[名校联盟]浙江省绍兴县杨汛桥镇中学中考数学复习《第四章 整式易错题》课件
- 格式:ppt
- 大小:152.50 KB
- 文档页数:16
2018年初中毕业生数学考试模拟卷试题卷满分150分,考试时间120分钟一、选择题(本大题共10小题,每小题4分,共40分)1.5-的倒数是 ( )A . 5B .15C .15-D . -52.一种细胞的直径约为1.56×105-米,那么它的一百万倍相当于 ( ) (A )玻璃跳棋棋子的直径 (B )数学课本的宽度 (C )初中学生小敏的身高 (D )五层楼房的高度3.由4个相同小立方体搭成的几何体如图所示,则它的左视图是 ( )A 、2B 、4C 、12D 、165.如图,△ABC 内接于⊙O ,AD 是⊙O 的直径,∠ABC =25°,则∠CAD 的度数是 ( )A .25°B .60°C .65°D .75°6.如图,数轴上所表示关于x 的不等式组的解集是( )A. x ≥2B. x >2C. x >-1D. -1<x ≤27.如图,在△ABC 中,分别以点A 和点B 为圆心,大于的 AB 的长为半径画孤,两弧相交于点M ,N ,作直线M N ,交BC 于点D ,连接AD .若△ADC 的周长为10,AB=7,则△ABC 的周长为 ( )A 、7B 、14C 、17D 、20第5题第7题第8题8.如图,直线2y =-与双曲线ky x=(k>0)在第一象限内的交点为R ,与x 轴的交点为P ,与y 轴的交点为Q ;作RM ⊥x 轴于点M ,若△OPQ 与△PRM 的面积是4:1,则k 等于 ( ) ABC .2D .39.如图,在Rt ∠AOB 的平分线ON 上依次取点C ,F ,M ,过点C 作DE ⊥OC ,分别交OA ,OB 于点D ,E ,以FM 为对角线作菱形FGMH ,已知∠DFE =∠GFH =120°,FG =FE 。
设OC =x ,图中阴影部分面积为y ,则y 与x 之间的函数关系式是 ( )A. 223x y = B. 23x y = C. 232x y = D. 233x y =10.某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人。
浙江省绍兴县杨汛桥镇中学九年级数学竞赛模拟试题5你是我今生最美的遇见专业文档浙江绍兴阳春桥中学2022届第九年级数学竞赛模拟考试5 Beishi大版1.如图所示,外切圆的切线AE△ ABC在点E处与BC的延长线相交,并与BC的平分线相交∠ BAC在D点与BC相交。
验证:ED2=EB?欧共体。
2、已知?abc中,ab=ac,d是?abc外接圆劣弧ac上的点(不与点a,c重合),延长bd至e。
(1)验证:ad的延长线是否平分?cde(2)若?bac=30,?abc中bc边上的高为2+3,求?abc外接圆面积。
3、如图,过圆o外一点m作它的一条切线,切点为a,过a作直线ap垂直直线om,垂足为p.(1)证据:嗯?op=oa(2)n为线段ap上一点,直线nb垂直直线on,且交圆o于b点.过b点的切线交直线on于k.证明:∠okm=90°你是我生命中最美丽的专业文件2你是我今生最美的遇见专业文档4.如图所示,已知?ABC的两条角平分线AD和CE相交于h,?B60,f在AC上,(1)证明B,D,h和E在同一个圆上:(2)证明CE是等分的?def.ae?af5、如图,已知ap是⊙o的切线,p为切点,ac是⊙o的割线,与⊙o交于b,c两点,圆心o在∠pac的内部,点m是bc的中点.(ⅰ)证明a,p,o,m四点共圆;(ⅱ)求∠oam+∠apm的大小.6.通过圆外的点p,画出圆的两条切线和一条割线。
切点是a和B。
割线在两个点c和D处与圆相交,c在P和D之间,在弦CD上取一个点Q来做?daq??pbc.核查:a0p?dbq??pac你是我生命中最美丽的专业文件cdqb你是我今生最美的遇见专业文档7.在锐角三角形ABC中,已知AB上的高CE和AC上的高BD在点h处相交,直径为de 的圆分别在点F和g处与AB、AC相交,FG和ah在点K处相交,BC=25、BD=20、be=7,并计算AK的长度8、已知⊙o与?abc的边ab、ac分别相切于p和q,与?abc外接圆相切于d,m是pq 的中点(如图).求证:?poq?2?mdc.你是我生命中最美丽的专业文件。
证明:∵DQ ∥BP∴DQBPDE BE =. ∵BP =2x ,DQ =x ,∴2=DE BE .∴BD BE 32=. ∵∠A =90°,AB =6,AD =9,∴133=BD . ∴132=BE ,即在点P 和点Q 的移动过程中,线段BE 的长度保持不变.点评:在平行四边形、矩形、菱形、正方形等特殊四边形中必有“A ”字型“8”字型等基本图形,抓住图形的这一特征是解题的关键。
【例2】如图,在梯形ABCD 中,AD //BC , E 、F 分别是AB 、DC 边的中点,AB =4,∠B = 60. (1)求点E 到BC 边的距离;(2)点P 为线段EF 上的一个动点,过P 作PM ⊥BC ,垂足为M ,过点M 作MN //AB 交线段AD 于点N ,联结PN .探究:当点P 在线段EF 上运动时,△PMN 的面积是否发生变化?若不变,请求出△PMN 的面积;若变化,请说明理由.【思路分析】图形运动中点P 是的主动点,M 、N 是从动点,在△PMN 的运动过程中,形状始终不变,所以面积也不会改变。
求三角形的面积可考虑用三角形的面积公式底乘以高的一半进行计算。
解:(1)过E 作EG ⊥BC ,垂足为G , 由AB =4,E 为AB 的中点,得BE =2 Rt △EBG 中, EBEG B =∠sin ,360sin 2sin =∠=∠⋅=B EG EG (2)不变在梯形ABCD 中,由AD ∥BC ,MN ∥AB ,得MN =AB =4 过点P 作PH ⊥MN ,垂足为H由MN ∥AB 得∠NMC =∠B=60 所以∠PMH =30由E 、F 是AB 、DC 边的中点 得EF ∥BC ,由EG ⊥BC ,PM ⊥BC ,得EG ∥PMA DN PEFM BCA DN PEFMB CHG∴PM = EG =3在Rt △PMH 中,PMPH PMH =∠sin ,所以PH =PM 2330sin =⋅∴32342121=⨯⨯=⋅=∆MN PH S PMN 点评:本题还有一种解法:延长MP 与射线DA 交于点Q , NQ 的长度为定值,△PMN 的面积可以看作以PM为底,NQ 为高。
4.4整式
教学目标:
1、通过归纳、类比,经历单项式、多项式概念的发生过程。
2、了解单项式、多项式、整式的概念。
3、理解单项式的系数和次数的概念。
4、理解多项式中项、项的系数、多项式的次数等概念。
了解整式在解决实际问题中的应用。
教学重点:单项式、多项式及其相关概念。
教学难点:单项式、多项式相关概念中的系数、次数的概念容易混淆,尤其是系数还包括符号,是本节教学的难点。
教学过程:
a
-么共同特
:完成P99----1,
做这个多项式的次数
4
的篱笆,利用它和房屋的一面墙围t=30m
教学反思:。
中考数学中容易出错的题型分析“数学是锻炼思维的体操”,思考数学题不仅能训练思维的灵活性。
亦能培养思维的周密性。
近几年绍兴市中考中数学命题及大注重思维的考查。
甚至直接加大问题的探索性题目的思维量和难题比重。
特别是今年的中考命题。
考完后学生的情绪相当低落。
可见试题中含有难度是平时训练所不及。
因此,分析让学生不适应的或不会的地方的常见原因。
对培养同学们的思维品质和解题能力的提高有重要的意义。
一.拓展训练2012绍兴中考15题,如图,在矩形ABCD 中,点E ,F 分别在BC ,CD 上,将△ABE 沿AE 折叠,使点B 落在AC 上的点B′处,又将△CEF 沿EF 折叠,使点C 落在EB′与AD 的交点此题难度较大,重点考察学生的观察能力,利用信息及处理信息的能力,很多同学停滞在这里,当然很大的原因归结于心理状态上,中考的压力和第10题的不确定而至的“可能性”失分,使很多学生不能冷静分析。
当然也有很多同学都猜出3:1或∠ACB=30°,但在证明上却是较难的一个过程。
我平时在跟同学们讨论时就说:数学是需要有深度的问题才能激发你的能力,而解题的技能要求也就是猜想+证明。
很多同学一开始有这样的猜测,30°、60°、90°的特殊三角形。
但是已有的条件中并没有告诉我们角的相关信息,那我们可以从边相关信息入手来求得角的特殊值。
而与这相关的一个知识点:在RT △中,如果一条直角边等于斜边的一半,那么这条直角边所对的角为30°。
也就是需要证明AC AB 21=,逆向思维,那么就有'AB AB =,如何证明C B AB ''= ? 有同学会想到全等,C EB C AB '''∆≅∆,但不太容易,缺边相等的条件。
我们可以换个方向,DC AB =, 如果DC C B ='同样也可以解决问题,因为他们不在同一个三角形中,我们可以连接'CC ,构造两三角形再证明它们全等。
2018.6初三数学期末模拟测试2一、选择题:(每小题3分,共36分,在每小题给出的四个选项中,只有一项符合题目要求) 1.下列各数中,属于负整数的是( ) A .2010 B .20.1- C.D .20- 2.半径为5的圆的一条弦长不可能...是( ) A .3B .5C .10D .123.要了解某校初中学生的课外作业负担情况,以下抽样方法比较合理的是( )A .抽取该校全体九年级学生B .随机抽取该校七、八、九年级学生各100名C .抽取该校全体女生D .抽取该校七、八、九年级成绩较好的学生各100名4.下列计算正确的是 ( )A.235aa a += B. ()326a a = C. 623a a a ÷= D.236a a a ⨯=5.据报道,电影《阿凡达》上映7周时间,票房便达到20.45亿元,计算平均每周的票房,用科学记数法表示并把结果保留3位有效数字是( )A .92.0410⨯元 B .92.0510⨯元 C .82.9210⨯元 D .92.9210⨯ 元6.若分式122--x x 的值为0,则x 的值是( )A. ±1B. -1C. 1D.27.将一个圆锥的表面展开后,正好得到一个圆心角为90°的扇形和一个圆.若圆的半径为r ,扇形的半径为R ,则R 与r 之间的关系是( ) A .R =4r B.R= C .R =3r D .R =2r8.在一个不透明的袋子中装有4个除颜色外完全相同的小球,其中白球1个,黄球1个,红球2个,摸出一个球不放回,再摸出一个球,两次都摸到红球的概率是( ) A .12 B .13 C . 16 D .189.已知两圆半径分别为3和4,圆心距为d ,且34d <<,那么这两圆的位置关系是( )A .相交B .内含C .外离D .外切10.下面左图所示几何体的俯视图是( )A .B .C.D .11.用边长相等的正八边形和正方形两种地砖镶嵌地面,在每个顶点的周围,正八边形、正方形地砖的块数分别是( )A .1,2 B .2,1 C .4,2 D .2,412.如图,在矩形ABCD 中,AB=3,AD=5,点P 在线段BC 上运动,现将纸片折叠,使点A 与点P 重合,得折痕EF (点E 、F 为折痕与矩形边的交点),设BP x =,当点E 落在AB 上,点F 落在AD 上时,x 的取值范围是( )A .01x <≤B .03x <≤C .13x ≤≤ D .35x ≤≤二、填空题(每小题3分,共18分) 13.化简:52a a-=____________.14.实数..10.058823529411764717=是一个循环小数,它的循环节长度为16,在一个循环节中,数字“8”出现的频率是___________________.15.如图,AB ∥CD , DE ⊥AC ,垂足为E ,∠A=55º,则∠D 的度数是___________.16.如图(1)为折叠椅,图(2)是折叠椅撑开后的侧面示意图,其中椅腿AB 和CD 的长度相等,O 是它们的中点.为使折叠椅既舒适又牢固,厂家将撑开后的折叠椅高度设计为32cm ,∠DOB =100°,那么椅腿AB 的长应设计为________cm (结果精确到0.1cm )17.已知直线AB 与直线CD 相交于点O ,且∠AOC 为30P 在直线CD上运动.当圆P 与直线AB 、CD 共有3个公共点时,线段OP 的长为________.18.已知点P(,)a b 是双曲线21c y x +=(c 为常数)和直线114y x =-+的一个交点,则222a b c ++ 的值是__________________.三、解答题(第19-21题各6分,第22题10分,第23-24题各8分,第25题10分,第26题12分,共66分)第15题图(1) B图(2)(第16题)(第12题)19.给出4个整式:2,2,2,21x x x +-+.(1)从上面的4个整式中选择2个整式,写出一个分式. (2)从上面的4个整式中选择2个整式进行运算,使运算结果为二次三项式.请你列出一个..算式,并写出运算过程.20.如图,Rt △ABC 中,D 是斜边AB 的中点,CD=5,BC=8,求线段AC 的长和∠BCD 的正弦值.21.如图,菱形ABCD 中,∠A=108°,请设计三种分法,将菱形ABCD 分割成四个等腰三角形.(画图工具不限,要求画出分割线段,标出能够说明分法的相关角的度数.)22.某校学生综合成绩的计分办法是:30%30%40%=⨯+⨯+⨯+综合成绩(测试一)(测试二)(测试三)素质测试成绩.现知学生王磊的各项成绩如下: (1)计算王磊的综合成绩.(2)如图,将王磊全班同学的综合成绩四舍五入取整后绘成频数分布直方图.若全班人数正好是分数段为570-580一组人数的5倍多3人,请你结合频数分布图的相关信息确定全班总人数.图1图2 图3(3)在(2)的条件下,请你估计该班学生综合成绩的中位数的范围.23.三个全等的直角梯形①、②、③在平面直角坐标系中的位置如图所示,抛物线2y ax bx c =++经过梯形的顶点A 、B 、C 、D ,已知梯形的两条底边长分别为4,6 . (1)求梯形的两腰长; (2)求抛物线的解析式.24.如图,△ABC 内接于圆O ,AD 是圆O 的直径,AH ⊥BC ,垂足为H ,连结BD. (1)求证:△ABD ∽△AHC. (2)若1tan ABC ,AH CH 3∠===,求圆O 的直径长.25.据悉,为鼓励货车合理装载,减少重载车对高速公路的损害,宁波市即将对各类货车的高速公路里程费进行记重收费.现有一辆合理重量为20吨的货车(含车重,以下同),里程费记重收费方案是:重量在20吨以内(包括20吨)时按每公里每吨0.09元收费;重量在20吨以上时,超载量按如下方案收费:(设货车超载..x 吨)( 第24题)(注:分数为整数,每组含最高分,但不含最低分)10239 87(第23题)(1)某次记重显示为25吨,从宁波运往100公里处的某地,求货车需要支付的高速公路里程费.(2) 当610x <≤时,设货车运输的距离为y 公里,求货车需要支付的高速公路里程费.(结果用含,x y 的代数式表示)(3) 某次该货车记重显示为28吨,开往距离为200公里的某地,已知货车交付除里程费外的其他费用后,运输的利润为每吨12元,问此次货车超载是否亏本? 请通过计算加以说明.26.如图,在平面直角坐标系中,O 为坐标原点,直线1:2l y x m =-+与x y 、轴的正半轴分别相交于点A 、B ,过点C (4,4)--画平行于y 轴的直线交直线AB 于点D ,CD=10. (1)求点D 的坐标和直线l 的解析式. (2)求证:△ABC 是等腰直角三角形.(3)如图2,将直线l 沿y 轴负方向平移,当平移适当的距离时,直线l 与x y 、轴分别相交于点A B ''、,在直线CD 上存在点P ,使得△A B P ''是等腰直角三角形.请直接写出所有符合条件的点P 的坐标.(不必书写解题过程)(图1)(图2)(第26题)。