程的一般形式为x=-b/2a。
根据题目中对称轴方程为x=2,可以得出-b/2a=2,解得b=0和a=1。
由于对称轴方程不包含c,因此c的值可以是任意实数。
二、填空题1. 答案:x= -b/2a = -4/(2*2) = -1解析:对称轴方程的一般形式为x=-b/2a。
2. 答案:(-2, 7)解析:二次函数的顶点坐标为(-b/2a, f(-b/2a))。
3. 答案:a=-3解析:由题意可得,当x=0时,f(x)=y=-3。
二次函数试题及答案一、选择题1. 下列哪个函数是二次函数?A. y = x^2 + 3x + 2B. y = 3x + 2C. y = x^3 - 1D. y = 1/x答案:A2. 二次函数 y = ax^2 + bx + c 的顶点坐标是什么?A. (-b, c)B. (-b/2a, c)C. (-b/2a, 4ac - b^2) / 4aD. (-b/2a, 4ac - b^2) / (4a)答案:D3. 如果二次函数 y = ax^2 + bx + c 的 a < 0,那么它的图像开口方向是?A. 向上B. 向下C. 向左D. 向右答案:B二、填空题4. 二次函数 y = 2x^2 - 4x + 3 的顶点坐标是()。
答案:(1, 1)5. 如果二次函数 y = ax^2 + bx + c 与 x 轴有两个交点,那么 a 的取值范围是()。
答案:a ≠ 0 且Δ > 0三、解答题6. 已知二次函数 y = -3x^2 + 6x - 5,求该函数与 x 轴的交点。
答案:解:令 y = 0,得 -3x^2 + 6x - 5 = 0,解得x1 = (3 + √33) / 6,x2 = (3 - √33) / 6,因此,该函数与 x 轴的交点坐标为( (3 + √33) / 6, 0) 和( (3 - √33) / 6, 0)。
7. 某二次函数的图像经过点 (1, 2) 和 (2, 3),且顶点在 x 轴上,求该二次函数的解析式。
答案:解:设二次函数为 y = a(x - h)^2 + k,由于顶点在 x 轴上,所以 k = 0,又因为图像经过点 (1, 2) 和 (2, 3),代入得:a(1 - h)^2 = 2a(2 - h)^2 = 3解得 h = 1.5,a = 2,因此,该二次函数的解析式为 y = 2(x - 1.5)^2。
四、应用题8. 一个矩形的长是宽的两倍,如果面积为 24 平方米,求这个矩形的长和宽。
二次函数的练习题及答案一、选择题:1. 若二次函数y=ax^2+bx+c的图像开口向上,且与x轴有交点,则a 和b应满足的条件是()。
A. a>0, b>0B. a<0, b<0C. a>0, b^2>4acD. a<0, b^2>4ac2. 二次函数y=-x^2+4x-1的顶点坐标是()。
A. (1,4)B. (2,3)C. (-2,3)D. (2,-3)3. 对于二次函数y=ax^2+bx+c,当x=-1时,函数值最大,那么a的取值范围是()。
A. a>0B. a<0C. a=0D. 无法确定二、填空题:1. 已知二次函数y=2x^2-8x+3,当x=______时,函数值最小。
2. 若二次函数y=-3x^2-6x+5的图像与x轴的交点坐标为(x1,0),(x2,0),则x1+x2=______。
三、解答题:1. 已知二次函数y=-2x^2+4x+1,求出当x取何值时,函数值y最大,并求出最大值。
2. 已知二次函数y=3x^2-6x+2,求出函数与x轴的交点坐标。
四、应用题:1. 某工厂生产一种产品,其生产成本与产品数量的关系可以近似为二次函数:C(x)=0.5x^2-100x+3000,其中x代表产品数量,C(x)代表成本。
求出当生产多少件产品时,成本最低,并求出最低成本。
2. 某公司计划在一块长为60米的空地上建一个矩形花园,花园的长和宽之和为30米。
设花园的长为x米,求出花园的面积最大时的长和宽,并求出最大面积。
答案:一、选择题:1. C2. B3. B二、填空题:1. 22. -2三、解答题:1. 当x=1时,函数值y最大,最大值为3。
2. 函数与x轴的交点坐标为(1,0)和(2,0)。
四、应用题:1. 当生产200件产品时,成本最低,最低成本为2000元。
2. 花园的长为15米,宽为15米时,面积最大,最大面积为225平方米。
《走进语文教学之门》读后感宜宾县育才中学李兰语文课程的复合性是一个重大的、复杂的、无论在外部或内部牵涉都极为深广的问题,诸如国家教育政策、课程标准研制、教材编写、教师培训、语文高考等等,但在本书中我们只是本着“百家争鸣”的精神把它当作一个学术问题提出来和大家商量。
本书在充分论证语文课程复合性(即语文课程是汉语和文学的复合)语文教学活动对话性的基础上,界定了汉语素养和文学素养的不同内涵,较为系统深入地探讨了汉语教学与文学教学不同的教学理念、目标、原则、内容、方法等,初步构建了一个新的语文教学体系。
--编辑推荐最近,刚读完《走进语文教学之门》,我寝食不安,为伊消得人憔悴.此书的厚重让我恐惧.开学了,被孩子们的劲儿所感动,在寒假中,布置的作业是读完《假如给我三天光明》,并写三千字摘记作业,还做起记号让我检查.想起本书中的绪论"教师应当比学生更可教",我不禁面红耳赤,拿起《走进语文教学之门》,做起摘记.读着读着,我不禁佩服起王尚文先生,他以敏锐的思维,独特的观点,深厚的语文功底,向了是语文,语文应该教,语文是一门怎样的学科,语文老师该做等等问题,在《走进语文教学之门》一书中,总能找到心中想要的答案。
原文:海德格尔说:“教师,他得学会让学”。
P5我们可以把海德格尔的让学分为两个层次,一个是让热爱,一个是让实践。
P369 为了成为一名优秀的语文教师,他应该把主要的精力放在专业的学习上,努力使自己成为语言的教育家或文学的教育家,而不是说不清道不明的语文教育家。
否则他的“杂”往往就会导致在课程学术含量上的“稀”或“浅”。
P106 话语的对话性意味着意图就是话语的核心。
话语与话语交往实质就是意图与意图的交往。
而语言能力在一定程度上讲就是对意图的感知与表达能力。
P114 语言美不美不在于它在用词上是否文绉绉,是否含蓄,是否用了修辞手法,而应该从运用者的运用意识,从运用的目的来判断。
P118转引自黄琼《语感:语文教改新的路标》《中学语文教学》2006年第10期。
感悟:判断语言不在于华美或朴实,关键是看意思表达是否到位。
只要意思到位,可以接受各种表达形式,哪怕僭越一些语法规则也是可以的。
这样训练学生的语言可以绕开一味的修辞训练,提高语言表达能力养成的速度。
我费了不少力气搞了篇优美语段,学生背得热火朝天,我挺得意。
更为得意的是我还能让学生通过一节课就能写出象模象样的优美语段来。
训练的程序大概如此推进。
绝招一:以暗喻组成排比句1、渐进练习一:爱心是阳光,爱心是露珠,爱心是问候。
爱心是白鸽,爱心是胡杨,爱心是古筝。
渐进练习二:爱心是一片阳光,爱心是一掬露珠,爱心是一句问候。
爱心是一只白鸽,爱心是一棵胡杨,爱心是一曲古筝。
渐进练习三:爱心是一片照射在冬日的阳光,爱心是一掬洒落在花萼的露珠,爱心是一句飘荡在寒晨的问候。
爱心是一只飞舞在天空的白鸽,爱心是一棵屹立在沙漠的胡杨,爱心是一曲鸣响在脑海的古筝。
渐进练习四:爱心是一片照射在冬日的阳光,使贫病交迫的人感到温暖;爱心是一掬洒落在花萼的露珠,使心田久涸的人得到滋润;爱心是一句飘荡在寒晨的问候,使奔波劳累的人感到温暖。
绝招二:以引用组成排比句句式1:…是“……”的…坚韧是“我自横刀向天笑,去留肝胆两昆仑”的谭嗣同;是“亦余心之所善兮,虽九死其犹未悔”的屈原;是“拼得十万头颅血,须把乾坤力挽回”的鉴湖女侠秋瑾!句式2:…是××ד…”的…自信是李白“天生我才必有用,千金散尽还复来”的慨然身许;自信是陆游“壮心未与年俱老,死去犹能作鬼雄”的豪情抒发;自信是黄宗羲“死犹未肯输心去,贫亦其能奈我何”的心灵高歌!例文:风度是大雨中为人撑开的小伞,是焦阳下替人遮阴的大树;风度是诸葛亮空城上坦然的琴声,是周总理外交中从容的回复;风度是指挥家飘逸的手势,是思想者睿智的头颅;风度是司仪得体的举止,是模特优美的款步;风度是卓别林的帽子,是王羲之的行书……我正自得,突然一个学生的质疑惊醒了我甜蜜的梦。
“老师你这不是总用华美的语句掩盖空洞的内容吗?”是呀,华美语段怎么跟文章的主题联系起来,如果就没联系却硬套,那还叫真正的写作吗?车轱辘话转着说,尽管很顺溜,但是毕竟是轱辘话而已。
在车轱辘话的无效运转中对话或写作的目的、语言运用的目的被丢弃了。
如何使优美语段有思想灵魂的依附呢?就象长在文章上一样,只有紧扣语言运用的目的进行提升。
(具体如何细化还要看实例的运用)诚如王尚文先生所言的,汉语素养的内涵:出于真诚对话的愿望,准确理解对话形式与话语意图;精确妥帖地运用祖国语言文字表情达意,以进行最有效的交流。
P165 原文:我们提倡语文教学虽不是完全的对话,但必须是对话性的。
什么是语文教学的对话性?简单地说就是在坚持教学的教育特征的同时,教师以对话的情怀对待学生,对待教学,对话精神贯穿在具体的教学过程中。
这样的语文教学我们称之为对话型的语文教学。
P134-135 感悟:对话的情怀其实就是对学生的真诚、平等、容忍。
但是对话情怀并非放弃课堂教学效益。
诚如王尚文先生所言的,教学依然是教学,它具有一定程度的目标预设和行为控制,对话只是发生在某些时段,某些教学层面上,某些教学内容上。
P157 原文:文字并不仅仅依附于语言,作文并不就是写话。
口说之话与笔写之文各具个性,各有所司,也有各有长处和短处,两者一般是不能相互替代的。
P171 感悟:很多人认为口语与写作是一回事,口语好,作文也一定好,其实不然的。
魏书生总是在上课前搞搞口头作文,如果出发点是以此来提高写作水平,这恐怕是方向不对了。
从人与人的关系这一新的语文教学逻辑起点上,我们再看说明文教学,可以说作者的意图和作品的读者对象是说明文教学内容中的前提要素,这两个前提要素深刻地制约着其他要素:一、选择哪些说明内容,而这些说明内容要把握怎样的深度和广度;二、按照怎样的顺序来写才能使我的读者最容易接受我的意图;三、采用什么样的说明方法才能更好地实现我的意图,为读者理解和接受;四、话语该怎样表达对实现意图才是最恰当的。
我们说,从学以致用的要求看,只有明确了作者的写作意图和作品的读者对象,说明内容、顺序、方法等才有真正的用武之地,否则就有可能悬在半空而不切实用。
我们主张必须从语言的意思本位越进到话语的意图本位,从意图本位出发观照其他要素,从而重构说明文的教学内容。
P188 感悟:人与人的关系这一新的语文教学逻辑起点,这句话现在听起来还是有点玄乎玄乎的,想不出在课堂中是如何落实的。
不过重构说明文的教学内容倒是提高说明文教学质量的必经之路。
说明文教学还从说明对象、说明顺序,说明方法这三大块出发是必然枯燥低效的。
于漪的晋祠课例应是学习的典范。
原文:写作就是为生存找一个至一万个精神上的理由,以便生活不只是一个生物过程,更是一个充实、旺盛、快乐和镇静的精神过程。
(史铁生语)P234 写作就是生活本身,所以写作的根本不在生活之外,而就在生活之中。
P235 感悟:这话是从哲学和人类学角度来讲的,对很多人是没有用的,对我们的学生更是意义不大,或者就是废话,对学生写作激情需要激发、牵引。
原文:文学作品教学重在引导学生体验,而非文学作品教学重在让学生理论分析,文学作品教学重在让学生热爱文学、能够欣赏文学,而非文学作品教学则旨在让学生懂得某个道理,学得某项知识。
P296 我们认为文学作品教学的目的有两个方面:让学生动情;让学生会阅读文学作品。
P297-298 以体验来观照文学作品的教学,重要的不是作家的意图,而是文学作品中那个有活气和生命的世界;重要的不是探寻作家的意图,而是去体验作品中那个有活气和生命的世界。
体验的过程就是情感生发、深化的过程。
P306 ①天那么冷,渔翁为什么要去钓鱼?②别里科夫为什么把自己装在套子里?这些问题一提就使得学生脱离了体验的轨道,滑向了对人物客观背景的想象和分析。
P307 在文学作品教学的时候,我们可以抓住这样的几点:你在阅读过程中有哪些地方出乎你的意料?你的预期是什么?怎样出乎你的意料?出乎你意料的地方你觉得精彩吗?由此你觉得主人公是个怎样的人?319 在具体的文学作品中,引导学生在体验之后的反思可以围绕以下几个方面展开:第一、作品写得感人吗?第二、是什么打动了你?第三、为什么能打动你?感悟:王尚文的话语似乎很空,很虚,很绝对。
他的考查阅读期待与阅读现实的差别也不算得什么高招,这也太普遍了。
体验体验,文章根本读不懂去体验什么,这时候还是应该以解读者取向来教学文章的。
体验体验倒是鉴赏者取向了。
①天那么冷,渔翁为什么要去钓鱼?②别里科夫为什么把自己装在套子里?这些问题不是一直在问吗?问题设置关键还是看设问的目的。
以上是对该书的部分内容做的摘抄与感悟。
总的说来,我觉得此书能给人莫大的启示。
一、关注孩子的文学素养以前只记得叶圣陶先生说:"叫语文?平常说的话叫口头语言,写到纸面上叫书面语言.把口头语言和书面语言连在一起说,就叫语文."我就以为在语文了.其实我只是让孩子有口头表达和写作的,却让孩子们在文学素养上.两三年了,孩子的口语和写作能力依然平平无奇,读了此书,我知道我在汉语教学的时候,忘记了文学教育. 2001年教育部颁布的《全日制义务教育语文课程标准(实验稿)》,既规定了"语文课程应培育学生热爱祖国语文的思想感情,学生地理解和运用祖国语文"的语言教育任务,也指出了文学教育的:"能理解、鉴赏文学作品,受到高尚情操与趣味的熏陶,发展个性,的精神世界." 在章《语文课程的复合性》中,作者在论证语文课程复合性(即语文课程是汉语和文学的复合)和语文教学活动对话性的基础上,界定了汉语素养和文学素养的不同内涵. 王先生说,语文是一门复合性的课程,是由汉语和文学两组成的.汉语教学要培养学生理解和运用祖国的语言文字的能力,要着力培养学生的听说读写能力.时下,提倡词语的理解,也对语义的把握,当然还应关注语韵和语用.文学教学要"让学",让学生爱上语文,让学生亲历实践,让学生对文学的兴趣,自愿读,自能读.先生主张语文课上,教者应当将这两者一分为二,侧重,让教学内容起来,让教学清晰起来.换一句话说,的语文课是汉语课的话,就应把语言文字教学的,培养学生对汉语文字的感情.三千左右的常用字会读、会写、会组词组句小学语文课程与教学不折不扣的硬任务. 文学教育在素质教育中的必要性、性是不言而喻的.儿童文学新一轮的高潮正在到来.对学生课外阅读考级正是文学教育的开始.我经常思考问题是:的素质教育到,素质教育缺少的一环文学教育.经常讲文学是?文学是以血肉丰满的人物形象与可情可感的生动意境感染人、打动人、震撼人、人,是以语言的力量、情感的力量、道义的力量、审美的力量,一句话,也人性的力量,人的精神是少年儿童健康成长的.我很奇怪,为这么多的教育家提倡素质教育却从来谈过要强调文学教育.文学教育在素质教育中的必要性、性是不言而喻的. 这本书的剖析了我教学停滞的原因——对孩子文学教育的关注.二、关注孩子的训练王先生谈到语文学习的方法的时候,例举了三种最原始、最、最、最的方法,那细读、诵读、背诵.细读,细细读之,细细理会,细细玩味.文本是由字词组合而成,细读要弄清字词的形、音、义;标点文本的有机组成,也要细读.诵读,从词源上看,应该能在感知话语声音形态的,对文本的感悟与理解.从阅读实践看,感悟理解与诵读吟咏是共生的.背诵,是在读准字音、句读和理解文意的基础上熟读、烂读,读得滚瓜烂熟,从而"自然成诵".任何人语言能力的养成、发展,都于丰厚的语言积淀,前人的优秀.王先生,当前中小学生语文素养滑坡的,主要的根源语文教学中轻视甚至背诵宝贵传统,学生背得实在太少,要求实在太低了! 回顾的课堂,总是讲得多,孩子讲得少,有时候怕讲得清楚,还要重复一次,课文讲完了,要做练习了,铃声响了,孩子读书和练笔没了.于是今年我的课堂今年有些,课前预习要读,课堂上检查读(让孩子预习可以课堂),段背诵读的读书让孩子积累不少. 我还注重孩子的"听说写"训练.在《汉语素养与汉语教学》章节中,叶圣陶先生说:"什么叫语文?平常说的话叫口头语言,写到纸面上叫书面语言.把口头语言和书面语言连在一起说,就叫语文.此学科"听说读写"宜并重,诵习课本,练习作文,读写之事,而苟忽于听说,不注意训练,则读写之亦将减损.听说读写四个字中间,说最为,说的功夫差不多了,听说读写三项就差不多了."在叶老的基础上,朱德熙老先生指出"会作文,的原因是会说话.口头说的话写下来文,文章不过是"书面的说话".衡量口语通不通顺的标准衡量文章通不通顺的标准." 书中带给我感受的说不完,道不尽,使我受益匪浅. 什么是语文?语文是什么?一直以来有那么多的专家学者给了那么多的阐释。