七年级数学上册 4.3.2《角的比较与运算》(第2课时)导学案(无答案) (新版)新人教版
- 格式:doc
- 大小:80.50 KB
- 文档页数:4
吉林省通化市七年级数学上册《4.3.2 角的比较与运算》导学案(无答案)(新版)新人教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(吉林省通化市七年级数学上册《4.3.2 角的比较与运算》导学案(无答案)(新版)新人教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为吉林省通化市七年级数学上册《4.3.2 角的比较与运算》导学案(无答案)(新版)新人教版的全部内容。
角的比较与运算导学目标1、运用类比的方法,学会比较两个角的大小;2、认识角的平分线,会画角的平分线;3、角的计算。
教学重点认识角平分线及画角平分线,角的计算教学难点画角平分线,角的计算教学过程教学环节教学任务教师活动学生活动预见性问题及策略复习1谈一谈对角的认识2举例说明角在生活中的实例教师提出问题学生独立思考,组内交流后分组报告学生回答的不完整及时补充纠正预习一、角的比较1、与线段长短的比较相类似,比较两个角的大小有2种方法:方法一为:____________________方法二为:________________教师巡视,针对不同学生预习情况,教师适当点拨教师深入各组,指导归纳学生独立完成后组内交流学习成果,报告。
依案自学,动手操作,小组交流归纳后,空间想象力差,强调利用规律解决问题角求不准的现几个角?怎么数的?在图中表示出来。
(2)下图中角之间的关系填空:∠AOB=__________+_______;∠BOC=__________—__________二、角的平分线1、如图,如果∠AOC=∠BOC,那么射线OC是∠AOB的角平分线.角平分线的定义:___________________________ _____表示方法教师深入学生中间巡视,观察并听取他们解决问题的方法和建议.鼓励学生大胆仔细说出解题过程代表发言.独立完成后,小组内互相交流,动手操作归纳总结依案自学分组讨论归纳报告生寻找规律出现方法对但不巧妙的现象,通过不同同学的展示、对比,得出最佳方法学生识图能力差2、如图,OB 是平角∠AOC 的角平分线,OD 平分∠BOC ,求∠AOD 的度数。
新人教版七年级上册 4.3.2 角的比较与运算导教案【学习目标】:1.理解角的大小、和差、角均分线的几何意义及数目关系,并会用文字语言、图形语言、符号语言进行综合描绘.2.经历类比线段的长短、和差、中点学习角的大小、和差、角均分线等过程,领会类比思想.【学习要点】:角的大小、和差、角均分线的几何意义及数目关系;感觉学习过程中的类比思想.【学习难点】:角的相关计算【教课过程】自主学习:1、角有几种定义法?分别是什么?2、角的表示方法有几种?图中的∠ 1、∠ 2、∠ 3 还可以够怎么表示?图中的哪些角能够用一个大写字母表示?3、如图,共有多少个角?表示每一个角.4、角的胸怀单位有哪些?它们之间是怎样换算的?新知研究:研究点一: 1 、如图,用胸怀法比较两个角的大小.2、怎样用叠合法比较∠AOB和∠ DEF的大小?概括:用叠合法比较两个角的大小,应注意:①两角的极点;②一边;③另一边落在.研究点二:角的和、差1、如图,图中共有几个角?它们之间有什么关系?2、如图,已知∠ AOB和∠ DEF,用叠合法怎样作:(要求:说明方法)①错误!链接无效。
的和;②错误!链接无效。
的差.3、还可用什么方法作这两个角的和或差?4、用手中的三角板拼一拼,画出15°、 75°的角;你还可以画出多少度的角?研究点三:角的均分线1、随意画一个角,并剪下来 . 折叠这个角,使已知角的两边重合,那么折痕把已知角分红两个角 . 这两个角拥有什么关系?2、你能描绘出角均分线的定义吗?2、已知射线 OC是∠ AOB的角均分线,你能写出图中∠AOB,∠AOC, ∠ BOC的数目关系吗?4、如图,射线 OB、OC把∠ AOB三均分,你能获得什么等量关系呢?当堂训练1、已知∠ AOB=20°,∠ BOC=65°,∠ AOC=45°,那么()A、射线 OB在∠ AOC外面 B 、射线 OB在∠ AOC内部C、射线OB与射线 OA重合 D 、射线 OB与射线 OC重合2、用两个三角尺不可以画出是()的角.A、 15°B、75°C、 115°D、105°3、作一个角的均分线的方法有和。
4.3.2 角的比较与运算一、新课导入1.导入课题:这节课我们学习角的大小比较与运算(板书课题).2.三维目标:(1)知识与技能①会比较角的大小,能估计一个角的大小,在操作活动中认识角的平分线.②会进行度、分、秒的换算,并能解决角的运算题.(2)过程与方法①实际观察、操作,体会角的大小,培养学生的观察思维能力.②动手计算,熟练解决有关角的运算题,培养学生的计算能力.(3)情感态度①角的测量和折叠等,体验数、符号和图形是描述现实世界的重要手段.②帮助学生体验数学在生活中的用处,激发学生对数学的学习兴趣.3.学习重、难点:重点:①角的大小比较与运算;②角平分线的概念;③感受类比思想.难点:图形语言、文字语言、符号语言的相互转换.二、分层学习1.自学指导:(1)自学范围:教材第134页至第135页的内容.(2)自学时间:10分钟.(3)自学要求:认真阅读课文,类比线段的相关内容进行学习.(4)自学参考提纲:①与线段的大小比较相类似,比较两个角的大小,也有两种方法:一是度量,二是叠合法,用叠合法比较时,必须使两个角的顶点及一边重合,另一边落在同一侧.(如课本图4.3-6所示).②如图,图中共有3个角?∠AOC是∠AOB与∠BOC的和.记作:∠AOC=∠AOB+∠BOC;∠AOB是∠AOC与∠BOC的差,记作:∠AOB=∠AOC-∠BOC;类似地,∠BOC=∠AOC-∠AOB.③一副三角尺的角有哪些?利用角的和或差,用一副三角形尺你还能画出哪些度数的角?与同学交流一下.④a.从一个角的顶点出发,把这个角分成两个相等的角的射线,叫做这个角的平分线.如图,若射线OB是∠AOC的角平分线,则有∠AOB=∠BOC,或∠AOB=12∠AOC,或∠BOC=12∠AOC或∠AOC=2∠AOB,或∠AOC=2∠BOC,反过来也成立.b.与a类似地,还有角的三等分线,四等分线等,你能分别画出图形,并用几何语言描述它们吗?2.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,充分了解学生的自学情况.②差异指导:根据学情进行相应的指导,重点是几何语言描述.(2)生助生:小组内同学间相互交流研讨,互助解题疑难.4.强化:(1)角的大小比较方法.(2)角平分线的意义、注意几种语言间的转换.(3)类比思想.(4)练习:如图,OC平分∠AOB,OD平分∠AOC,则图中相等的角有∠AOD=∠DOC,∠AOC=∠BOC,∠AOD=12∠AOC=14∠AOB.1.自学指导:(1)自学范围:教材第136页例1和例2.(2)自学时间:5分钟.(3)自学方法:认真阅读课文,注意解题格式,并按照例题旁边方框中的提示动手演算验证.不懂的地方,小组内讨论解决.(4)自学参考提纲:①角度的加减运算,要将单位对齐相加减,即度与度,分与分,秒与秒分别相加、减.分、秒相加时逢60要进位,如23°45′37″+70°26′40″=93°71′77″=94°12′17″;相减时要借1当作60,例1中应借1°,化为60′.即:180°-53°17′=179°60′-53°17′=126°43′②例2中,是怎样将剩余的度数化成分的?如果用精确到秒来表示计算的结果,答案是多少呢?例2中,将余数的度数乘以60化成分.360°÷7=51°+3°÷7=51°+180′÷7=51°+25′+5′÷7=51°25′+300″÷7=51°25′43″③做教材第136页“练习”的第2、3题.练习2:360°÷8=45°,360°÷45°=24(份).练习3:∠AOD=1∠AOB-∠COD=90°-31°28′=58°32′.22.自学:同学们可结合自学指导进行学习.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生的自学情况.②差异指导:对学习有困难的学生进行点拨和指导.(2)生助生:小组内同学间相互交流研讨,互助解疑难.4.强化:学生交流展示学习成果,教师再归纳强化.三、评价1.学生自我评价:让学生交流学习目标的达成情况及学生的感受等.2.教师对学生的评价:(1)表现性评价:教师对学生在本节课学习中的整体表现进行总结和点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时教学过程应体现:(1)善于从图形中发现角与角之间的关系,转化为数学式子进行计算.特别是像角平分线这些特殊几何元素.(2)角的计算要根据问题适时进行分类讨论.(3)结合已有的线段计算认知,来类比角的计算规律和方法.一、基础巩固1.(10分)如果∠1=∠2,∠2=∠3,则∠1=∠3,如果∠1>∠2,∠2>∠3,则∠1>∠3.2.(10分)按图填空:(1)∠AOB+∠BOC=∠AOC;(2)∠AOC+COD=∠AOD;(3)∠BOD-∠COD=∠BOC;(4)∠AOD-∠BOD=∠AOB.3.(10分)下列说法正确的是(C)A.若∠AOB=2∠AOC,则OC是∠AOB的平分线∠AOB,则OC是∠AOB的平分线B.若∠AOC=12∠AOB,则OC是∠AOB的平分线C.若∠AOC=∠BOC=12D.以上说法都不对4.(40分)(1)48°39′+67°31′(2)77°42′-34°45′(3)21°17′×5(4)109°24′÷6解:(1)116°10′;(2)42°57′;(3)106°25′;(4)18°14′.二、综合应用5. (20分)如图,OB是∠AOC的平分线,OD是∠COE的平分线.(1)如果∠AOB=40°,∠DOE=30°,那么∠BOD是多少度?(2)如果∠AOE=140°,∠COD=30°,那么∠AOB是多少度?解:(1)由题意知∠AOB=∠BOC,∠EOD=∠DOC,∴∠BOD=∠BOC+∠COD=∠AOB+∠DOE=40°+30°=70°.(2)∠COD=30°,∵∠COE=2∠COD=60°,∴∠AOC=∠AOE-∠COE=140°-60°=80°,∴∠AOB=12∠AOC=40°.三、拓展延伸6.(10分)如图,将长方形纸片的一角作折叠,使顶点A落在A′处,EF为折痕,若EA′恰好平分∠FEB.(1)判断∠A′EB与∠FEA的大小关系.(2)你能求出∠FEB的度数吗?解:(1)∵EA′平分∠FEB,∴∠BEA′=∠FEA′又∵△A′EF由△AEF折叠得到.∴∠AEF=∠A′EF,∴∠FEA=∠A′EB(2)∵∠FEA+∠FEA′+∠A′EB=180°,又三者相等,∴∠FEA=∠FEA′=∠A′EB=60°,∴∠FEB=∠FEA′+∠A′EB=120°.学习名言警句:1.在科学上面没有平坦的大道,只有不畏劳苦沿着陡峭山路攀登的人,才有希望到达光辉的顶点。
人教版数学七年级上册4.3.2《角的比较和运算》教案一. 教材分析《角的比较和运算》是人教版数学七年级上册第四章第三节的内容,本节内容主要让学生掌握角的比较方法,了解角的大小与边的长短没有关系,学会用符号表示角的大小,以及学会角的运算方法。
教材通过生活实例和几何图形,引导学生探究角的大小与边的长短之间的关系,从而引出角的符号表示方法,再通过角的加减运算,让学生进一步理解和掌握角的概念。
二. 学情分析七年级的学生已经掌握了角的基本概念,对于角的画法和识别有一定的基础。
但是,对于角的比较和运算,他们可能还不太熟悉,需要通过实例和练习来进一步理解和掌握。
此外,学生可能对于角的符号表示方法感到困惑,需要教师进行详细的解释和引导。
三. 教学目标1.让学生掌握角的比较方法,了解角的大小与边的长短没有关系。
2.让学生学会用符号表示角的大小。
3.让学生学会角的运算方法。
四. 教学重难点1.角的比较方法。
2.角的符号表示方法。
3.角的运算方法。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过生活实例和几何图形,引导学生探究角的大小与边的长短之间的关系,从而引出角的符号表示方法,再通过角的加减运算,让学生进一步理解和掌握角的概念。
六. 教学准备1.PPT课件。
2.几何图形。
3.练习题。
七. 教学过程导入(5分钟)通过一个生活实例,如钟表的指针所形成的角度,引导学生思考角的大小与边的长短之间的关系。
让学生认识到角的大小与边的长短没有关系,而是与角的开口大小有关。
呈现(10分钟)通过PPT课件,展示各种几何图形中的角,让学生观察和比较这些角的大小。
引导学生发现,角的大小与边的长短没有关系,而是与角的开口大小有关。
操练(10分钟)让学生用尺子和圆规画出不同大小的角,并比较这些角的大小。
教师巡回指导,解答学生的疑问。
巩固(10分钟)让学生用符号表示所画出的角的大小。
例如,用“∠1”表示第一个角,“∠2”表示第二个角,等等。
七年级数学人教版上导学案:4.3.2 角的比较与运算七年级数学人教版上导学案:4.3.2角的比较与运算专题8编制:彭泉松审核:德育目标:学习目标:学习重点:学习难点:学习过程:I.课堂介绍:(知识复习)二、自学教材学生自学课本p122探究34.3.2角度比较和计算教学目标:1、在现实情境中,运用类比的方法,学会比较两个角的大小,?丰富对角的大小关系的认识,会分析图中角的和差关系.2.通过动手操作,学会在三角形板的帮助下拼出不同角度,?知道角的平分线和角的平分线,并能画出角的平分线3、进一步培养和提高学生的识图能力和动手操作的能力,认识类比的数学思想方法.4.能够在绘画、拼图等数学活动中发挥积极作用,体验数学活动的成功经验,激发学生的学习热情重点:比较角的大小,认识角的大小关系,分析角的和差关系,?认识角平分线及画角平分线难点:认识复杂图形中角的和差关系,比较两个角的大小教学过程一、引入新课教师活动:在黑板上画一个三角形。
(如右图所示)1。
提问:比较图片中线段AB、BC和Cd的长度学生活动:回顾线段长短的比较方法.小组交流,得出适当的比较线段长短的方法.Cab教师活动:总结学生的讨论结果,演示用圆规比较AB、BC和CD长度的过程,并写出结论:AB>AC>BC2、提出问题:怎样比较图中∠a、∠b、∠c的大小?学生活动:分组交流和比较方法,并得出结论:用量角器测量角度,然后比较其大小。
教师活动:(1)明确评估学生提出的方法,并手动测量学位,?比较它们的大小,黑板书写结论:∠ C>∠ b>∠ A.(2)启发和引导学生比较线段的长度,?它们也可以堆叠在一起以比较大小。
第二,教授新课程1、提出问题:如何用叠合的方法比较角的大小?学生活动:小组交流和讨论,动手操作:每个学生在透明纸上画一个角,然后剪掉角,与小组中其他学生画的角进行比较,总结比较方法和结果,然后观看多媒体演示角的比较过程教师活动:巡视并指导学生进行角的比较活动过程,打开多媒体演示角的比较过程:把一个角移到另一个角上,顶点与一条边重合;两个角的另一边都在重合边的同侧.观察这两边的位置关系,就能得出两个角的大小关系.注:讲解过程应强调操作过程,使学生掌握角度比较的操作过程。
七年级数学上册432角的比较与运算(第2课时)导学案
(无答案)(
4.3.2角的比较与运算
学习目标:1.会进行度、分、秒的互化及角度的简单运算.
2.会进行角度的“加、减、乘、除”运算.
学习重点:度、分、秒的互化及角度的计算.
学习难点:角度的“除法”运算.
一、自主学习:
1.任意画两个角(一个小于90°,一个大于90°)
先估计这两个角的度数,然后再用角器量出这两个角的度数,试试你的判断能力.
2.什么是1°的角?什么是1′的角?什么是1″的角?还记得吗?
如果不记得了,没关系,先看看书再完成下面的问题.
(1)35°15′与35.15°相等吗?为什么?
1(35)
4与35°15′相等吗?为什么?
(2)12平角=________度,周角=_______度.53
(3)3.32°=______度_______分_______秒.12°9′36″=
_______度.
(完成上面的问题如果有困难,不妨与同学交流)
二、合作探究
1.计算:(1)46°55′+23°35(2)46°55′-23°35′(3)68°21′-32°48′(4)23°35′某3(5)15°23′18″某4 C2.例1:如图∠AOC=53°17′,求∠BOC.
OBA
3.例2:把一个周角6等分,每一份是多少度的角?
那么把一个周角7等分,每一份的角度是多少?。
第9课时 4.3.2 角的比较与运算(2)学习目标:1.会进行度、分、秒的互化及角度的简单运算.2.会进行角度的“加、减、乘、除”运算.学习重点:度、分、秒的互化及角度的计算.学习难点:角度的“除法”运算.一、自主学习:1.任意画两个角(一个小于90°,一个大于90°)先估计这两个角的度数,然后再用角器量出这两个角的度数,试试你的判断能力.2.什么是1°的角?什么是1′的角?什么是1″的角?还记得吗? 如果不记得了,没关系,先看看书再完成下面的问题.(1)35°15′与35.15°相等吗?为什么?)4135(与35°15′相等吗?为什么?(2)32平角=________度, 51周角=_______度. (3)3.32°=______度_______分_______秒. 12°9′36″=_______度. (完成上面的问题如果有困难,不妨与同学交流)二、合作探究1.计算:(1)46°55′+23°35 (2)46°55′-23°35′(3)68°21′-32°48′ (4)23°35′×3 (5)15°23′18″×42.例1:如图∠AOC =53°17′,求∠BOC.3.例2:把一个周角6等分,每一份是多少度的角?那么把一个周角7等分,每一份的角度是多少?4.例3:如图,∠ AOC =50°,OD 平分∠AOC ,OE 平分∠BOC ,求∠DOE三、巩固运用:1.P136练习第2、3题. A BC O ED C O B A2.计算:122°48′÷3四、反思总结:五.达标检测1.课本140页9、10(做在书上)2.在上面的例3中,如果去掉“∠AOC=50°”这个条件,还能不能求出∠DOE 呢?六、课后预习:预习课本P137.。
C B A 七年级数学4.3.2角的比较与运算导学案教学目标1.知识与技能(1)在现实情境中,运用类比的方法,学会比较两个角的大小,•丰富对角的大小关系的认识,会分析图中角的和差关系.(2)通过动手操作,学会借助三角板拼出不同度数的角,•认识角的平分线及角的等分线,会画角的平分线.2.过程与方法进一步培养和提高学生的识图能力和动手操作的能力,认识类比的数学思想方法.3.情感态度与价值观能在动手操作画图、拼图的数学活动过程中发挥积极作用,体验数学活动的成功经验,激发学生的学习热情.课堂目标导航:1.让学生通过联想线段的大小的比较方法,找到角的大小的比较方法。
掌握角平分线的定义(重点)2.让学生通过联想线段和与差的作法,掌握角的和与差的作法和计算。
(难点)3.培养学生类比联想的思维能力和对知识的迁移能力。
重、难点与关键1.重点:比较角的大小,认识角的大小关系,分析角的和差关系,•认识角平分线及画角平分线是本节课的重点.2.难点:认识复杂图形中角的和差关系,比较两个角的大小是难点.3.关键:从动手操作过程中,认识角的大小关系,•认识角的和差关系及认识角平分线,也是学好本节课知识的关键. 温故知新:教师活动:在黑板上画出一个三角形.(如右图所示)1.提出问题:比较图中线段AB 、BC 、CD 的长短.自主探究: 1、提出问题:怎样比较图中∠A 、∠B 、∠C 的大小?2、如何用叠合的方法比较角的大小?注:讲解过程应强调操作过程,让学生掌握角的比较的操作过程.尝试应用:估计图中∠1、∠2的大小关系,并用适当的方法进行检验(图见课本134页图4.3-6)3.认识角的和差.如图,共有几个角?它们之间有什么关系?动手操作:观察课本图4.3-8,用三角板拼出15°、75°的角,自主探究还能拼出多少度的角。
小组交流后说出这些角的度数,各小组之间互相补充.4.认识角的平分线.在透明纸上画一个角,沿着顶点对折,使角的两边重合.∠AOC被折痕OB分成的两个角有什么关系?在图中,射线OB把∠AOC分成相等的两个角,即∠AOB=∠BOC,∠AOC与∠AOC•和∠BOC有什么关系?这个关系怎样用式子来表示?射线OB叫做什么?探究结论:角平分线的定义:_______________________________________ 课堂导学:例1. 如图4.3-12,O是直线AB上一点,∠AOC=53º17’,求∠BOC的度数。
七年级上数学4.3.2角的比较和运算⑵导学案学习目标:1.掌握角之间的和差关系,并能进行简单的计算。
2.学会用方程解决几何问题。
重点:利用角之间的和差关系进行简单的计算。
难点:利用角之间的和差关系进行简单的计算。
导学过程: 复习回顾:1、如图⑴,∠AOB______∠AOC,∠AOB_______∠BOC(填>,=,<);OC(1)AB O DC(2)AB2、如上图⑵,∠AOC=______+______=______-______; ∠BOC=______-_____= _____-_______.3、如上图⑵,如果∠AOB=∠COD ,那么图中相等的两角是:∠_______=∠________.4、如图:OC 是∠AOB 的平分线,OD 是∠BOC 的平分线,那么下列各式中正确的是:( )AOBBOC AOBBOD AOBAOD AOC COD ∠=∠∠=∠∠=∠∠=∠23D 31C 32B 21A .... 自主学习:(看课本140页,完成下面的问题)1、 度分秒的计算,并总结计算方法,与你的同伴交流。
⑴ 57.32︒= 度 分 秒, ⑵ 17°6′36″= 度,⑶ 14°25′12″= 度, ⑷ 28°39′+ 61°35′=___________ , ⑸ 54°23′- 36°31′=____________ , ⑹ 33223⨯'︒=___________。
2、 把一个周角7等分,每一份是多少度的角?(精确到分)3、 如图,OC 是平角∠AOB 的角平分线,∠COD=32°,求∠AOD 的度数。
DCO BA尝试应用:1、如图,OB 是∠AOC 的平分线,,OD 是∠COE 的平分线,回顾:如何比较两个角的大小?回顾:什么是角的平分线?(1) 如果∠AOC=80°,那么∠BOC 是多少度?(2) 如果∠AOB=40°,∠DOE=30°,那么∠BOD 是多少度?(3) 如果∠AOE=140°,∠COD=30°,那么∠AOB 是多少度?OEDCBA2、如图,BD 平分∠ABC,BE 分∠ABC 分2:5两部分, ∠ABC=140°,求∠DBE 的度数.D CAE B课堂小结谈一谈:这节课有何收获? 综合提高:1、如图,∠AOB=∠COD=90°,∠AOD=146°,则∠BOC=___.O CA DB2、如图,∠BAD=_______+________;∠C AE=_______+________如果∠BAD=∠COE ,那么图中有相等的两角是:∠_______=∠________.3、已知∠AOB=38°,∠BOC=25°,那么∠AOC 的度数是_______4、如图,AB 、CD 相交于点O,OB 平分∠DOE,若∠DOE=60°,求∠AOC 的度数?OC AE DB作业:课本141页2、3题,143页3题 教(学)反思:。
第四章 几何图形初步4.3 角4.3.2 角的比较与运算....COD ,则∠AOC 与∠BOD 的大小关系如何?例1 填空:(1) 如图①,若∠AOC =35°,∠BOC =40°,则∠AOB = 度.(2) 如图②,若∠AOB = 60°,∠BOC =40°,则∠AOC = 度. (3) 若∠AOB =60°,∠AOC =30°,则∠BOC = 度.易错提醒:在计算角的度数时,若无图,一定要注意分类讨论.试一试:如图,借助一副三角尺可以画出15°和75°的角,你还能画出哪些度数的角?例2 计算(1) 120°-38°41′; (2)67°31′+48°49′.要点归纳:涉及到度、分、秒的角度的加与减,要将度与度、分与分、秒与秒分别相加、减,分秒相加时逢60要进位,相减时要借1作60.针对训练1.用一副三角板不能画出( )A .15°角B .135°角C .145°角D .105°角2.已知∠AOB=70°,以O 为端点作射线OC ,使∠AOC=42°,则∠BOC 的度数为( )A.28° B .112° C .28°或112° D .68° 3.计算:(1)20°30′×8.;(2)106°6′÷5.探究点2:角的平分线互动探究动手做一做:在纸上画∠AOB ,然后将其剪下来,将其沿经过顶点的线对折,使边OA 与OB 重合.将角展开,折痕上任取一点记作点C.类比线段中点的定义,填空:要点归纳:一般地,从一个角的顶点出发,把这个角分成两个_________的角的射线,例3 如图,OB 是∠AOC 的平分线,OD 是∠COE 的平分线.(1) 如果∠AOC =80°,那么∠BOC 是多少度?(2) 如果∠AOB =40°,∠DOE =30°,那么∠BOD是多少度?(3) 如果∠AOE =140°, ∠COD =30°,那么∠AOB是多少度?例4 已知∠AOB=40°,自O 点引射线OC ,若∠AOC :∠COB=2:3.求OC 与∠分线所成的角的度数.方法总结:论思想解决问题. 针对训练1. 如图:OC 是∠AOB 的平分线,OD 是∠BOC 的平分线,那么下列各式中正确的是 ( )∠AOC_____∠COB; ∠AOB=_____∠AOC. 应用格式:∵ OC 是∠AOB 的角平分线, ∴ ∠AOC =∠BOC =________∠AOB ,∠AOB =________∠BOC =________∠AOC.A. ∠COD =21∠AOC B. ∠COD =21∠AOC C. ∠COD =21∠AOC D. ∠COD =21∠AOC2. 如图,OC 是平角∠AOB 的角平分线,∠COD =32°,求∠AOD 的度数.二、课堂小结1. 如图,∠AOB =∠COD =90,∠AOD =146°,则∠BOC =____.2. 已知∠AOB =38°,∠BOC =25°,那么∠AOC 的度数是 .3. 如图,∠AOB =170°,∠AOC =∠BOD =90°,求∠COD 的度数.4. 计算:(1) 12°36′56″+45°24′35″; (2) 79°45′+61°48′49″;(3) 62°24′17″×4; (4) 102°43′÷3.5.如图,已知∠AOC=60°,∠BOD=90°,∠AOB是∠DOC的3倍,求∠AOB的度数.6.如图,∠AOB=120°,OD平分∠BOC,OE平分∠AOC.(1) 求∠EOD的度数;(2) 若∠BOC=90°,求∠AOE的度数.。
4.3.2角的比较与运算(2)
1.掌握角之间的和差关系,并能进行简单的计算
2.学会用方程解决几何问题
3.学习重点:
4.学习难点:
二、知识准备
利用小学的知识填空:
1. 计算:1度分, 1分= 秒, 1度= 秒;24′= , 36″= ′.
2、如图⑴,∠AOB______∠AOC,∠AOB_______∠BOC(填>,=,<);
3、如上图⑵,∠AOC=______+______=______-______;
∠BOC=______-_____= _____-_______.
4、如上图⑵,如果∠AOB=∠COD,那么图中相等的两角是:∠_______=∠________.
自习自疑文
一、自习导学
阅读教材140页例1,例2内容,思考并回答下面的问题
把一个300度的角7等分,每一份是多少度的角(精确到分)? (仿照例2书写)
二、自习评估
1、⑴度分秒,⑵ 17°6′36″= 度。
⑶ 14°25′12″= 度。
⑷ 28°39′+ 61°35′=___________ ;
⑸ 54°23′- 36°31′= ⑹ 23°23′×3 = _
2、把一个蛋糕分成8份,每份中的角是多少度?如果要使每份中的角是15°,这个蛋糕应等
分成多少份?
3、如图,OC是平角∠AOB的角平分线,∠COD=31°28′,求∠AOD的度数。
我想问:
等级组长签字
【自主探究文】
【探究一】计算:
(1)23°48′56″+37°25′41″(2)7°19′28″× 4
(3)78°25′34″— 39°36′56″(4)87°45′24″÷7 (结果化成度)【探究二】如图,BD平分∠ABC,BE分∠ABC分2:5两部分, ∠ABC=140°,求∠DBE的度数.
【探究三】如图,∠AOB=90°,∠BOC=30°,OM平分∠AOB,ON平分∠BOC,
⑴求∠MON的度数,
⑵若∠AOB=∠α,若∠BOC=∠β(∠β为锐角)其他条件不变,求∠MON的度数。
(用
含α、β的式子表示)
⑶探究:从⑴⑵中你发现有什么规律?
【自测自结文】
1、如图,∠AOB=∠COD=90°,∠AOD=146°,则∠BOC=___.
2、如图,∠BAD=_______+________;∠CAE=_______+________
如果∠BAD=∠COE,那么图中有相等的两角是:∠_______=∠________.
3、已知∠AOB=38°,∠BOC=25°,那么∠AOC的度数是_______
4、如图,AB、CD相交于点O,OB平分∠DOE,若∠DOE=60°,求∠AOC的度数?
5、如图:OC是∠AOB的平分线,OD是∠BOC的平分线,那么下列各式中正确的是:( )
6、如图,把一张长方形纸片的B角任意折向形内,折痕为EF,再把CF折叠在FB/上,求两
条折痕FE与FG的夹角∠EFG的度数,并写出根据.。