固体物理学习题答案 朱建国版
- 格式:docx
- 大小:511.78 KB
- 文档页数:33
《固体物理学》部分习题解答1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 。
解 由倒格子定义2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯体心立方格子原胞基矢123(),(),()222a a aa i j k a i j k a i j k =-++=-+=-+ 倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯202()()4a i j k i j k v π=⋅-+⨯+-2()j k a π=+ 同理31212322()a ab i k a a a aππ⨯==+⋅⨯ 32()b i j a π=+ 可见由123,,b b b 为基矢构成的格子为面心立方格子 面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+ 倒格子基矢2311232a a b a a a π⨯=⋅⨯ 12()b i j k a π=-++ 同理22()b i j k a π=-+ 32()b i j k aπ=-+ 可见由123,,b b b 为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为03(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯3121232a a b a a a π⨯=⋅⨯1231232a a b a a a π⨯=⋅⨯倒格子体积*0123()v b b b =⋅⨯3*23311230(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯ 3*00(2)v v π=1.5 证明:倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系。
第一章 晶体结构1.1、 如果将等体积球分别排成下列结构,设x 表示钢球所占体积与总体积之比,证明:结构 X简单立方52.06=π体心立方68.083≈π 面心立方74.062≈π 六角密排74.062≈π 金刚石34.063≈π解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。
因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。
这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。
它的空间利用率就是这个晶体原胞所包含的点的数目n 和小球体积V 所得到的小球总体积nV 与晶体原胞体积Vc 之比,即:晶体原胞的空间利用率, VcnVx = (1)对于简立方结构:(见教材P2图1-1) a=2r , V=3r 34π,Vc=a 3,n=1 ∴52.06834343333====πππrra r x(2)对于体心立方:晶胞的体对角线BG=x 334a r 4a 3=⇒= n=2, Vc=a 3∴68.083)334(3423423333≈=⨯=⨯=πππr r a r x (3)对于面心立方:晶胞面对角线BC=r 22a ,r 4a 2=⇒= n=4,Vc=a 374.062)22(3443443333≈=⨯=⨯=πππr r a r x (4)对于六角密排:a=2r 晶胞面积:S=6260sin a a 6S ABO ⨯⨯=⨯∆=2a 233晶胞的体积:V=332r 224a 23a 38a 233C S ==⨯=⨯ n=1232126112+⨯+⨯=6个 74.062)22(3443443333≈=⨯=⨯=πππr r a r x (5)对于金刚石结构,晶胞的体对角线BG=3r 8a r 24a 3=⇒⨯= n=8, Vc=a 334.06333834834833333≈=⨯=⨯=πππr r a r x 1.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。
固体物理学答案朱建国版3HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】固体物理学·习题指导配合《固体物理学(朱建国等编着)》使用2020年10月30日第1章晶体结构 (1)第2章晶体的结合 (12)第3章晶格振动和晶体的热学性质 (20)第4章晶体缺陷 (32)第5章金属电子论 (35)第1章晶体结构1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f和R b代表面心立方和体心立方结构中最近邻原子间的距离,试问R f/R b等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a:对于面心立方,处于面心的原子与顶角原子的距离为:R fa对于体心立方,处于体心的原子与顶角原子的距离为:R b=2a那么,Rf Rb1.2 晶面指数为(123)的晶面ABC是离原点O最近的晶面,OA、OB和OC分别与基失a1,a2和a3重合,除O点外,OA,OB和OC上是否有格点?若ABC 面的指数为(234),情况又如何?答:晶面族(123)截a1,a2,a3分别为1,2,3等份,ABC面是离原点O最近的晶面,OA的长度等于a1的长度,OB的长度等于a2长度的1/2,OC的长度等于a3长度的1/3,所以只有A点是格点。
若ABC面的指数为(234)的晶面族,则A、B和C都不是格点。
1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型,两晶轴ba、,夹角ϕ,如下表所示。
1 简单斜方2 简单正方3 简单六角4 简单长方5 有心长方二维布拉维点阵1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213) 答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
《固体物理学》习题解答第一章 晶体结构1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为a 。
解:氯化钠与金刚石型结构都是复式格子。
氯化钠的基元为一个Na +和一个Cl -组成的正负离子对。
金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。
由于NaCl 和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:123()2()2()2a a a ⎧=+⎪⎪⎪=+⎨⎪⎪=+⎪⎩a j k a k i a i j相应的晶胞基矢都为:,,.a a a =⎧⎪=⎨⎪=⎩a ib jc k2. 六角密集结构可取四个原胞基矢123,,a a a 与4a ,如图所示。
试写出13O A A '、1331A A B B 、2255A B B A 、123456A A A A A A 这四个晶面所属晶面族的晶面指数()h k l m 。
解:(1).对于13O A A '面,其在四个原胞基矢上的截矩分别为:1,1,12-,1。
所以,其晶面指数为()1121。
(2).对于1331A A B B 面,其在四个原胞基矢上的截矩分别为:1,1,12-,∞。
所以,其晶面指数为()1120。
(3).对于2255A B B A 面,其在四个原胞基矢上的截矩分别为:1,1-,∞,∞。
所以,其晶面指数为()1100。
(4).对于123456A A A A A A 面,其在四个原胞基矢上的截矩分别为:∞,∞,∞,1。
所以,其晶面指数为()0001。
3. 如将等体积的硬球堆成下列结构,求证球体可能占据的最大体积与总体积的比为:简立方:6π;。
证明:由于晶格常数为a ,所以:(1).构成简立方时,最大球半径为2m aR =,每个原胞中占有一个原子,334326m a V a ππ⎛⎫∴== ⎪⎝⎭36m V a π∴= (2).构成体心立方时,体对角线等于4倍的最大球半径,即:4m R =,每个晶胞中占有两个原子,334322348m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭328m V a ∴=(3).构成面心立方时,面对角线等于4倍的最大球半径,即:4m R =,每个晶胞占有4个原子,334244346m V a a π⎛⎫∴=⨯= ⎪ ⎪⎝⎭346m V a ∴=(4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高则正好是其原胞基矢c 的长度的一半,由几何知识易知3m R =c 。
固体物理学习题答案朱建国版《固体物理学》习题参考第⼀章1.1 有许多⾦属即可形成体⼼⽴⽅结构,也可以形成⾯⼼⽴⽅结构。
从⼀种结构转变为另⼀种结构时体积变化很⼩.设体积的变化可以忽略,并以R f 和R b 代表⾯⼼⽴⽅和体⼼⽴⽅结构中最近邻原⼦间的距离,试问R f /R b 等于多少?答:由题意已知,⾯⼼、体⼼⽴⽅结构同⼀棱边相邻原⼦的距离相等,都设为a :对于⾯⼼⽴⽅,处于⾯⼼的原⼦与顶⾓原⼦的距离为:R f =22 a 对于体⼼⽴⽅,处于体⼼的原⼦与顶⾓原⼦的距离为:R b =32a 那么,Rf Rb =23aa=631.2 晶⾯指数为(123)的晶⾯ABC 是离原点O 最近的晶⾯,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC ⾯的指数为(234),情况⼜如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 ⼆维布拉维点阵只有5种,试列举并画图表⽰之。
答:⼆维布拉维点阵只有五种类型:正⽅、矩形、六⾓、有⼼矩形和斜⽅。
分别如图所⽰:1.4 在六⽅晶系中,晶⾯常⽤4个指数(hkil )来表⽰,如图所⽰,前3个指数表⽰晶⾯族中最靠近原点的晶⾯在互成120°的共平⾯轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表⽰该晶⾯的六重轴c 上的截距c/l.证明:i=-(h+k )并将下列⽤(hkl )表⽰的晶⾯改⽤(hkil )表⽰:(001)(133)(110)(323)(100)(010)(213) 答:证明设晶⾯族(hkil )的晶⾯间距为d ,晶⾯法线⽅向的单位⽮量为n °。
因为晶⾯族(hkil )中最靠近原点的晶⾯ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id===g g g ……… (1) 由于a 3=–(a 1+ a 2)把(1)式的关系代⼊,即得根据上⾯的证明,可以转换晶⾯族为(001)→(0001),(133)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)正⽅ a=b a^b=90° 六⽅ a=b a^b=120矩形 a ≠b a^b=90° 带⼼矩形 a=b a^b=90° 平⾏四边形 a ≠b→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最⼤⾯积与总体积之⽐为(1)简⽴⽅:6π(2)体⼼⽴⽅:38π(3)⾯⼼⽴⽅:26π(4)六⽅密堆积:26π(5)⾦刚⽯:316π。
固体物理学第五章答案固体物理学第五章答案【篇一:固体物理习题解答】>( 仅供参考)参加编辑学生柯宏伟〔第一章〕,李琴〔第二章〕,王雯〔第三章〕,陈志心〔第四章〕,朱燕〔第五章〕,肖骁〔第六章〕,秦丽丽〔第七章〕指导教师黄新堂华中师范大学物理科学与技术学院2022级2022年6月第一章晶体结构1. 氯化钠与金刚石型结构是复式格子还是布拉维格子,各自的基元为何?写出这两种结构的原胞与晶胞基矢,设晶格常数为a。
解:氯化钠与金刚石型结构都是复式格子。
氯化钠的基元为一个na+和一个cl-组成的正负离子对。
金刚石的基元是一个面心立方上的C原子和一个体对角线上的C原子组成的C原子对。
由于nacl和金刚石都由面心立方结构套构而成,所以,其元胞基矢都为:a?a??12(j?k)?a?a?(k?i) ?22?a?a??32(i?j)?相应的晶胞基矢都为:?a?ai,??b?aj,?c?ak.?2. 六角密集结构可取四个原胞基矢a1,a2,a3与a4,如下图。
试写出o?a1a3、a1a3b3b1、a2b2b5a5、a1a2a3a4a5a6这四个晶面所属晶面族的晶面指数?hklm?。
解:(1).对于o?a1a3面,其在四个原胞基矢1上的截矩分别为:1,1,?,1。
所以,2其晶面指数为??。
(2).对于a1a3b3b1面,其在四个原胞基矢上的截矩分别为:1,1,?所以,其晶面指数为??。
1 1,?。
2(3).对于a2b2b5a5面,其在四个原胞基矢上的截矩分别为:1,?1,?,?。
所以,其晶面指数为?1?。
(4).对于a1a2a3a4a5a6面,其在四个原胞基矢上的截矩分别为:?,?,?,1。
所以,其晶面指数为?0001?。
3. 如将等体积的硬球堆成以下结构,求证球体可能占据的最大体积与总体积的比为:简立方:。
?;六角密集:;金刚石:66证明:由于晶格常数为a,所以:(1).构成简立方时,最大球半径为rm?a,每个原胞中占有一个原子,24?a?? ?vma3 3?26??vm?? 3a63(2).构成体心立方时,体对角线等于4倍的最大球半径,即:4rm,每个晶胞中占有两个原子,4?3?2vm?2??? ??3??3?2vm?3a(3).构成面心立方时,面对角线等于4倍的最大球半径,即:4rm,每个晶胞占有4个原子,4?3??4vm?43??3?4vm? a36(4).构成六角密集结构时,中间层的三个原子与底面中心的那个原子恰构成一个正四面体,其高那么正好是其原胞基矢c的长度的一半,由几何知识易知2c?m。
固体物理学习题答案朱建国版HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】《固体物理学》习题参考第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f和R b代表面心立方和体心立方结构中最近邻原子间的距离,试问R f/R b等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a:对于面心立方,处于面心的原子与顶角原子的距离为:R f=2a 对于体心立方,处于体心的原子与顶角原子的距离为:R b那么,RfRb=31.2 晶面指数为(123)的晶面ABC是离原点O最近的晶面,OA、OB和OC分别与基失a1,a2和a3重合,除O点外,OA,OB和OC上是否有格点若ABC面的指数为(234),情况又如何答:根据题意,由于OA、OB和OC分别与基失a1,a2和a3重合,那么1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:正方a=b 六方a=b矩形带心矩形a=b平行四边1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213) 答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id=== ……… (1) 由于a 3=–(a 1+ a 2) 把(1)式的关系代入,即得 根据上面的证明,可以转换晶面族为(001)→(0001),(133)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为(1)简立方:6π(2)体心立方:8(3)面心立方:6(4)六方密堆积:6(5)。
《固体物理学》习题参考第一章1.1 有许多金属即可形成体心立方结构,也可以形成面心立方结构。
从一种结构转变为另一种结构时体积变化很小.设体积的变化可以忽略,并以R f 和R b 代表面心立方和体心立方结构中最近邻原子间的距离,试问R f /R b 等于多少?答:由题意已知,面心、体心立方结构同一棱边相邻原子的距离相等,都设为a :对于面心立方,处于面心的原子与顶角原子的距离为:R f =22a 对于体心立方,处于体心的原子与顶角原子的距离为:Rb =32a 那么,Rf Rb =23aa =631.2 晶面指数为(123)的晶面ABC 是离原点O 最近的晶面,OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,除O 点外,OA ,OB 和OC 上是否有格点?若ABC 面的指数为(234),情况又如何?答:根据题意,由于OA 、OB 和OC 分别与基失a 1,a 2和a 3重合,那么 1.3 二维布拉维点阵只有5种,试列举并画图表示之。
答:二维布拉维点阵只有五种类型:正方、矩形、六角、有心矩形和斜方。
分别如图所示:1.4 在六方晶系中,晶面常用4个指数(hkil )来表示,如图所示,前3个指数表示晶面族中最靠近原点的晶面在互成120°的共平面轴a 1,a 2,a 3上的截距a 1/h ,a 2/k ,a 3/i ,第四个指数表示该晶面的六重轴c 上的截距c/l.证明:i=-(h+k ) 并将下列用(hkl )表示的晶面改用(hkil )表示:(001)(133)(110)(323)(100)(010)(213)答:证明设晶面族(hkil )的晶面间距为d ,晶面法线方向的单位矢量为n °。
因为晶面族(hkil )中最靠近原点的晶面ABC 在a 1、a 2、a 3轴上的截距分别为a 1/h ,a 2/k ,a 3/i ,因此123o o o a n hda n kd a n id===g g g ……… (1) 由于a 3=–(a 1+ a 2) 把(1)式的关系代入,即得 根据上面的证明,可以转换晶面族为(001)→(0001),(133)→(1323),(110)→(1100),(323)→(3213),(100)→(1010),(010)→(0110),(213)→(2133)1.5 如将等体积的硬球堆成下列结构,求证球可能占据的最大面积与总体积之比为正方 六方 矩形 带心矩形 平行四边(1)简立方:6π(2)体心立方:38π(3)面心立方:26π(4)六方密堆积:26π(5)金刚石:316π。
答:令Z 表示一个立方晶胞中的硬球数,Ni 是位于晶胞内的球数,Nf 是在晶胞面上的球数,Ne 是在晶胞棱上的球数,Nc 是在晶胞角隅上的球数。
于是有: 边长为a 的立方晶胞中堆积比率为假设硬球的半径都为r ,占据的最大面积与总体积之比为θ,依据题意 (1)对于简立方,晶胞中只含一个原子,简立方边长为2r ,那么:θ= 334/3(2)r r π= 6π (2)对于体心立方,晶胞中有两个原子,其体对角线的长度为4r ,则其边长为43r ,那么:θ= 332(4/3)(4/3)r r π*= 38π (3)对于面心立方,晶胞中有四个原子,面对角线的长度为4r ,则其边长为22r ,那么:θ= 334(4/3)(22)r r π*= 26π (4)对于六方密堆积一个晶胞有两个原子,其坐标为(000)(1/3,2/3,1/2),在理想的密堆积情况下,密排六方结构中点阵常数与原子半径的关系为a=2r ,因此θ=3242()332r a c π⨯=26π (5)对于金刚石结构Z=8 38a r = 那么333443*8()338r F Z a ππ==⨯⨯=316π.1.6 有一晶格,每个格点上有一个原子,基失(以nm 为单位)a=3i ,b=3j ,c=1.5(i+j+k ),此处i ,j ,k 为笛卡儿坐标系中x ,y ,z 方向的单位失量.问: (1)这种晶格属于哪种布拉维格子? (2)原胞的体积和晶胞的体积各等于多少?答:(1)因为a=3i ,b=3j ,而c=1.5(i+j+k )=1/2(3i+3j+3k )=1/2(a+b+c ′)式中c ′=3c 。
显然,a 、b 、c ′构成一个边长为3*10-10m 的立方晶胞,基矢c 正处于此晶胞的体心上。
因此,所述晶体属于体心立方布喇菲格子。
(2)晶胞的体积= c (a b)'⨯g = 3k (3i 3j)⨯g =27*10-30(m 3) 原胞的体积=c (a b)⨯g =1(333)(33)2i j k i j +++g =13.5*10-30(m 3)1.7 六方晶胞的基失为:322a a ai j =+,322a b ai j =-+,c ck =求其倒格子基失,并画出此晶格的第一布里渊区. 答:根据正格矢与倒格矢之间的关系,可得:正格子的体积Ω=a ·(b*c )=232a c 那么,倒格子的基矢为12()bc b π⨯=Ω223i j a a ππ=+ ,22()c a b π⨯=Ω223i j a aππ=-+ ,32()a b b π⨯=Ω2k c π= 其第一布里渊区如图所示:1.8 若基失a ,b ,c 构成正交晶系,求证:晶面族(hkl )的面间距为答:根据晶面指数的定义,平面族(hkl )中距原点最近平面在三个晶轴a 1,a 2,a 3上的截距分别为1a h ,2ak ,3a l。
该平面(ABC )法线方向的单位矢量是 这里d 是原点到平面ABC 的垂直距离,即面间距。
由|n|=1得到故12222123[()()()]h k l d a a a -=++1.9 用波长为0.15405nm 的X 射线投射到钽的粉末上,得到前面几条衍射谱线的布拉格角θ如下序号 1 2 3 4 5θ/(°) 19.611 28.136 35.156 41.156 47.769已知钽为体心立方结构,试求:(1)各谱线对应的衍射晶面族的面指数; (2)上述各晶面族的面间距; (3)利用上两项结果计算晶格常数.答:对于体心立方结构,衍射光束的相对强度由下式决定:考虑一级衍射,n=1。
显然,当衍射面指数之和(h+k+l )为奇数时,衍射条纹消失。
只有当(h+k+l )为偶数时,才能产生相长干涉。
因此,题给的谱线应依次对应于晶面(110)、(200)、(211)、(220)和(310)的散射。
由布喇格公式得 1011011.54052.29510()2sin 2sin19.611od m λθ-===⨯ 同法得应用立方晶系面间距公式 可得晶格常数222hkl a d h k l =++把上面各晶面指数和它们对应的面间距数值代入,依次可得a 的数值*10-10m 为3.2456,3.2668,3.2767,3.2835,3.2897取其平均值则得1.10 平面正三角形,相邻原子的间距为a ,试给出此晶格的正格矢和倒格矢;画出第一和第二布里渊区.答:参看下图,晶体点阵初基矢量为1a ai =用正交关系式{022,i ji j ij i j b a ππδ≠===g求出倒易点阵初基矢量b1,b2。
设 由112b a π=g 120b a =g 210b a =g 222b a π=g 得到下面四个方程式11()2x y ai b i b j π+=g (1)1113()()022x y ai aj b i b j ++=g (2) 22()0x y ai b i b j +=g (3)2213()()222x y ai aj b i b j π++=g (4) 由(1)式可得:12x b a π=由(2)式可得:123y b aπ=-由(3)式可得:20x b =由(4)式可得:243y b aπ=于是得出倒易点阵基矢 第三章 习题答案3.1 试求由5个原子组成的一堆单原子晶格的格波频率,设原子质量m =8.35×10-27kg ,恢复力常数β=15N ·m -1解:一维单原子链的解为)(qna t i n Ae X -=ω据周期边界条件 11+=N X X ,此处N=5,代入上式即得 所以 aq 5=2πλ(λ为整数) 由于格波波矢取值范围:aq aππ<<-。
则 2525<<-λ故λ可取-2,-1,0,1,2这五个值 相应波矢:a 54π-,a 52π-,0, a 52π,a54π 由于2sin 4qa m βω=,代入β,m 及q 值则得到五个频率依次为(以rad/sec 为单位) 8.06×1013,4.99×1013,0,4.99×1013,8.06×10133.2 求证由N 个相同原子组成的一维单原子晶格格波的频率分布函数可以表示为()2122)(2--=ωωπωρmN式中mm βω4=是格波的最高频率,并求证它的振动模总数恰为N解:对一维单原子链,()()dq q qd q d dN ρρωωρ2ˆ)(=== 所以()()dq d q ωρωρ2= (1)由色散关系2sin 4qam βω= 求得2/12)2sin 1(2422cos 4qaa m aqa m dqd -=•=ββω2/12])4[(2ωβ-=m a (2)而()ππρ22NaL q ==, 则由(1)式可得 由于m mωβ=4 ,则总的振动模数为 令θωωsin =m,则积分限为0到2/π , 故3.3 设晶体由N 个原子组成,试用德拜模型证明格波的频率分布函数为()239ωωωρmN = 解:由书上(3-69)式可得 ()()32223vv g ωπωωρ== (1)由(3-71)可得 ()v n m D 3/126πωω==由此可得 n v m32332ωπ= ,代入(1)式得3.4 对一堆双原子链,已知原子的质量m =8.35×10-27kg ,另一种原子的质量M =4m ,力常数β=15N ·m -1,试求(1) 光学波的最高频率和最低频率οm ax ω和οm in ω;(2) 声学波的最高频率Am ax ω;(3) 相应的声子能量(以eV 为单位);(4) 在300K 可以激发频率为οm ax ω,οm in ω和A m ax ω的声子的数目;(5) 如果用电磁波来激发长光学波振动,电磁波的波长大小。
解:(1)m m M Mm 54=+=μ (2)eV2max1041.4-⨯≈οηω(3)11/-=kT w e n ∆221.0max ≈∴οωn ,276.0min ≈οωn , 873.0max≈An ω (4)Θ光速v c λ= ,m m c v c μωπλ28108.225max=⨯≈⋅==∴-ο 3.5 设有一维晶体,其原子的质量均为m ,而最近邻原子间的力常数交替地等于β和10β, 且最近邻的距离为2/a ,试画出色散关系曲线,并给出0=q 和a q /π±=处的()q ω。